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Water quality plays a vital role in aquaculture sustainability, particularly 
for sensitive freshwater species such as Salmo letnica, which require strict 
physicochemical conditions for survival. This study evaluates the suitability 
of household water sources from eight rural villages in North Macedonia 
for supporting Salmo letnica in home-based tank environments. Seven key 
water quality parameters were measured and compared against biological 
thresholds derived from ecological literature. A Deep Reinforcement Learning 
(DRL) agent, trained using the Proximal Policy Optimization (PPO) algorithm, 
was developed to classify the suitability of water samples based on these 
parameters. While the DRL model exhibited low precision and recall due to 
the limited sample size, it provided a framework for interpretability through 
reward dynamics and parameter correlations. Among the eight villages, 
Forino and Gradec were found to meet all critical biological thresholds, 
while Kamenjane and Vrapçishte were identified as marginally suitable. The 
remaining locations exhibited insufficient oxygen levels or excessive nutrient 
concentrations. These findings demonstrate the potential of AI-based 
classification models in supporting aquaculture planning and ecological 
risk assessment. Future work will focus on data expansion, reward function 
refinement, and field-level model deployment. Unlike traditional supervised 
classifiers, the DRL agent enables autonomous learning and decision-making 
without requiring large labeled datasets. This makes the approach suitable for 
real-time, remote water quality monitoring in resource-limited rural areas.
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1. INTRODUCTION
Water quality is a fundamental indicator of environmental 
health and a critical factor influencing the viability of 
aquaculture systems, especially in regions where natural 
water sources are used without prior treatment (Bagheri, 
2019; Nasir, 2022). In rural and mountainous areas, small-scale 
aquaculture practices often depend on freshwater sourced from 
local springs, rivers, or wells, yet these sources are seldom 
evaluated against the biological thresholds required to sustain 
fish populations (Abyaneh, 2014; Gazzaz, 2012). This lack of 
evaluation can present serious ecological and economic risks 
when sensitive or endemic fish species are introduced into 
tank-based environments without understanding whether the 
underlying water parameters are suitable (Du, 2020). Traditional 
water quality assessment methods, which typically involve 
sample collection followed by laboratory-based analysis of 
physicochemical properties such as temperature, pH, dissolved 
oxygen, turbidity, salinity, nitrate, and phosphate, are often 
expensive, time-consuming, and logistically challenging to 
conduct in under-resourced areas (Chen, 2018). These limitations 
hinder their use in decentralized monitoring efforts or real-
time decision-making. In recent years, artificial intelligence 
methods have gained traction as promising alternatives for 
water quality prediction and classification (Fijani, 2019; Huo, 
2013). Machine learning models, including neural networks 
and ensemble techniques, have shown substantial capability 
in analyzing environmental datasets and identifying complex 
relationships among parameters relevant to aquatic health 
(Kiran Tota-Maharaj, 2011). However, most of these models are 
supervised and depend on large, labeled training datasets. They 
often lack flexibility in scenarios where field data are limited 
and conditions are highly variable. This research examines 
applying artificial intelligence in terms of Deep Reinforcement 
Learning to analyze the suitability of freshwater from eight 
rural communities in North Macedonia for Salmo letnica, an 
endemic and environmentally tolerant trout fish, to survive. 
Inclusion in this research were the rural communities of Pirok, 
Bogovinje, Siniçane, Zherovjane, Kamenjane, Forino, Gradec, 
and Vrapçishte, all in the mountainous Tetovo - Gostivar 
region and defined as areas of unique water supplies driven 
by local geography, land use, and surroundings. Samples were 
taken of water from each community in spring and tested 
for seven physicochemical parameters deemed critical in 
terms of influencing Salmo letnica’s ecology. Drawing from 
existing ecological studies of Salmo letnica, these parameters 
were mapped against binary suitability labels to determine 
whether sampled water might sustain fish in aquaculture tank 
environments. A Deep Reinforcement Learning model was 
trained using this dataset, simulating an interacting agent 
who targets water samples and learns to classify them using 
feedback-based optimization. This isn’t one dependent on 
predefined rules and outside labels beyond those set-in terms 
of established eco-biological thresholds, however, rather 
constructs its strategy for classifying using adaptation to 
existing trends in environmental information. Analysis outputs 
in this research use scientific graphs and statistical tests to 
represent prediction success, correlations within features, and 
comparisons at the level of each community. This research 

deploys AI-based modeling in some specific, field-based context 
and offers an aid for decision when deciding upon water use in 
low-infrastructure aquaculture. In combining data from eight 
communities’ environments using reinforcement learning, this 
research contributes to practical methodology for assisting in 
decision acceptance and in managing fish communities using 
locally accessible water supplies. To better contextualize the 
contribution of this study, relevant research efforts on AI-based 
water quality assessment are discussed below.

2. LITERATURE REVIEW
Recent advances in artificial intelligence have led to substantial 
improvements in water quality prediction, monitoring, 
and classification across various hydrological systems. The 
application of machine learning techniques to this domain is 
motivated by the limitations of conventional methods, which 
typically involve manual sampling, laboratory analysis, and 
time-consuming reporting processes that are often impractical 
in real-time or decentralized contexts. Shams (2024) underscores 
the importance of water quality for ecological, agricultural, 
and domestic sustainability, highlighting that environmental 
pollution has considerably deteriorated freshwater conditions. 
The study employs both classification and regression-based 
machine learning algorithms to predict Water Quality Index 
(WQI) and Water Quality Classification (WQC). Grid search 
optimization was used to fine-tune four ensemble classifiers, 
namely Random Forest, XGBoost, Gradient Boosting, and 
AdaBoost, for the WQC task, while models such as K-Nearest 
Neighbors, Decision Tree, Support Vector Regression, and Multi-
Layer Perceptron (MLP) were trained to forecast WQI values. 
The dataset consisted of seven water quality indicators and 
nearly 2000 instances. Among the models, Gradient Boosting 
achieved the highest classification accuracy of 99.5%, whereas 
the MLP regressor recorded an R² score of 99.8%, suggesting that 
ensemble learning and neural architectures can provide robust 
solutions for intelligent environmental classification when 
paired with proper hyperparameter tuning and preprocessing 
techniques. Building on the need for enhanced temporal 
modeling, (Xizhi Nong, 2025) presents a multi-level coupled 
framework that integrates data denoising, feature selection, 
and Long Short-Term Memory (LSTM) neural networks to 
address the challenges posed by non-stationarity and temporal 
fluctuations in water quality variables. This model incorporates 
preprocessing techniques such as wavelet transforms and 
complete ensemble empirical mode decomposition to improve 
learning outcomes across multiple forecasting horizons. Multi-
step predictions were carried out for dissolved oxygen and 
the permanganate index at four water monitoring stations 
operating within the world’s largest inter-basin water transfer 
project. The LSTM model showed moderate but consistent 
improvements in R² values, particularly when enhanced with 
signal transformation layers, affirming its capability to handle 
noisy and irregular datasets more effectively than baseline 
models. The integration of LSTM with domain-specific signal 
processing techniques provides a scalable and interpretable 
architecture for dynamic environmental forecasting across 
complex aquatic systems. In parallel, (Nallakaruppan, 2024) 
explores the emerging role of Explainable Artificial Intelligence 
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(XAI) in water quality classification by applying SHAP-
based explanation frameworks to enhance transparency and 
interpretability. The study focuses on predicting the potability 
of drinking water by analyzing parameters such as total 
dissolved solids, nitrate, cadmium, lead, and arsenic, using 
classification models including Logistic Regression, Support 
Vector Machine, Gaussian Naive Bayes, Decision Tree, and 
Random Forest. The Random Forest classifier delivered superior 
predictive performance with an F1-score and accuracy of 0.9999. 
What differentiates this work is the application of various XAI 
visualizations, including SHAP summary plots, force plots, 
dependency diagrams, and decision plots, which collectively 
reveal the relative influence of input features on the classifier’s 
output. By integrating explainability into predictive modeling, 
this study improves the trustworthiness and auditability of 
AI systems in high-risk domains such as public water supply 
assessment. Complementing this, (N. S. Pagadala, 2023) focuses 
on binary water classification tasks by applying supervised 
learning algorithms to predict whether water samples are 
safe or unsafe for household and agricultural usage. The input 
variables include pH, turbidity, conductivity, hardness, and 
total dissolved solids, all of which are routinely measured in 
basic environmental testing kits. The model enables real-time 
water usability assessment and demonstrates the feasibility 
of deploying lightweight AI tools in resource-limited or rural 
contexts. This practical approach to classification aligns well with 
emerging frameworks that seek to decentralize environmental 
monitoring without compromising on scientific rigor. In a more 
hydrologically focused application, (Amir Hamzeh Haghiabi, 
2018) compares the effectiveness of Artificial Neural Networks 
(ANN), Group Method of Data Handling (GMDH), and Support 
Vector Machines (SVM) in predicting water quality components 
of the Tireh River in southwestern Iran. The study tested various 
activation and kernel functions, identifying tansig for ANN and 
radial basis function for SVM as the most performant. Although 
all three models demonstrated satisfactory results, the SVM 
model yielded the highest accuracy and the lowest DDR error 
index, making it the most precise among the methods tested. 
The presence of overestimation tendencies across models was 

noted, but overall, the findings confirmed the adaptability of AI 
techniques to geographically localized river systems where water 
quality parameters vary based on seasonal and anthropogenic 
influences. Taken together, these studies establish a strong 
foundation for integrating artificial intelligence into the broader 
framework of water quality management, whether through 
highly accurate classification, explainable modeling, time-series 
forecasting, or river-specific monitoring. These approaches 
inform the current research, which extends this body of work 
by incorporating Deep Reinforcement Learning to assess 
biological suitability of rural freshwater samples for aquaculture 
applications. Deep Reinforcement Learning (DRL) methods 
face well-known challenges in small-data settings, including 
poor sample efficiency, unstable convergence, and overfitting. 
These limitations stem from the need for extensive environment 
interactions, which are often infeasible in ecological research 
with limited field measurements. To address this, our study 
used Proximal Policy Optimization (PPO), a modern actor-critic 
algorithm that offers stable training through clipped updates 
and shows robustness to sparse rewards. PPO outperforms 
earlier methods such as DQN and A3C when training data is 
scarce or when working with binary classification tasks. Its 
simplicity and stability make it well-suited for learning from 
the eight-sample dataset used in our water suitability analysis.

3. METHODOLOGY
3.1. Study area and water sample collection
This study was conducted in eight rural mountainous villages 
in the Tetovo–Gostivar region of North Macedonia, including 
Pirok, Bogovinje, Siniçane, Zherovjane, Kamenjane, Forino, 
Gradec, and Vrapçishte. These villages were selected due 
to their reliance on household freshwater sources drawn 
directly from local springs, making them suitable candidates 
for evaluating the ecological viability of aquaculture in 
decentralized environments. Water samples were collected 
between March 18 and April 4, 2025, with one sample taken per 
village under standardized conditions. All water was sampled 
from household taps or cisterns representing typical domestic 
usage, and immediately subjected to physicochemical analysis.

Figure 1. Territory where the test was conducted
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3.2. Water quality parameters and suitability thresholds
Each sample was evaluated for seven critical parameters 
affecting aquatic life: temperature (°C), pH, dissolved oxygen 
(DO, mg/L), turbidity (NTU), salinity (mg/L), nitrate (mg/L), and 
phosphate (mg/L). The choice of parameters and the associated 
threshold values for ecological suitability were derived from the 
biological requirements of Salmo letnica (Ohrid trout), a cold-
water freshwater species endemic to Lake Ohrid. Reference 
thresholds were drawn from the Handbook of European 
Freshwater Fishes by (Freyhof, 2007). Water was considered 
suitable for Salmo letnica survival if it met the following optimal 
ranges: temperature between 8–17°C, pH between 6.5–8.5, DO 
≥ 6 mg/L, turbidity ≤ 5 NTU, salinity < 0.5 g/L, nitrate ≤ 1 mg/L, 
and phosphate ≤ 0.2 mg/L. A binary label was assigned to each 
sample accordingly: 1 for suitable and 0 for unsuitable.

3.3. Deep reinforcement learning environment design
To model the classification task using artificial intelligence, a 
custom Deep Reinforcement Learning (DRL) environment was 
implemented using the Gymnasium interface. The environment, 
named WaterEnv, was designed to simulate an agent tasked 
with classifying water samples based on the seven normalized 
physicochemical inputs. The agent observed one sample at a 
time and selected one of two discrete actions (0 = unsuitable, 1 
= suitable). After each action, a reward of +1 or –1 was returned 
based on whether the classification matched the actual ground 
truth label. The episode terminated after all eight samples were 
classified, and the environment was reset.

3.4. DRL model and training setup
The DRL model was implemented using the Proximal Policy 
Optimization (PPO) algorithm from the Stable-Baselines3 
library. The agent was trained for 1000 timesteps using a 
multilayer perceptron policy (MlpPolicy). Training took place 
in a local Python environment running version 3.13, with 
key dependencies including Gymnasium, NumPy, Pandas, 
Matplotlib, Seaborn, and scikit-learn. The learning process was 
guided purely by reward feedback, with no external supervision, 
enabling the model to learn an optimal classification policy 
based solely on environmental interactions.

3.5. Evaluation strategy
After training, the PPO agent was used to predict the suitability 
label for each village’s water sample. The agent’s decisions 
were compared against the ground truth labels derived from 
biological thresholds. Evaluation metrics included precision, 
recall, and F1-score, along with a confusion matrix to measure 
classification accuracy. Additionally, the system generated 
a simulated confidence score per village to demonstrate 
interpretability. Eight visualizations were generated to 
summarize the model’s performance and insights: a violin 
plot comparing parameter distributions across suitable and 
unsuitable classes, a parameter heatmap segmented by 
DRL predictions, a confusion matrix, a metrics bar chart, a 
correlation chart of each parameter with suitability, a simulated 
reward curve representing training convergence, and a pairplot 

visualizing multivariate relationships among parameters.

3.6. Implementation environment
All experiments were implemented in Python 3.13. We used 
Stable-Baselines3’s PPO algorithm for DRL training, with custom 
Gymnasium-compatible environments. Data preprocessing 
relied on Pandas, while evaluation and visualization employed 
scikit-learn, Matplotlib, and Seaborn.

3.7. Hyperparameters  
The policy network architecture consisted of a multilayer 
perceptron (MLP) with the following configuration:

• Input Layer: 7 neurons (normalized water parameters)
• Hidden Layers: Two dense layers with 64 neurons each, 

ReLU activation
• Output: 2 actions (binary classification)

Table 1. Key hyperparameters used in training

Parameter Value

Learning rate 0.0003

Gamma (discount factor) 0.99

Clip range 0.2

Entropy coefficient 0.01

GAE lambda 0.95

Batch size 64

Training steps 1000

Policy MlpPolicy

Figure 2. PPO agent architecture

4. RESULTS AND DISCUSSION
The Deep Reinforcement Learning (DRL) agent trained using 
Proximal Policy Optimization (PPO) was evaluated on water 
quality samples from eight rural villages. The outcomes are 
visualized through eight charts, each providing insights into 
model performance, parameter relationships, and suitability 
classification.
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Figure 3  presents a violin plot comparing the distribution of 
each water quality parameter between samples classified as 
suitable and unsuitable for Salmo letnica. Dissolved oxygen and 
pH show the greatest separation between classes, with suitable 
samples tending toward higher oxygen values and stable pH 
around 7.5. In contrast, unsuitable samples exhibit greater 
variation and outliers in turbidity, salinity, and phosphate. The 
clear difference in density and clustering confirms that certain 
physicochemical variables carry stronger predictive value for 
ecological suitability.

Figure 5 shows the confusion matrix with a total of eight 
samples. The DRL model correctly predicted one suitable and one 
unsuitable case, while misclassifying four unsuitable samples 
as suitable, and two suitable samples as unsuitable. These 
results underscore a low-precision, low-recall model behavior, 
indicating that the current policy requires further refinement or 
retraining with larger data to generalize effectively.

Figure 3. Water parameter distribution by suitability

Figure 4. Mean parameter values by DRL prediction

Figure 4 presents the average values of each parameter according 
to the DRL model’s predictions. Samples classified as suitable 
by the agent showed slightly lower average temperature and 
phosphate, but surprisingly also lower dissolved oxygen. The 
average turbidity for predicted suitable cases was higher than 
that of unsuitable ones, suggesting that the DRL model may 
have mislearned feature importance from limited training 
examples, which is reflected in the model’s later evaluation 
metrics.

Figure 5. Predicted label

Figure 6. DRL evaluation metrics
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Figure 6 the DRL model achieved a precision of 0.20, a recall 
of 0.33, and an F1-score of 0.25. These metrics confirm weak 
generalization ability, with high false-positive and false-
negative rates. The model correctly flagged only one out of three 
suitable samples and often incorrectly classified unsuitable 
samples as suitable. This imbalance reflects the difficulty of 
learning ecologically valid classification strategies from a small 
dataset without tailored reward engineering.

The reward curve in Figure 9 reflects gradual learning over 
training time. Although rewards steadily increased, the lack 
of a clear performance spike suggests that the model did not 
converge on a robust classification policy. This is aligned with 
the confusion matrix and evaluation scores and highlights the 
need for either deeper architectures, better reward shaping, or 
data augmentation.
In addition to classification performance, the agent’s learning 
dynamics and interpretability were evaluated to understand the 
reliability of the DRL model. The reward curve (Figure 8) shows 
a gradual upward trend over training timesteps, indicating that 
the PPO agent was able to learn a basic policy, but without a 
clear convergence point or performance plateau. This suggests 
that policy optimization was slow and likely constrained by the 
limited number of training episodes available from the small 
dataset. Moreover, the confidence scores generated by the 
agent (Figure 6) revealed high certainty even in misclassified 
samples. For example, the model assigned suitability to samples 
from Siniçane and Bogovinje with confidence levels above 85%, 
despite ecological indicators contradicting this prediction. 
This behavior implies a form of overfitting or model bias, 
where the agent became overly confident in certain patterns 
that were not biologically justified. From a computational 
interpretability standpoint, correlation plots (Figure 7) and 
multivariate clustering (Figure 9) confirm that parameters like 
dissolved oxygen and pH were consistently associated with 
suitability. However, the agent occasionally misprioritized less 
informative features such as turbidity or phosphate, reinforcing 
the need for more robust reward shaping or feature selection in 
future model iterations. Overall, the DRL model demonstrated 
limited but promising interpretability, with visible clusters and 
trends that align with ecological expectations but also exposed 
learning weaknesses due to data scarcity.

Figure 7. Simulated DRL confidence by village

Figure 7 shows the model’s simulated confidence scores for 
each prediction. Villages such as Bogovinje, Kamenjane, and 
Siniçane were classified as suitable with high confidence 
(above 0.85), whereas Gradec and Zherovjane received low 
or misaligned confidence. These results provide a secondary 
diagnostic view, helping assess prediction trust even when 
classification accuracy is poor.

Figure 8. Correlation of water parameters with suitability

Figure 8 presents Pearson correlation coefficients between 
each feature and suitability labels. Dissolved oxygen, pH, 
and temperature show the strongest positive correlations 
with suitability, consistent with ecological expectations for 
Salmo letnica. Turbidity, phosphate, and salinity show weak 
or negative correlations, implying that nutrient pollution and 

Figure 9. Simulated DRL training reward curve

visual clarity may play less dominant roles at this sampling 
scale but should not be excluded in broader evaluations.
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Figure 10 offers a pairwise view of relationships among all 
seven physicochemical parameters. Suitable and unsuitable 
samples form clear clusters in subplots such as nitrate vs. 
dissolved oxygen and phosphate vs. pH, reaffirming the 
potential for multi-parametric DRL agents to learn separability 
patterns even from small datasets. The overlap in some feature 
pairs, however, suggests that no single parameter is sufficient 
for determining suitability, and holistic modeling remains 
necessary.
The evaluation of freshwater from eight rural villages in the 
Tetovo–Gostivar region of North Macedonia revealed varying 
degrees of suitability for sustaining Salmo letnica, a cold-water 
trout species endemic to Lake Ohrid that requires specific 
physicochemical conditions for survival. Based on established 

ecological thresholds, including optimal temperature (4–16°C), 
pH (7.0–8.5), dissolved oxygen (≥6 mg/L), salinity (<0.5 g/L), 
turbidity (≤5 NTU), nitrate (≤20 mg/L), and phosphate (≤0.2 
mg/L), each village’s sample was analyzed in conjunction 
with the predictions of a Deep Reinforcement Learning (DRL) 
model. Among all locations, Forino and Gradec exhibited 
the most favorable profiles, meeting all critical thresholds. 
Both demonstrated neutral to slightly alkaline pH, moderate 
temperatures, acceptable salinity and turbidity, and phosphate 
concentrations at or below the limit. Dissolved oxygen 
levels in these samples were sufficiently high to support the 
metabolic requirements of Salmo letnica, positioning them as 
strong candidates for sustainable aquaculture systems using 
untreated water. Kamenjane also exhibited relatively favorable 

Figure 10. Pairwise parameter analysis by suitability
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conditions, though its dissolved oxygen level was observed at 4 
mg/L, which is below the optimal threshold and could introduce 
physiological stress, particularly during warmer periods or in 
higher stocking densities. Bogovinje and Pirok displayed mixed 
results. While their nutrient levels were within acceptable 
limits, their oxygen concentrations were notably low, 
suggesting that additional aeration or oxygenation treatments 
would be necessary before considering these sources viable for 
aquaculture use. In contrast, Siniçane and Zherovjane were the 
least suitable due to the combined presence of low dissolved 
oxygen, elevated phosphate, and moderate salinity levels, all 
of which fall outside the tolerances for this species. Vrapçishte 
showed a more balanced profile, with pH and oxygen levels 
at acceptable levels, though nitrate and phosphate values 
were approaching cautionary thresholds. When comparing 
these ecological assessments to the DRL model’s predictions, 
significant mismatches were observed. The agent correctly 
identified only two of the eight samples and demonstrated 
low precision, recall, and F1-scores. Although its confidence 
scores were high for several samples, the actual classification 
alignment was weak, suggesting overfitting or limited learning 
capability due to the small dataset. Correlation analysis 
confirmed that pH, temperature, and dissolved oxygen had the 
strongest relationships with suitability, while features such as 
phosphate and turbidity played a less decisive role. Despite 
its limitations, the DRL model provided useful visualizations, 
particularly in the form of the reward curve and pairplot, which 
revealed that suitable and unsuitable samples occupy separate 
clusters in multidimensional parameter space. This suggests 
that, with a larger training set and refined reward functions, 
the model could evolve toward higher accuracy and decision-
making reliability. Overall, the study concludes that Forino and 
Gradec currently offer the most viable natural water conditions 
for sustaining Salmo letnica in a household tank environment, 
while Kamenjane and Vrapçishte show promise under 
controlled interventions. The remaining villages require either 
water conditioning or should be excluded from consideration 
unless ecological parameters can be actively regulated.

5. CONCLUSION
This study presented a Deep Reinforcement Learning (DRL) 
approach for assessing the biological suitability of freshwater 
from eight rural villages in North Macedonia for small-scale 
aquaculture involving Salmo letnica. By analyzing seven key 
physicochemical parameters, including temperature, pH, 
dissolved oxygen, turbidity, salinity, nitrate, and phosphate, 
each water sample was benchmarked against ecologically 
defined thresholds and then evaluated using a PPO-trained DRL 
agent. The findings showed that Forino and Gradec possess 
water conditions that fully align with the survival requirements 
of Salmo letnica, making them viable candidates for untreated 
aquaculture systems. Kamenjane and Vrapçishte displayed 
marginal suitability, with certain indicators falling slightly 
below optimal thresholds. The remaining villages require 
intervention due to elevated nutrient levels or insufficient 
dissolved oxygen. Although the model’s precision and recall 
were low, the use of DRL introduced a novel framework for 
autonomous, label-free classification in highly constrained 

data environments. Computational insights, such as the reward 
progression, prediction confidence, and parameter correlation, 
provided interpretability into how the agent learned and which 
environmental features influenced its decisions. However, 
instances of misclassification with high confidence highlighted 
the risks of model bias and limited generalization in small-
sample settings. Future research will focus on extending the 
dataset by incorporating seasonal water samples, enriching 
the feature space with additional ecological variables such as 
ammonia, heavy metals, or biological oxygen demand, and 
refining the reward structure to minimize ecological false 
negatives. Hybrid DRL architectures, including PPO combined 
with LSTM or attention mechanisms, may also improve 
learning stability in sparse feedback conditions. The long-term 
objective is to develop lightweight and deployable DRL models 
suitable for real-time water quality monitoring in decentralized 
and low-resource aquaculture environments.

REFERENCES

Abyaneh, H. Z. (2014). Evaluation of multivariate linear 
regression and artificial neural networks in prediction 
of water quality parameters. Journal of Environmental 
Health Science and Engineering, 12, 1-8. https://doi.
org/10.1186/2052-336X-12-40

Amir Hamzeh Haghiabi, A. H. (2018). Water quality prediction 
using machine learning methods. Water Quality Research 
Journal, 3-13. https://doi.org/10.2166/wqrj.2018.025

Bagheri, M. A. (2019). Advanced control of membrane fouling 
in filtration systems using artificial intelligence and 
machine learning techniques: A critical review. Process 
Safety and Environmental Protection, 123, 229–252. https://
doi.org/10.1016/j.psep.2019.01.013

Chen, S. F. (2018). Water Quality Prediction Model of a Water 
Diversion Project Based on the Improved Artificial Bee 
Colony–Backpropagation Neural Network. Water, 806. 
https://doi.org/10.3390/w10060806

Du, Y., Chen, F., Zhou, L., Qiu, T., & Sun, J. (2020). Effects 
of different layouts of fine-pore aeration tubes on 
sewage collection and aeration in rectangular water 
tanks. Aquacultural Engineering, 89, 102060. https://doi.
org/10.1016/j.aquaeng.2020.102060

Fijani, E., Barzegar, R., Deo, R., Tziritis, E., & Skordas, K. (2019). 
Design and implementation of a hybrid model based on two-
layer decomposition method coupled with extreme learning 
machines to support real-time environmental monitoring of 
water quality parameters. Science of the total environment, 
648, 839-853. https://doi.org/10.1016/j.scitotenv.2018.08.221

Freyhof, M. K. (2007). Handbook of European freshwater fishes. 
Ichthyological Research, 99. https://doi.org/10.1007/s10228-
007-0012-3

Gazzaz, N. M., Yusoff, M. K., Aris, A. Z., Juahir, H., & Ramli, M. 
F. (2012). Artificial neural network modeling of the water 
quality index for Kinta River (Malaysia) using water quality 
variables as predictors. Marine pollution bulletin, 64(11), 



38

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(1), 30-38, 2025 Page 

2409-2420. https://doi.org/10.1016/j.marpolbul.2012.08.005

Huo, S., He, Z., Su, J., Xi, B., & Zhu, C. (2013). Using artificial 
neural network models for eutrophication prediction. 
Procedia Environmental Sciences, 18, 310-316. https://doi.
org/10.1016/j.proenv.2013.04.040

Kiran Tota-Maharaj, M. S. (2011). Artificial Neural Network 
Simulation of Combined Permeable Pavement and 
Earth Energy Systems Treating Storm Water. Journal of 
Environmental Engineering, 138(4), 499-509. https://doi.
org/10.1061/(ASCE)EE.1943-7870.0000497

N. S. Pagadala, M. M. (2023). Water Quality Prediction Using 
Machine Learning Techniques. 10th International Conference 
on Signal Processing and Integrated Networks (SPIN) (pp. 
358-362). Noida, India: IEEE. https://doi.org/10.1109/
SPIN57001.2023.10117415

Nallakaruppan, M. K., Gangadevi, E., Shri, M. L., Balusamy, 
B., Bhattacharya, S., & Selvarajan, S. (2024). Reliable 

water quality prediction and parametric analysis using 
explainable AI models. Scientific Reports, 14(1), 7520. https://
doi.org/10.1038/s41598-024-56775-y

Nasir, N., Kansal, A., Alshaltone, O., Barneih, F., Sameer, M., 
Shanableh, A., & Al-Shamma’a, A. (2022). Water quality 
classification using machine learning algorithms. Journal of 
Water Process Engineering, 48, 102920.

Shams, M. Y., Elshewey, A. M., El-Kenawy, E. S. M., Ibrahim, A., 
Talaat, F. M., & Tarek, Z. (2024). Water quality prediction 
using machine learning models based on grid search 
method. Multimedia Tools and Applications, 83(12), 35307-
35334. https://doi.org/10.1007/s11042-023-16737-4

Xizhi Nong, Y. H. (2025). Machine learning-based evolution 
of water quality prediction model: An integrated robust 
framework for comparative application on periodic return 
and jitter data. Environmental Pollution, 125834. https://doi.
org/10.1016/j.envpol.2025.125834


