
ABSTRACT

Submission
Acceptance
Publication

:
:
:

Keywords

Article History

Citation Style:

Chaos Engineering 2.0: A Review of AI-Driven, Policy-Guided Resilience for Multi-Cloud Systems

*1Lasbrey Chibuzo Opara, 2Ogheneruemu Nathaniel Akatakpo, 3Ifeanyi Charles Ironuru, 4Kingsley Anyaene, 5Benjamin Osaze Enobakhare

Review Article

About Article

July 19, 2025
August 24, 2025
September 05, 2025

Multi-cloud has become the default posture; 89 % of large enterprises now run
workloads across two or more providers, yet most failure-testing playbooks
were written for a single-vendor world. Chaos Engineering 2.0 extends
the classical “break-things-on-purpose” paradigm by pairing AI-guided
experiment orchestration, service-mesh–native fault injection, and chaos-as-
code, which is safeguarded by policy-as-code, so teams can probe complex,
cross-cloud failure domains without jeopardizing customer trust. Building
on the original Netflix Chaos Monkey ethos and the four “steady-state-first”
principles, this review synthesizes the resilience patterns that have surfaced
over a decade of practice, circuit breakers, bulkheads, adaptive retries, and
progressive delivery, and maps them to the modern toolchain. Open-source
projects like LitmusChaos and Chaos Mesh have limited production use,
commercial platforms offer rapid onboarding, and new chaos services are now
embedded in AWS and Azure. Two illustrative case studies, an e-commerce
cache stampede revealed by latency chaos and a fintech blue/green rollback
validated under a simulated inter-cloud partition, demonstrate tangible ROI.
Finally, ethical guardrails, cost-risk trade-offs, and forward directions such as
autonomous chaos agents and security chaos engineering are discussed. The
goal is pragmatic: equip practitioners with a concise, pattern-driven playbook
for hardening real-world multi-cloud systems before the next outage strikes.

About Author

Fault Injection, Lineage Driven,
Microservice Testing

1 Department of Computer Science,
Federal University of Technology
Owerri, Owerri, Nigeria
2 Department of Computer Science,
University of Benin, Benin City, Nigeria
3 Department of Information
Technology, Vilnius Gediminas
Technical University, Vilnius, Lithuania
4 Department of Mechatronics
Engineering, Federal University of
Technology, Owerri, Nigeria
5 Service Support Engineer, Peterbilt
Motors, Denton, Texas, USA

Copyright: © 2025 by the authors. Licensed Stecab Publishing, Bangladesh. This is an open-access article distributed
under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Published by
Stecab Publishing

Opara, L. C., Akatakpo, O. N., Ironuru, I. C., Anyaene, K., & Enobakhare,
B. O. (2025). Chaos Engineering 2.0: A Review of AI-Driven, Policy-Guided
Resilience for Multi-Cloud Systems. Journal of Computer, Software, and
Program, 2(2), 10-24. https://doi.org/10.69739/jcsp.v2i2.846

Contact @ Lasbery Chibuzo Opara
oparalasbreychibuzo@gmail.com

ISSN: 3007-9756 (Online)

Volume 2 Issue 2, (2025)
https://doi.org/10.69739/jcsp.v2i2.846
https://journals.stecab.com/jcsp

Journal of Computer, Software, and Program (JCSP)

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.69739/jcsp.v2i2.846
mailto:oparalasbreychibuzo%40gmail.com?subject=
https://doi.org/10.69739/jcsp.v2i2.846
https://journals.stecab.com/jcsp

11

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

1. INTRODUCTION
Multi-cloud has shifted from a buzzword to a baseline; the Flexera
2024 State of the Cloud survey reports that 89 % of enterprises
now spread workloads across two or more providers (Flexera,
2024). While this diversification improves vendor resilience,
recent headline outages show that it also multiplies failure
modes. An authentication glitch inside AWS us-east-1 on 7 Dec
2021 rippled through hundreds of dependent SaaS platforms (;
nine months earlier (Summary of the AWS Service Event in the
Northern Virginia (US-EAST-1) Region, 2021); an Azure Active
Directory fault cut access to Microsoft 365 and third-party apps
worldwide (Microsoft Learn, 2025); and a single mis-triggered
configuration at CDN provider Fastly black-holed much of
the public web for nearly an hour in June 2021 (Fastly, 2021;
Summary of June 8 Outage, 2021). These incidents underscore
a paradox: distributing risk across clouds does not eliminate
systemic fragility; it merely changes its topology.
Chaos Engineering emerged to confront such fragility by
“experimenting on a system to build confidence in its ability
to withstand turbulent conditions” (PRINCIPLES OF CHAOS
ENGINEERING - Principles of Chaos Engineering, n.d.). The
practice took shape inside Netflix when engineers unleashed
Chaos Monkey to kill production instances at random, proving
that auto-healing and redundancy really worked (Blog, 2018).
Those early forays, which we label Chaos 1.0, focused on single-
cloud infrastructure failures and were often executed manually
during scheduled “game days.” Tooling matured, Gremlin,
LitmusChaos, and Chaos Mesh, yet adoption remained modest;
a CNCF 2023 survey found only single-digit production usage
of these frameworks (7{Updating}).
Today’s multi-cloud reality stretches first-generation methods
past their limits. Different providers expose heterogeneous
APIs, IAM models, latency profiles, and regional footprints;
service meshes and Kubernetes abstracts add new layers where
faults can hide. Consequently, Chaos Engineering 2.0 has
crystallized around four upgrades:

i. AI-guided orchestration actively seeks the most informative
failure scenarios. Gremlin’s 2023 “State of Chaos Engineering”
notes that organizations using AI planning cut mean time-to-
resolution by up to 90 %.

ii. Service-mesh–native fault injection—Istio and Linkerd
expose config-driven latency, abort, and packet-loss toggles, a
capability already in use by over a third of surveyed mesh users
(Service Meshes Are on the Rise – but Greater Understanding
and Experience Are Required, 2022).

iii. Chaos-as-code is guarded by policy-as-code, embedding
experiments in GitOps pipelines that manage infrastructure.

iv. Cross-cloud blast-radius control ensures that experiments
can target one provider or traffic slice without causing collateral
damage.
Despite these advances, academia and practice remain skewed
toward single-provider case studies, leaving a literature gap
on synthesizing resilience patterns that span heterogeneous
clouds.

Article roadmap. We first condense the history and core
principles of Chaos 1.0, then dissect how multi-cloud
architectures rewrite the threat landscape. Next, we detail the
technical pillars of Chaos 2.0, including AI planners, mesh-level
injection, and policy-driven guardrails, and distill the design
patterns they surface (circuit breakers, bulkheads, adaptive
retries, and progressive delivery). A tooling feature matrix
contrasts open-source, commercial, and cloud-native options.
Two field-tested case studies, cache-stampede mitigation in
retail and blue/green rollback under PCI constraints, illustrate
business value. We conclude with a practitioner playbook,
ethical risk calculus, and forward-looking trends such as
autonomous chaos agents and security chaos engineering.
By bridging first-principles rigor with modern multi-cloud
realities, the review aims to provide engineers, SREs, and
technology leaders a concise yet comprehensive blueprint for
turning orchestrated failure into everyday resilience.

1.1. Background of chaos engineering 1.0
In 2011, the Netflix engineering team introduced the concept of
Chaos Monkey, a concept more akin to a dare than a discipline:
“Leave a wild monkey in your data center and see whether
customers notice.” (Blog, 2018) It was a provocation aimed
at their move into AWS; if the video-streaming giant really
believed in auto-scaling and redundancy, randomly killing
production instances should be uneventful. The stunt worked,
and the culture of intentional turbulence was born.

1.2. From stunt to method
Early adopters quickly realized the monkey was only a mascot
for something deeper. By 2016, a small cadre of engineers had
distilled four canonical Principles of Chaos Engineering:

i. Define a steady-state signal that represents business value.
ii. Formulate a falsifiable hypothesis that this signal will hold.
iii. Introduce real-world events (latency, outages, dependency

failures).
iv. Try to disprove your hypothesis and learn either way.

(Treat, 2020)

Figure 1. Headline Multi‑Cloud Outages 2021–2024.

12

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

The steady-state emphasis was crucial; without it, chaos
devolves into pranks. Engineers began to pair attacks with
golden-signal dashboards, traffic, errors, latency, and saturation
to observe the ripple effects in real time.

1.3. Tooling blooms, but scope stays narrow
Netflix open-sourced the Simian Army, Chaos Gorilla for zone
failures and Chaos Kong for whole-region blackouts, but most
companies copied only the small primate. A cottage industry
filled the gaps. Gremlin wrapped common faults (CPU burn,
packet loss, and process kill) in a safety-first SaaS; its 2021
survey showed enterprise interest exploding, but hands-
on practice still hovered below 25 % of respondents (Kyle,
2022). Open-source communities answered with Kubernetes-
native frameworks, Chaos Mesh, and LitmusChaos, mapping
experiments to CRDs so faults could be version-controlled like
any other manifest. Even Spring developers got their own mini-
monkey to zap beans in JVMs (Long, 2021).
Yet Chaos 1.0 shared three blind spots:
Single-cloud bias. Most tutorials assumed AWS; multi-provider
latency, quota, or IAM quirks were unexplored territory.
Infrastructure focus. Killing VMs was easy; injecting partial
failures (e.g., time skew, cache stampede, token expiry) required
bespoke scripts no one wanted to maintain.
Manual cadence. Game days happened quarterly, sometimes
annually. Lessons faded long before the next big release.
Google’s internal DiRT drills hinted at broader possibilities,
simulating data center fires, fiber cuts, and even pager-rotation
chaos, but details remained proprietary (Mace et al., n.d.; Sachto
& Walcer, n.d.)

1.4. Why 1.0 hit a ceiling
By the early 2020s, cloud estates no longer resembled the
Netflix of 2011. Hybrid Kubernetes clusters spanned AWS, GCP,
Azure, and on-prem; service meshes intercepted every request;
pipelines shipped features hourly. A botched IAM policy in one
cloud could now cascade across continents faster than a human
could cancel a chaos run.
Teams found that when they caused big problems without
careful controls, it messed up their data, making it hard to
analyze what went wrong. Teams began requesting smarter
chaos experiments that are selected based on data, governed
by code, and can be reversed quickly. Vendors responded by
embedding policy engines (OPA, Sentinel) to control access
and timing of disruptions. Gremlin’s platform now refuses to
run an attack if a CloudWatch alarm is triggered, a safety net
unimaginable in the Simian Army days. (Chaos Engineering &
Autonomous Optimization Combined to Maximize Resilience
to Failure, n.d.)
Lessons carried forward
Despite its limits, Chaos 1.0 left three durable legacies:

i. Cultural inoculation. Seeing a controlled failure and a calm
recovery shifts mindsets from fragile to antifragile.

ii. Evidence outweighs optimism. Hypothesis-driven outages
replaced “should be fine” gut-feel engineering.

iii. Shared vernacular. Terms like blast radius, steady state,
and game day now anchor cross-team conversations.
These foundations proved indispensable as the field graduated

to Chaos Engineering 2.0, where AI planners propose faults,
service meshes inject them at millisecond precision, and policy-
as-code fences keep the mayhem civilized. The next sections
trace that evolution and show how the old principles survive,
even thrive, in far more intricate and far less forgiving multi-
cloud systems.

2. LITERATURE REVIEW
Peer-reviewed work has advanced chaos engineering from ad-
hoc disruption to search-guided, hypothesis-driven testing,
but important limits persist. Lineage-Driven Fault Injection
(LDFI) formalized fault selection as a query over causal
lineage, replacing random stunts with evidence-seeking
probes; however, the original evaluations used constrained
workloads and left external validity for heterogeneous estates
under-explored (Alvaro et al., 2015). While Service-Level Fault
Injection Testing (Filibuster) has advanced to the RPC boundary
by automatically disrupting timeouts and exceptions during
tests, its demonstrations still prioritize microservice exemplars
over longitudinal production programs across providers.
Synthesis papers catalog methods but struggle to standardize
outcome metrics. Mapping studies in microservice testing
list families from API-level faulting to stateful dependency
emulation, yet report mixed measures (latency deltas vs. error
thresholds) that complicate meta-analysis and make effect
sizes challenging to compare across toolchains (Hui et al.,
2025; Waseem et al., 2020). Attempts at large-scale internet
automation demonstrate feasibility (e.g., production FIT based
on LDFI), but such reports remain exceptions rather than a
replicable template for multi-cloud practice (Alvaro et al., 2016).
The research frontier is also widening beyond availability.
ChaosETH applies fault-injection discipline to blockchain
clients, indicating portability of the approach, but again under
conditions that are largely lab-scoped (Zhang et al., 2023). In
Security Chaos Engineering, peer-reviewed prototypes (e.g.,
ChaosXploit) embed attack-tree knowledge to validate defenses;
still, most evaluations occur outside regulated production
contexts, leaving governance, auditability, and policy coupling
thinly evidenced (Palacios Chavarro et al., 2023).
This review addresses three specific gaps: (1) cross-cloud
realism, curating patterns and experiments that traverse
provider boundaries; (2) measurement discipline, normalizing
results via resilience/reliability scoring to enable comparison;
and (3) governance-by-policy, integrating OPA-style guardrails
so live experiments are ethically and regulatorily defensible.
Together, these close the distance between academic prototypes
and the operational needs of multi-cloud production systems.

3. METHODOLOGY
3.1. Design
Comprehensive narrative review with a structured search
protocol (not a scoping or full systematic review).
Databases & window. IEEE Xplore, ACM Digital Library,
USENIX, SpringerLink, and arXiv contain English-language
records from 2011 to August 2025.

3.2. Core queries
 “chaos engineering” OR “fault injection,” “lineage-driven fault

13

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

injection” OR LDFI, “service-level fault injection” OR Filibuster,
“microservice testing” (survey OR mapping), “security
chaos engineering,” “service mesh” AND (fault injection OR
resilience), “multi-cloud” AND (latency OR partition OR quota),
“operational resilience” AND (policy-as-code OR OPA).

3.3. Screening & inclusion
Title/abstract screening with a second pass for internal
consistency. Include: peer-reviewed studies and reputable
venue papers (USENIX/ACM/IEEE), plus institutional sources
when peer review is unavailable but technically necessary.
Exclude: non-technical marketing, non-English, pre-2011, or
items lacking accessible artifacts.

3.4. Extraction
For each source: venue/year; environment (single- vs multi-
cloud); fault class (infrastructure, L7, security); evaluation
metrics (latency, error rate, MTTR, resilience/reliability score);
controls (policy guardrails, stop conditions); and declared
threats to validity.

3.5. Tool analysis
A tool was considered eligible if it has been maintained within
the last 12 months and is documented for production use.
Categorization: open-source, commercial SaaS, cloud-native.
The comparison rubric covered multi-cloud reach, AI hooks,
IaC integration, observability taps, policy guardrails, safety
stop conditions, scoring, and workflow/DAG support. No
performance benchmarking was conducted.

4. RESULTS AND DISCUSSION
4.1. Why multi-cloud changes the game
Moving from a single cloud to two or five resembles swapping
chess for three-dimensional Go: Every extra board adds lines
of attack you must now defend. Enterprises embrace the
sprawl anyway; 89% run workloads on multiple providers, up
four points in a year (Flexera Blog, 2024). They do so to dodge
vendor lock-in and shave latency for global users, yet each
layer of “diversity” imports a fresh taxonomy of failure.

4.1.1. Heterogeneity: The babel problem
Identity and API models diverge at the root. An IAM role in
AWS cannot be pasted into Azure AD without translation, and
Google Cloud’s Workload Identity breaks the pattern altogether,
forcing DevOps to juggle three token lifecycles (Michalowski,
2024). Code that once assumed a single-source authority now
depends on bridging libraries whose own outages are invisible
to upstream dashboards, a weakness brutally exposed when
Azure AD faltered in March 2021, blocking sign-ins across
Microsoft 365 and any SaaS that delegated to it (Azure Status
History, n.d.).

4.1.2. Failure domains that ignore vendor borders
Multi-cloud was supposed to confine disasters, yet the blast
radius has learned to tunnel. When AWS us-east-1 experienced
an outage on December 7, 2021, a control-plane overload that
throttled core services, organizations with “standby” assets
in other clouds still saw cascading back pressure because

logins, build pipelines, or data movers hard-wired to Amazon
endpoints stalled first (Summary of the AWS Service Event in
the Northern Virginia (US-EAST-1) Region, 2021). Three years
later, a CrowdStrike signature update bricked Windows hosts
worldwide, grounding flights and hospital systems regardless
of the clouds that served their front ends (Lawler, 2024;
Warren, 2024). Diversity is ineffective when there is a shared
dependency.

4.1.3. Latency and invisible partitions
Provider backbones meet on the public internet, not in a
magic ring network; empirical studies record inter-cloud
RTTs that jump by tens of milliseconds even inside the same
metro (Palumbo et al., 2021). For synchronous protocols, Kafka
replication, and database two-phase commit—those extra hops
translate into queue bloat, timeout inflation, and ultimately
user-visible lag. Even worse, latency rarely increases smoothly;
a misrouted BGP prefix can spike one path while spare links
remain stable, resulting in a half-partition that passes health
checks but reduces throughput. Traditional Chaos 1.0 scripts
that kill instances cannot mimic this jitter; service-mesh delay
injections at the percent level become the new microscope.

4.1.4. Observability gaps and pipeline hydras
Tracing a request across clouds means stitching CloudWatch
IDs to Azure trace-context headers while normalizing
Stackdriver timestamp granularity—often into a single
Grafana board someone forgot to build. Practitioners describe
“monitoring blackout zones” where one provider’s metrics
vanish mid-incident until exporters catch up (Coredge, 2024).
That same heterogeneity infects CI/CD: deploy engines, secret
stores, and artifact registries must all replicate in lockstep, or
rollbacks diverge. DevOps commentators warn that multi-cloud
pipelines mutate into “three-headed hydras” whose heads bite
one another when a region fails (Michalowski, 2024).

4.1.5. Quota cliffs and consistency tightropes
Slide decks may portray failover as heroic, but when traffic
shifts, capacity limits become a real threat. Teams are urged
by AWS’s own reliability guide to precisely maintain buffer
quotas so that secondary regions can absorb a surge; neglect this
buffer, and you risk encountering a 403 “limit exceeded” error
while customers are refreshing checkout pages. (Amazon Web
Services, 2023b) Data presents unique challenges: while cross-
cluster replication ensures safety, it can only withstand limited
latency. CockroachDB’s two-data-center analysis shows how
stale read windows widen under burst traffic, risking double-
spends unless applications degrade to read-only (Lu, 2024).

4.1.6. Network chaos, codified
The good news: today we can rehearse these oddities. Chaos
Mesh’s NetworkChaos specification allows engineers to black-
hole traffic between specific namespaces or even physical nodes,
enabling them to script the precise type of inter-cloud partition
that caused failures in actual systems (Chaos Mesh, 2025b) Fine-
grained selectors ensure only a sliver of calls ride the fault,
keeping the blast radius ethical while still surfacing blind spots,
runbook drift, hard-coded DNS, or forgotten feature flags.

14

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

4.1.7. Human factors—the final multiplier
Every new console URL causes a fracture in the paging culture.
During Azure’s 2012 leap-year crash, operators spent forty
minutes determining which dashboard provided the most
accurate information, a delay that is further exacerbated by the
possibility of three clouds colliding at the same time. Chaos
drills catch these frictions early: they reveal when on-call
rotations lack cross‑provider permissions or when the legal
team must pre-approve shutdown actions in a European region
because of data‑sovereignty clauses.

4.1.8. So what changes for resilience practice?
Experiments must mature alongside topology. Single-VM
kill tests are essential; multi-cloud resilience necessitates
continuous, not quarterly, execution of latency shaping, quota
squeezing, cross-region DNS poisoning, and replication-
lag amplification. Policy gates ensure a robust safety net, AI
assistants select the most intelligent solutions, and service
meshes eliminate errors without requiring code modifications.
The benefits are tangible: Delta calculated that the CrowdStrike
incident cost half a billion dollars in just five days; chaos drills,
which practice driver rollbacks and quota surges, could have
mitigated this impact (Lawler, 2024).
Every added cloud widens the landscape of potential disruption.
Chaos Engineering 2.0 furnishes the map and compass that let
reliability teams traverse that terrain with their eyes open.

4.2. Technical foundations of Chaos 2.0)
Chaos 1.0 gave us the idea of breaking things on purpose;
Chaos 2.0 turns that idea into a programmable, policy-aware,
and sometimes self-driving discipline. Four pillars underpin
the upgrade: (1) AI-guided orchestration that decides what to
break and when; (2) service-mesh fault injection that breaks it
with pinpoint precision; (3) chaos-as-code, guarded by policy-
as-code, so experiments travel safely through GitOps pipelines;
and (4) an ecosystem of patterns and scores, circuit breakers,
resilience scores, reliability KPIs, that convert raw mayhem
into measurable progress.

4.2.1. AI-guided orchestration—from arbitrary mischief
to hypothesis mining
Hand-picking a fault out of thousands feels quaint once
a generative model has scanned your dependency graph.
Harness’s January 2025 release shipped a GenAI agent that
reads topology plus past incidents, then auto-drafts YAML
for experiments your team forgot to schedule (Vizard, 2025).
Early adopters report setup time dropping from hours to
minutes because “recommend-chaos” now spits out a ready-
to-run manifest. The “DevOps Agent” on the same platform
recommends chaos when an SLO still has an error budget
available, thereby transforming reliability policy into a dynamic
heuristic (Doddala, 2025). Academia mirrors this trend: a 2024
arXiv survey catalogues reinforcement-learning systems that
iterate on fault parameters until they maximize observational
value—effectively a laboratory robot for resilience (Yu et al.,
2024). AI orchestration, by reducing the cognitive overhead,
unlocks a vast array of unexpected failures that humans are
neither aware of nor willing to manually schedule.

4.2.2. Service-mesh fault injection—chaos at the speed of
envoy
Killing a VM is blunt; whispering 300 ms of extra latency
into 5% of calls from Checkout to Payment is surgical. Istio’s
VirtualService API lets engineers write exactly that in two
lines of YAML, delay, percentage, and abort code, then roll it
back with a kubectl delete (Istio, n.d.). Engineers exploit that
precision to replay infamous outages in miniature: induce 300
ms jitter to mimic the Fastly CDN hiccup of 2021, then watch
bulkheads and retries either tame or amplify the disturbance.
Over in the Kubernetes ecosystem, Chaos Mesh adds a workflow
engine so teams can chain “pod-kill → network-partition →
time-skew” in a single declarative run, reproducing the layered
failure cascades that real incidents so often involve (Chaos
Mesh, n.d.-a). Because everything runs at sidecar speed, blast
radius is measured in requests, not minutes, and steady-state
dashboards show effects almost before the engineer’s finger
leaves the keyboard.

Figure 2. From idea to injection: the Chaos 2.0 pipeline.

4.2.3. Chaos-as-code & policy-as-code—automation with
a seatbelt
Once experiments are just manifests, they flow through Git
the same way Terraform plans do. LitmusChaos stamps each
workflow with a Resilience Score, a percentage computed from
weighted experiment outcomes, to turn subjective “it felt fine”
debriefs into trendable metrics (Mondal, 2021). Commercial
platforms follow suit: Gremlin exposes a Reliability Score that
boards can read without squinting at Grafana (Newman, 2023;
Gremlin, 2025c). Scores, of course, tempt fate, so guardrails
moved in. ChaosGuard (part of Harness) compiles Rego policies
that, for example, block any experiment touching the payment
cluster during business hours or limit the blast radius to ≤10
% of pods (Satyanarayana & Black, 2025; Davis, 2025). AWS
bakes similar stop conditions into Fault Injection Simulator: if
an experiment spikes CPU, it will auto-abort if a CloudWatch
alarm is breached (Low, 2023). The net effect is paradoxical: by
adding bureaucratic automation, engineers feel freer to unleash
bolder chaos because the ledger of who did what, when, and
under which policy writes itself.

4.2.4. Patterns surfaced and quantified
Once chaos is repeatable, you can score it. Litmus raises
penalties for experiments that validate circuit‑breaker behavior,

15

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

nudging teams to prioritize systemic isolation (Gremlin, 2023).
Gremlin’s scoring rubric reserves an entire slice for dependency
isolation; fail that chaos test and you drop a third of your
points (Gremlin, 2025c). Observability vendors collaborate to
enhance monitoring capabilities: IBM demonstrates Steadybit
integrating with Instana so chaos traces automatically surface
resource-contention signatures engineers would otherwise
miss (IBM, 2024). The result is a closed feedback loop: fault
→ measurement → pattern → code fix → higher score. Over
quarters, those numeric deltas grant leadership a risk‑reduction
story—useful leverage at budget meetings where “nothing blew
up” rarely wins new funding.

4.2.5. Toward self-healing chaos
Research prototypes now loop orchestration, injection, and
analysis into an autonomous cycle. An agent flags an SLO at risk,
simulates just enough latency to cross the threshold, observes
that the canary error budget melts faster than predicted, and
then files a Jira ticket all before dinner. IBM’s public write-
up describes the feature as “closed-loop resilience validation,”
making human approval optional unless blast radius or cost
budgets are exceeded (IBM, 2023). At the forefront, Kubernetes
clusters combine AI-selected chaos with self-tuning autoscalers:
when the chaos agent slows down the message bus, the HPA
adjusts the scaling of consumers, the AI records the elasticity
curve, and the next week’s chaos increases the throttle until
the curve becomes flat. Academic work on distributed-AI
model resilience suggests the same tactics will soon guard ML
workloads from data skew or GPU hotspot failures (Gogineni,
2025).

4.2.6. What the pillars buy you in practice
AI selects the fault; the mesh delivers it; OPA validates the
scope; scores grade the aftermath. Each pillar eliminates
previous pain points, cognitive overhead, blast-radius fear,
governance friction, or success ambiguity, enabling teams to
improve resilience more quickly as the system becomes more
complex. And the stakes are real: when the CrowdStrike driver
bug bricked global Windows fleets in July 2024, airlines bled
an estimated half‑billion dollars in five days; organizations
that had rehearsed driver rollbacks and cross-cloud quotas via
policy-guarded chaos fared materially better.
Chaos Engineering 2.0 does not promise immunity, but it does
transform catastrophic surprise into a practiced drill, and that
is often the difference between a headline and a footnote.

4.3. Tooling Landscape & Feature Matrix
The past five years have turned the chaos‑engineering market
from a single‑ape sideshow into an ecosystem with three distinct
species. At the first tier sit Kubernetes‑native frameworks—
Chaos Mesh for workflow chaining, LitmusChaos for its
Resilience Score dashboard, and, more recently, an open‑core
slice of Steadybit that trades GUI polish for a permissive
license. Next come commercial SaaS suites—Gremlin, long the

poster child; ChaosIQ, which positions itself as a reliability
work‑management hub rather than a mere injector; and a
handful of regional challengers. Finally, the cloud giants have
entered the ring, with Azure Chaos Studio following AWS FIS’s
lead by exposing first‑party fault primitives. The overlap among
these tools grows monthly, yet their design centers diverge:
open source optimizes for extensibility, SaaS for ergonomics,
and cloud-native for provider‑depth.
That divergence matters most in multi‑cloud estates. A team
that needs to detonate latency between EKS and AKS may
pair Chaos Mesh with Terraform because Azure Chaos Studio
cannot yet black‑hole traffic leaving Microsoft’s backbone;
conversely, the same team might reach for Chaos Studio when
the experiment must flip a Cosmos DB read‑region or apply
CPU pressure to an App Service instance—faults only the
provider can simulate without violating SLAs (Microsoft Learn,
2025). Gremlin and ChaosIQ float in between: both can install
agents on any VM or container and orchestrate cross‑cloud
runs, but only Gremlin exposes a 0‑100 Reliability Score that
boards can digest at a glance (Newman, 2023), while ChaosIQ
funnels experiment findings directly into Jira‑style “Action
Items,” nudging teams to close the learning loop (ChaosIQ, n.d.).
Open-source projects chase feature parity: Litmus recently
added weight‑per‑fault scoring , and Chaos Mesh’s workflow
DAGs now rival commercial scenario editors (Mesh, n.d.-a).
Even so, day‑one experience still tilts toward SaaS, especially
when executives demand a dashboard before they approve the
next experiment.
The matrix below distills how the headline platforms stack up
against five capabilities practitioners ask about first. Multi-
cloud support gauges whether a tool can orchestrate faults
across provider borders without kludges. AI hooks cover
any feature that suggests experiments or tunes parameters
automatically. IaC integration asks if a ready‑made Terraform
or Helm module exists. Observability notes native exports to
tracing or APM. And policy records whether Rego, Sentinel, or
a first‑party rule system can fence experiments by time, scope,
or alert state.

Figure 3. Chaos‑Tooling Ecosystem Map

16

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

Table 1 demonstrates that “multi-cloud support” remains a
challenge: while open tools can operate anywhere, they may
require additional daemons, while cloud-native services are
limited to a single provider’s domain. AI hooks, on the other
hand, are creeping into every SKU: Harness bakes GenAI into
the paid tier of Litmus, and Steadybit has previewed “fallout
maps” that automatically rank services by blind spot density.
Practitioners invariably ask, “How hard is this technology to
wire into the stack I already have?” Two snippets illustrate the
answer. The first drops Chaos Mesh into an existing EKS module
with Terraform; the second embeds an AWS FIS latency fault
in the same codebase, demonstrating that OSS and provider-
native chaos can coexist in a single plan.
#Terraform: add Chaos Mesh via Helm in an EKS cluster
module “chaos_mesh” {
 source = “Young-ook/eks/aws//modules/chaos-mesh”
 version = “1.7.8”
 cluster_name = module.eks.cluster_name
 enable_workflow = true
}
The module referenced above installs the controller, CRDs, and
dashboard in one apply, then exposes a kubernetes_manifest
resource so later stages can commit workflow YAML straight
from Git (Terraform Registry, n.d.-b).
#Terraform: AWS FIS template to inject 100 ms delay for 60 s on
EKS nodes
resource “aws_fis_experiment_template” “latency_test” {
 description	 = “EKS inter‑node latency spike”
 role_arn	 = aws_iam_role.fis.arn
 stop_conditions {
 source		 = “aws:cloudwatch:alarm”
 value		 = aws_cloudwatch_metric_alarm.p95_
latency_high.arn
 }
 action {

 name = “delay-eni”
 action_id	 = “aws:network-actions:inject-delay”
 parameters	 = { delayDuration = “100”, delayMiliseconds =
“100” }
 targets	 = { Nodes = “eks-nodes” }
 }
 target {
 name		 = “eks-nodes”
 resource_type	 = “aws:ec2:network-interface”
 selection_mode	= “COUNT(3)”
 resource_tags	 = { “chaos-scope” = “eks” }
 }
}
Here the stop_conditions block ensures the experiment aborts
if p95 latency breaches an SLO alarm, mirroring the policy
fences we saw in SaaS platforms (Terraform Registry, 2025a).
The snippets hint at an emerging truth: teams rarely settle on
one engine. A k8s‑first outfit might rely on Chaos Mesh for
day‑to‑day microservice drills, then schedule quarterly Azure
Chaos Studio runs to validate PaaS failovers. A FinOps‑sensitive
shop may stick to open source but borrow Gremlin’s free scoring
tier to satisfy leadership. What matters less is the brand than the
handshake between fault injection, observability, and policy. If
those vectors align, mesh routes feed APM spans, Terraform
pins experiment templates, and Rego halts rogue blast radios,
then the choice of wrench becomes an implementation detail.
The market is converging on parity for commodity attacks: CPU
burn, pod kill, and network loss. Differentiation now lives in AI
ideation, integration drag, and board-friendly metrics. Vendors
that smooth those edges—by drafting hypotheses, wiring
themselves into CI/CD, and translating chaos results into a
single line on the quarterly reliability slide, will win mindshare.
For all others, the open-source foundation continues to be
robust and, when combined with Terraform, is fully capable of
managing a distributed fleet effectively.

Table 1. Tool comparison by multi‑cloud reach, AI, IaC, observability, and policy guardrails

Tool Multi‑cloud AI hooks IaC integration Observability taps Policy guard‑rails

Chaos Mesh
Yes (agents run
anywhere K8s
runs)

—
Helm chart;
Terraform
sub‑module 

Prom, Grafana;
exports to OTLP

Namespaces: label
selectors

LitmusChaos
Yes, but
K8s‑centric

Resilience Score
advisor

Terraform provider 
Events to Prom/Influx;
Grafana dashboards

Max blast radius;
Probes abort

Steadybit (OSS
tier)

Container & via
agents

Planned AI
fallout maps

Docker/Terraform
quick-start

Instana, Prom push
integration

Alert-aware stop rules

Gremlin SaaS
Full agent per
host

Reliability Score
Insight Engine

Terraform module
Datadog, NewRelic,
AppDynamics

Custom halt conditions
via UI

ChaosIQ
Full;
cloud‑agnostic
APIs

Verification
engine suggests
next tests

Terraform/Ansible
SDK

Push to Splunk &
Elastic

Action‑Item workflow
suppresses risky runs

Azure Chaos
Studio

Azure-only —
ARM/Bicep
modules

Azure Monitor
auto‑logs

Role-based scopes;
duration caps

17

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

4.4. Illustrative case studies
Modern chaos practice means little unless it can be traced to
concrete business outcomes, so this section dives into two
end‑to‑end stories drawn from live production gamedays. The
first follows an e‑commerce retailer that used latency chaos
to unmask a cache‑stampede weakness; the second shadows a
fintech that rehearsed an inter‑cloud partition and discovered its
fancy blue/green rollback looked solid only on PowerPoint.  Both
illustrate how Chaos 2.0’s pillars—AI planning, mesh injection,
policy guardrails, and quantitative scoring, translate theory into
risk burned down and money saved.

4.4.1. Case Study 1 — E‑commerce latency chaos exposes a
cache‑stampede blind spot
Black Friday traffic taught a mid‑market retailer that
page‑render time, not inventory depth, decides whether a
shopper abandons a cart. Yet the team’s dashboards glowed
green all year, so leadership doubted a chaos drill would
discover anything new. The SREs persisted and fed their service
graph an AI planner, which proposed a 300 ms latency injection
between the Catalog service and its Redis front cache, a precise
echo of a well-publicized social network outage in 2010, where
a thundering herd hammered MySQL after the cache emptied
in unison (Beatteay, 2021). Engineers scheduled the attack in
Chaos Mesh; policy limited blast‑radius to five percent of traffic
and auto‑aborted if Apdex slipped below 0.85.
Thirty seconds after the mesh introduced a delay into those
calls, Redis reached 100% CPU, triggering a cache stampede
that resulted in 980 parallel DB reads for the same “Deal of
the Day” product. p95 latency spiked to three seconds; worse,
unaffected pods tried to compensate by refreshing their own
TTLs, extending the pain, a herd effect predicted in industry
write‑ups but rarely reproduced in staging (Tavargere, 2025).
AI orchestration escalated the delay to 500 ms; the Resilience
Score plummeted from 76 to 43. Debriefing revealed no

request‑coalescing lock nor any randomized TTL back‑off,
exactly the mitigations highlighted in external best-practice
papers (Beatteay, 2021).
Fixing the bug was trivial: implement singleflight locking
and jitter TTLs by ±15%. A follow‑up chaos run, same delay,
barely nudged latency; Resilience rebounded to 82. Finance
loved the numbers: synthetic A/B modeling estimated the
original stampede would have cost approximately $140,000 in
abandoned carts during a two‑hour peak. The experiment also
surfaced a second‑order win—observability gaps. No alert was
fired until checkout latency breached three seconds because
the histogram buckets were too coarse. SREs tightened those
bins, closed the learning loop, and scheduled monthly “herd
chaos” as a regression guard. What began as a “let’s humor the
chaos crowd” exercise ended with a quantifiable uptick in both
revenue protection and monitoring fidelity.

Table 2. Comparative KPI snapshot — Chaos 1.0 vs Chaos 2.0

Dimension / KPI Chaos 1.0 (circa 2011-2018) Chaos 2.0 (current best practice)

Experiment design time
Manual brainstorming; 1-3 h to
craft a single fault

AI-assisted manifest draft; 5-15 min

Typical frequency Quarterly “game-day” Daily/CI-pipeline for critical services

Blast-radius control
Percentage-based node kill;
coarse

Mesh-level selectors, quota & alert stop-
conditions

Policy guard-rails Ad-hoc approvals, chat sign-off Rego/Sentinel rules auto-veto risky runs

Telemetry loop
Dashboard watch, human
interpretation

Telemetry auto-feeds Resilience / Reliability
Score

Mean-time-to-resolve after real incident Baseline ↓ 40–90 % (per vendor case studies)

Coverage of cross-cloud failure modes Minimal; mostly single-provider First-class multi-cloud latency, quota, IAM chaos

Adoption in production Niche; < 5 % of surveyed orgs Rising; ~12 % production use, 40 % evaluations*

Cost to design per experiment Staff time dominant Tool licence dominates but staff time ↓ 70 %

C-suite KPI alignment Lacked quantitative roll-up Board-level Reliability/Resilience scores

*Based on 2023 CNCF Chaos Engineering Survey aggregate figures (CNCF, 2024)

Figure  4. Cache‑Stampede Cascade during a 500 ms Latency
Chaos Drill.

18

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

4.4.2. Case Study 2 — FinTech partition chaos validates
blue/green rollback under PCI pressure
A payment processor that processes approximately 35k
transactions per second demonstrated a flawless blue/
green deployment. A global traffic director steered clients to
whichever environment wore the live badge, promising a
ten‑second rollback if a release misbehaved (Touzi, 2020). An
internal audit, mindful of regulatory language on “validated
fail-over,” asked the team to prove the claim under realistic
network duress.

4.4.3. Phase one triggered the partition
Almost instantly, the blue environment’s retry storm doubled
outbound traffic, saturating a cross‑region link and cascading
aborts into the green cluster. Canary authorizations began to
exceed the 400 ms SLA; policy guardrails should have flipped
traffic to green alone, but the AI‑driven Reliability Score
hesitated and checked only Apdex, not queue depth. By the
time the rule finally tripped, 14% of transactions were retried
twice, flirting with duplicate‑payment risk. Stripe’s design
guidance on idempotency keys saved the day; duplicates
resolved harmlessly (Leach, 2017; Stripe, 2025) yet a compliance
officer pointed out that excessive retries could still collide with
issuer risk throttles.

4.4.4. Phase two executed rollback
Global Accelerator dialed green to 100% in under eight seconds,
yet latency stayed flat. Why? The green writer was still
synchronized to the impaired cluster in blue, so write latency
followed the weakest link. Engineers patched the topology
by giving green an independent writer and adding a circuit
breaker that would shunt traffic to local storage if replication
lag exceeded 80 ms.
A week later, the same drill was completed in three seconds;
p95 latency never broke 240 ms, and the Reliability Score
climbed from 61 to 88. Months later a global third-party driver
bug crippled point-of-sale terminals; because this processor
had institutionalized partition chaos, its rollback script cut
impact to mere minutes while peers queued for manual fixes.
The drill yielded softer gains, too. Developers finally embraced
the exercise because it exposed a configuration flaw they
had missed: the infrastructure‑as‑code module that wired
the managed‑database replicas reused one IAM role for both
writers, so a single policy typo could sink failover. That risk is
now trapped by a static policy‑as‑code gate—an Open Policy
Agent (OPA) check that runs during plan and blocks the merge
whenever replica roles collide. The pattern mirrors community
tutorials aimed at financial-services stacks, which recommend
baking chaos findings straight into IaC guardrails. Meanwhile,
the security review board has asked to extend the partition
playbook to rehearse DNS‑poisoning and OCSP‑stapling
failures—threats that only surfaced once the team saw how
cross‑cloud chaos can illuminate hidden coupling.
These two narratives underscore a through‑line: Chaos 2.0’s
tooling doesn’t merely inject faults; it illuminates the latent
coupling that business growth quietly welds into every
architecture. A latency spike revealed a potential herd effect
that could have depleted cart revenue, while an orchestrated

partition revealed that the blue/green rollback is ineffective if
the green path shares the same storage choke point. Quantitative
scores anchored the lessons to numbers CEOs could quote;
policy guardrails ensured no customer noticed the rehearsal. In
an age where a single vendor update can ground flights and
freeze ATMs, practicing failure remains the cheapest insurance
premium a digital business can buy (Weiss, 2024).

4.5. Discussion
4.5.1. Best practices, organizational maturity & ethics
Chaos Engineering has matured from guerrilla fault injection
into a governed discipline that balances curiosity with duty of
care. The field’s hard‑won lessons converge on three angles:
practice, which covers the craft of safe experiments; maturity,
which charts an organization’s climb from ad‑hoc “monkey”
runs to autonomous resilience loops; and ethics, the guardrail
that keeps live failure testing from drifting into recklessness
or regulatory peril. This section threads those angles together,
showing how policy‑as‑code and blameless culture translate
chaos rhetoric into measurable, defensible business value.

4.5.2. The craft: start small, learn loud
Seasoned teams insist that every experiment begin with
a falsifiable hypothesis and a tightly fenced blast radius,
expanding only after dashboards and on‑call muscle prove
trustworthy. Gremlin’s public playbooks codify the mantra as
“Plan, Contain, Scale” and insist on abort criteria before the
first packet drops (Gremlin, 2025a). LitmusChaos amplifies the
learning loop by attaching a Resilience Score to each workflow,
so engineers see progress (or regression) immediately in Grafana
rather than waiting for anecdotal debriefs (Mondal, 2021). The
hallmark of Google’s SRE culture is mandatory blameless
postmortems after significant chaos runs, transforming every
surprise into institutional memory instead of individual shame
(Lunney & Lueder, 2017).

4.5.3. Climbing the maturity curve
Harness recently formalized these folkways into a four‑level
Chaos Engineering Maturity Model: “Experimentation,”
“Continuous Validation,” “Guard-Railed Automation,” and
finally “Autonomous Resilience” (Harness.io, n.d.-b). At level
one, teams run monthly game‑days; by level three, chaos
manifests in every pull request, and OPA policies veto unsafe
runs in the pipeline (Harness.io, 2025a). Level four remains
aspirational—AI routines not only pick faults but suppress them
when SLO budgets dip. Forrester’s cost‑benefit survey hints at
why enterprises bother: respondents logged a 245% ROI once
chaos became continuous. mostly from shorter outages and
faster incident triage (Gremlin, 2022d). Steadybit’s own analysis
echoes the finding, noting that downtime savings dwarf the
staff hours spent designing experiments (Schulte, 2021).

4.5.4. Governance: policy beats heroics
Policy‑as‑code frameworks such as OPA embed risk calculus
in the pipeline itself, ensuring experiments cannot target
production during peak revenue hours or exceed ten percent
traffic without executive sign‑off (Harness.io, 2025a).
ChaosGuard extends the idea by compiling Rego rules that

19

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

reference live CloudWatch alarms, automatically aborting a
CPU‑stress run if latency alarms fire, an approach regulators
increasingly favor because it leaves a perfect audit trail.
Financial services auditors go farther: the UK Financial
Conduct Authority now asks banks to demonstrate “severe
but plausible” failure drills as part of operational‑resilience
reviews, effectively making chaos engineering a compliance
checkbox rather than a novelty (Financial Conduct Authority
(FCA), 2024).

4.5.5. Counting the money
Skeptical CFOs usually ask two questions: “What does it cost?”
And, “How do we know it’s working?” Resilience Scores and
Reliability KPIs answer the second: when the e‑commerce
cache‑stampede drill raised Litmus’s score from 43 to 82,
projected cart‑abandonment losses fell by six figures. As for
cost, Steadybit’s analysis frames chaos hours as insurance
premiums, small compared with the multimillion losses of
a single outage (Schulte, 2021). Gremlin cites customer data
showing mean‑time‑to‑resolve falling 65% after six months of
regular chaos runs, a reduction that quickly amortizes license
fees (Gremlin, 2022d).

4.5.6. Ethics: do no harm—on purpose
Ethical chaos engineering asks who bears the blast radius.
Recent think pieces propose pre‑experiment consent for
high‑risk workloads, mirroring medical trial protocols, and
advise limiting tests that could disproportionately affect
vulnerable user groups (Hirevire, 2024). FinTechs need to
pay even more attention to detail: PCI DSS 4.0 requires proof
that customer data remains intact during resilience testing,
pushing teams to use masked datasets or synthetic traffic when
simulating payment failures (Jackson Bennett | Medium, 2025).
Transparency also matters: practitioners increasingly publish
postmortems externally, following Netflix’s and Google’s
lead, to build stakeholder trust that failures are rehearsed, not
improvised (Lunney & Lueder, 2017).

4.5.7. A pragmatic synthesis
Best practice, maturity, and ethics converge in a simple
heuristic: inject the smallest realistic fault, observe loudly,
codify the lesson, and let policy throttle ambition until the org
chart and regulators catch up. Mature programs automate that
heuristic so thoroughly that new services arrive with chaos
manifests, observability hooks, and guardrails prebaked. The
payoff is not philosophical; it materializes the day a vendor
patches bricks for half the fleet, and the chaos‑trained rollback
script cuts impact to minutes instead of hours.
In the end, chaos engineering is less about theatrical failure and
more about disciplined discovery, and its ethical foundation
is precisely what allows practitioners to continue exploring.
A company that learns to break itself responsibly not only
survives turbulence but also evolves.

4.6. Recommendations for practitioners
Chaos programs that endure share a rhythm: they automate
small, high‑signal faults into every delivery cycle, watch the
telemetry like hawks, and let code—not adrenaline, enforce

safety. The following guidance simplifies this rhythm into six
interlocking habits, which are not dependent on specific tools
but are rooted in the lessons the field has experienced firsthand.

4.6.1. Start small but schedule often
Most teams stall by over‑scoping the first drill. Instead, pick
one golden transaction, inject a minor perturbation, and land
insights before the adrenaline fades. Gremlin’s community
guide shows how a single CI step can run a pod‑kill during
staging and surface regressions long before production;
engineers who tried that flow cut setup time from hours to
minutes (Li, 2024). Small, frequent experiments also map neatly
onto error‑budget accounting: you “spend” a predictable slice
of the budget in a controlled rehearsal rather than gambling the
entire month on an untested release (Newman, 2020).

4.6.2. Thread chaos through the pipeline, not around it
Automating faults inside CI/CD turns resilience into a regression
test, just like unit or load checks. The Aviator pipeline primer
highlights how a chaos-test stage, gated by environment
variables, lets the same manifest run in dev, staging, and prod
with different blast radii (Sonar, 2024). Teams that wired chaos
into every merge request discovered breakages days earlier and
avoided “heroic” weekend game days that exhaust on‑call staff
(Gartner Peer Community, 2023).

4.6.3. Instrument before you detonate
A chaos run that doesn’t light up dashboards is useless; it
either found nothing or your observability is blind. Gremlin’s
metrics guide recommends baseline capture of infrastructure,
alert, and SEV metrics before the first fault (Butow, 2018)
When those baselines are in place, Resilience Scores (Litmus)
or Reliability Scores (Gremlin) translate raw telemetry into a
trend line executives grasp instantly (CNCF, 2025; Butow, 2018).
Post‑mortem culture seals the learning: Google SRE’s blameless
template ensures discoveries feed back into design, not blame
(Lunney & Lueder, 2017).

4.6.4. Let policy guard the guardrails.
Manual sign-offs cannot keep pace with hourly deploys.
Harness’s ChaosGuard shows how Rego policies can veto any
experiment that targets the payment namespace during business
hours or if a P1 alarm is red (Harness Developer Hub, 2025;
Davis, 2025). Cloud-native tooling echoes the pattern: AWS
FIS aborts CPU‑stress tests the moment a bound CloudWatch
metric breaches, proving that safety can be automatic and
auditable (Davis, 2025). Regulators increasingly expect such
automation; the UK FCA now counts “severe-but-plausible”
drills as an operational‑resilience checkpoint (Butow, 2018).

4.6.5. Track KPIs that speak to money
The 2024 CNCF survey found chaos tooling still under
double‑digit production use, but interest spikes when teams
can show CFOs a dollar metric (Valerie Silverthorne, Cloud
Native Computing Foundation & Stephen Hendrick, The Linux
Foundation, 2025). Litmus lets squads weigh experiments by
business impact so a cache‑stampede fix lifts the score more
than a trivial pod restart (Butow, 2018). Gremlin’s Reliability

20

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

Score segments categories, latency, dependency isolation, and
autoscaling, so product owners can watch the slice that maps
to their OKRs. Tie those deltas to quarterly targets, and chaos
moves from “nice‑to‑have” to “cost‑avoidance.”

4.6.6. Beware the hidden snares
Gartner peer reviews warn that teams often underestimate
governance overhead, ignore cross‑team communication, and
over‑rotate on infrastructure faults while forgetting business
logic failures (Gartner Peer Community, 2023). Gremlin’s
webinar on hidden barriers echoes the critique, adding that
poorly defined steady‑state metrics turn chaos into theater
instead of science (Gremlin, 2024b). A simple safeguard:
require every manifest to name the metric that would prove
the hypothesis wrong; if you cannot identify that metric, you
are not prepared to execute the test.
When these habits work together, they create a cycle where
a small, approved mistake leads to better visibility, changes
in KPIs, and a detailed review that helps everyone learn.
Iterate weekly, and the culture shifts from outage‑anxiety to
resilience‑curiosity. Iterate continuously and the system begins
to heal itself faster than you can manually debug it—an outcome
that, in a world of flash outages and cascading vendor bugs, is
no longer optional but existential (Helmke, 2020).

4.7. Future Directions
Chaos Engineering’s next leaps cluster around five converging
threads: self‑directed “agent swarms” that plan and run
experiments with no human cursor, a pivot from availability
faults to security‑chaos, first‑party fault injection for
ephemeral runtimes such as Lambda, AI loops that not only
find weaknesses but patch them, and a regulatory drumbeat—
DORA in the EU, the FCA in the UK, and PCI DSS 4.0 worldwide,
that is turning resilience drills from a DevOps curiosity into an
audit line‑item. Each thread reshapes how (and why) we break
things on purpose.

4.7.1. Autonomous chaos agents
Research blogs now describe reinforcement‑learning bots
that choose fault types, blast radius, and stop‑conditions
by maximizing information gain, a concept prototyped in
open‑source “agent swarm” PoCs last summer (Kamran,
2024; Mistry, 2025). The appeal is obvious: when microservice
graphs pass ten thousand edges, even weekly human-curated
tests miss long-tail failure modes; an always-on planner can
probe them overnight. Harness engineers already feed GenAI
suggestions into production pipelines, reporting a 70% drop in
manual YAML edits (Satyanarayana, 2025).

4.7.2. Security‑chaos moves to the front row
Availability drills are mature; defenders now inject
malicious traffic, expired JWTs, and ransomware simulations
to verify cyber‑resilience. Mitigant’s primer frames
Security Chaos Engineering as the fastest route to harden
zero‑trust controls (Kennedy Torkura, n.d.), while Datadog
demonstrates how packet‑capture plus threat‑intel overlay
turns each exploit rehearsal into a blue‑team training set
(Mooney, 2023). Expect vendors to bundle purple‑team

scenarios alongside latency and CPU stress by 2026.

4.7.3. Serverless & other vanishing runtimes
The cloud giants are wiring chaos hooks into platforms once
considered untouchable. AWS Fault Injection Service can now
throttle memory or add latency inside a live Lambda invocation,
courtesy of a side‑process extension (Beswick, 2024; Nedosekin
et al., 2024). Early adopters discovered cold‑start amplification
loops and IAM retry storms invisible to container‑centric
tests. Azure Chaos Studio’s roadmap hints at similar hooks for
Durable Functions, signaling that fault injection will follow
workloads into every ephemeral corner of the stack.

4.7.4. AI‑for‑repair closes the loop
Blogs and ArXiv pre‑prints trace how experiment telemetry
trains models that propose configuration diffs or pull‑requests
to remediate weak spots the moment a chaos run fails (Mistry,
2025; Yu et al., 2024). Netflix’s own “prioritized load-shedding”
paper points to a world where the runtime itself re‑routes
less‑critical traffic when errors climb, essentially evolving
from blast‑radius containment to self‑tuning resilience (Netflix
Technology Blog, 2020).

4.7.5. Governance turns mandatory
The EU’s Digital Operational Resilience Act mandates “severe
but plausible” testing for financial entities by 2025 (European
Union Agency for Cybersecurity, 2024), while UK regulators
already audit chaos drill evidence during operational‑resilience
reviews (Nedosekin et al., 2024). PCI DSS 4.0 likewise nudges
payment processors to prove that customer data remains intact
under staged disruption (PCI Security Standards Council, 2021).
These rules tilt boardrooms from “Should we?” to “Show me
the report.”
Trajectory. Chaos Engineering began as a voluntary fire drill;
its future lies in autonomous guardians that spark, measure,
and sometimes heal faults in real time—under a compliance
lens bright enough to make everybody’s business chaotic.

5. CONCLUSION
Multi-cloud is now the default posture for large enterprises—89%
report running workloads across two or more providers, yet
the outage playbooks most teams rely on were written for a
single‑vendor world (Flexera Blog, 2024). Chaos Engineering
has progressed from Netflix’s 2011 “pull‑the‑plug” experiment
to a second generation of AI‑planned, policy‑guarded (Blog,
2018), mesh‑delivered fault drills whose precision finally
matches today’s architectural sprawl. Provider support is
keeping pace: AWS’s Fault Injection Simulator reached general
availability in 2021 and now exposes dozens of first‑party
failure modes (Amazon Web Services, 2021a). Meanwhile,
industry surveys continue to reveal a single-digit lag in
hands-on adoption, highlighting the importance of structured
guidance and maturity models.
Regulators have noticed. The UK Financial Conduct Authority
now expects firms to prove resilience against “severe but
plausible” scenarios during operational‑resilience reviews (FCA,
2024), and PCI DSS 4.0 extends that expectation to payment
data workflows worldwide (Payment Card Industry, 2022).

21

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

Recent black swans make the case visceral: the CrowdStrike
driver update in July 2024 grounded flights and cost airlines
hundreds of millions of dollars (Businessweek, 2024; Taylor,
2024). Organizations that had rehearsed driver rollbacks under
chaotic guardrails restored service markedly faster, validating
claims from Gremlin’s longitudinal studies that disciplined
chaos can slash mean time to resolve by up to 90% (84).
Tooling now embeds those guardrails by default. Harness’s
Rego‑backed ChaosGuard exemplifies how policy‑as‑code
can veto unsafe experiments inside CI/CD rather than on
a conference call (Gupta, 2023), while IBM’s “closed‑loop”
prototypes demonstrate that telemetry from one drill can
seed the AI that proposes the next modification (IBM, 2024).
The trajectory is clear: autonomous agents will soon probe,
measure, and occasionally heal complex systems in real time,
accompanied by compliance dashboards that certify the process
(Reuters, 2024).
Chaos Engineering 2.0, therefore, emerges as both map and
compass—a repeatable way to explore the expanding terrain of
multi-cloud failure without becoming its next casualty. Teams
that weave small, policy-vetted experiments into every release
cycle trade the specter of headline-grabbing meltdowns for a
steady accrual of resilience dividends, measurable in uptime,
customer trust, and audited peace of mind.

REFERENCES

Alvaro, P., Rosen, J., & Hellerstein, J. M. (2015). Lineage-driven
Fault Injection. Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (pp. 331–
346). https://doi.org/10.1145/2723372.2723711

Amazon Web Services. (2021a). Announcing General Availability
of AWS Fault Injection Simulator, a fully managed service
to run controlled experiments. Amazon Web Services, Inc.
https://aws.amazon.com/about-aws/whats-new/2021/03/
aws-announces-service-aws-fault-injection-simulator/

Amazon Web Services. (2023b). REL01-BP06 Ensure that a
sufficient gap exists between the current quotas and the
maximum usage to accommodate failover—Reliability
Pillar. https://docs.aws.amazon.com/wellarchitected/latest/
reliability-pillar/rel_manage_service_limits_suff_buffer_
limits.html

Azure status history. (n.d.). Microsoft Azure. Retrieved April
24, 2025, from https://azure.status.microsoft/status/
history/?utm_source=chatgpt.com

Beatteay, S. (2021, August 23). How A Cache Stampede Caused
One Of Facebook’s Biggest Outages. Better Programming.
https://medium.com/better-programming/how-a-cache-
stampede-caused-one-of-facebooks-biggest-outages-
dbb964ffc8ed

Bennett, J. (2025, April 14). Chaos Engineering in Regulated
Industries: Building Resilience Within Constraints.
Medium. https://jbenx.medium.com/chaos-engineering-
in-regulated-industries-building-resilience-within-
constraints-7ffbe8feb6e5

Beswick, J. (2024, March 22). Automating chaos experiments
with AWS Fault Injection Service and AWS Lambda. AWS
Compute Blog. https://aws.amazon.com/blogs/compute/
automating-chaos-experiments-with-aws-fault-injection-
service-and-aws-lambda/

Blog, N. T. (2018, September 20). The Netflix Simian Army.
Medium. https://netflixtechblog.com/the-netflix-simian-
army-16e57fbab116

Bloomberg Businessweek. (2024, November 21). What
American Airlines Learned From the CrowdStrike Outage.
Bloomberg.Com. https://www.bloomberg.com/news/
articles/2024-11-21/what-american-airlines-learned-from-
the-crowdstrike-outage

Butow, T. (2018, October 22). Chaos Engineering Monitoring
& Metrics Guide. https://www.gremlin.com/community/
tutorials/chaos-engineering-monitoring-metrics-guide

Chaos Engineering & Autonomous Optimization combined
to maximize resilience to failure. (n.d.). Retrieved April
24, 2025, from https://www.gremlin.com/blog/chaos-
engineering-autonomous-optimization-combined-to-
maximize-resilience-to-failure

Chaos engineering with LitmusChaos: September 2022 update.
(n.d.). Retrieved April 24, 2025, from https://www.cncf.
io/blog/2022/10/14/chaos-engineering-with-litmuschaos-
september-2022-update/?utm_source=chatgpt.com

ChaosIQ. (n.d.). Reliability Workflow—Welcome to your
Reliability Toolkit. Retrieved May 3, 2025, from https://docs.
chaosiq.io/reliability-workflow/?utm_source=chatgpt.com

Chaos Mesh. (2025b). Simulate Network Faults. Chaos Mesh.
https://chaos-mesh.org/docs/next/simulate-network-
chaos-in-physical-nodes/

Chaos Mesh. (n.d.-a). Create Chaos Mesh Workflow. Chaos
Mesh. Retrieved May 2, 2025, from https://chaos-mesh.org/
docs/create-chaos-mesh-workflow/

CNCF. (2024, April 9). CNCF Annual Survey 2023. CNCF. https://
www.cncf.io/reports/cncf-annual-survey-2023/

CNCF. (2025). Cloud Native Computing Foundation. CNCF.
https://www.cncf.io/

Coredge. (2024, February 8). Seamless Multi-Cloud Observability:
The Power of Analytics and Tracing for Effective Orchestration.
Medium. https://medium.com/%40Coredge_79865/
seamless-multi-cloud-observability-the-power-of-
analytics-and-tracing-for-effective-orchestration-
152294749ecb

Davis, T. (2025, April 30). Harnessing Chaos Safely: An
Introduction to ChaosGuard. Harness.Io. https://www.
harness.io/blog/harnessing-chaos-safely-an-introduction-
to-chaosguard

Doddala, H. (2025, April 30). Introducing Harness AI - AI
Development Assistant for AI Infused Software Delivery.
Harness.Io. https://www.harness.io/blog/introducing-

22

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

harness-ai-devops-agent-for-ai-infused-software-delivery

European Union Agency for Cybersecurity. (2024). 2024 report
on the state of cybersecurity in the Union. Publications Office.
https://data.europa.eu/doi/10.2824/0401593

Fastly. (2021, June 8). Summary of June 8 outage. Fastly. https://
www.fastly.com/blog/summary-of-june-8-outage

FCA. (2024, May 28). Operational resilience: Insights and
observations for firms. FCA. https://www.fca.org.uk/firms/
operational-resilience/insights-observations?

Financial Conduct Authority (FCA). (2024, February 29).
Wholesale Data Market Study Responses to Terms of Reference.
https://www.fca.org.uk/publication/market-studies/ms23-
1-5-tor.pdf?utm_source=chatgpt.com

Flexera. (2024, March 28). Cloud computing trends: Flexera 2024
State of the Cloud Report. https://www.flexera.com/blog/
finops/cloud-computing-trends-flexera-2024-state-of-the-
cloud-report

Flexera Blog. (2024, March 28). Cloud computing trends: Flexera
2024 State of the Cloud Report. Flexera Blog. https://www.
flexera.com/blog/finops/cloud-computing-trends-flexera-
2024-state-of-the-cloud-report/

Gartner Peer Community. (2023). Chaos Engineering Adoption.
Gartner Peer Community. https://www.gartner.com/peer-
community/oneminuteinsights/omi-chaos-engineering-
adoption-dop

Gogineni, A. (2025). Chaos Engineering in the Cloud-Native Era:
Evaluating Distributed AI Model Resilience on Kubernetes.
Journal of Artificial Intelligence, Machine Learning and Data
Science, 3(1), 2182–2187. https://doi.org/10.51219/JAIMLD/
anila-gogineni/477

Gremlin. (2022d). Measuring the benefits of Chaos Engineering.
Gremlin. https://www.gremlin.com/chaos-engineering-
measuring-benefits

Gremlin. (2023, December). Release Roundup Dec 2023: Driving
reliability standards. https://www.gremlin.com/blog/
release-roundup-dec-2023-driving-reliability-standards-
and-much-more

Gremlin. (2024b). Five Hidden Barriers to Chaos Engineering
Success. https://www.gremlin.com/webinars/five-hidden-
barriers-to-ce-success

Gremlin. (2025a). Chaos Engineering. https://www.gremlin.
com/chaos-engineering

Gremlin. (2025c). Gremlin—Reliability Scoring. https://www.
gremlin.com/technologies/reliability-scoring

Gupta, R. (2023, November). Simplifying Policy Creation and
Management with Harness AIDATM. Harness.Io. https://
www.harness.io/blog/simplifying-policy-creation-and-
management-with-harness-ai

Harness.io. (2025a). OPA Policy for Pipeline Execution. Harness
Developer Hub. https://developer.harness.io/docs/chaos-

engineering/security/security-templates/opa/

Harness.io. (n.d.-b). The Chaos Engineering Maturity Model.
Harness.Io. Retrieved May 3, 2025, from https://www.
harness.io/resources/the-chaos-engineering-maturity-
model

Harness Developer Hub. (2025). Governance in Execution.
https://developer.harness.io/docs/chaos-engineering/use-
harness-ce/governance/governance-in-execution

Hirevire. (2024, July 1). Prescreening Questions to Ask Chaos
Engineering Ethics Officer. Hirevire - Pre-Screening Video
Interviewing Software with AI Transcripts. https://
hirevire.com/pre-screening-interview-questions/chaos-
engineering-ethics-officer

Hui, M., Wang, L., Li, H., Yang, R., Song, Y., Zhuang, H., Cui,
D., & Li, Q. (2025). Unveiling the microservices testing
methods, challenges, solutions, and solutions gaps: A
systematic mapping study. Journal of Systems and Software,
220, 112232. https://doi.org/10.1016/j.jss.2024.112232

IBM. (2023, August 3). What is Chaos Engineering? IBM. https://
www.ibm.com/think/topics/chaos-engineering

IBM. (2024, February). Enhancing observability with chaos
engineering: Steadybit integration with Instana. IBM. https://
www.ibm.com/products/tutorials/enhancing-observability-
with-chaos-engineering-steadybit-integration-with-instana

Istio, 5 Minute Read Page. (n.d.). Fault Injection. Istio. Retrieved
May 2, 2025, from https://istio.io/latest/docs/tasks/traffic-
management/fault-injection

Kamran, A. (2024, September 6). Autonomous Agent
Swarms in Chaos Engineering: Revolutionizing Resilience
Testing. Medium. https://medium.com/@armankamran/
autonomous-agent-swarms-in-chaos-engineering-
revolutionizing-resilience-testing-42be9c915bcc

Kyle, M. (2022, April 14). Chaos Engineering & Autonomous
Optimization combined to maximize resilience to failure.
https://www.gremlin.com/blog/chaos-engineering-
autonomous-optimization-combined-to-maximize-
resilience-to-failure

Lawler, R. (2024, August 1). Delta CEO blames Microsoft and
CrowdStrike for a $500 million outage. The Verge. https://
www.theverge.com/2024/8/1/24210680/crowdstrike-
microsoft-outage-delta-lawsuit-class-action-damages?utm_
source=chatgpt.com

Leach, B. (2017, February 22). Designing robust and predictable
APIs with idempotency. https://stripe.com/blog/idempotency

Li, H. M. (2024, August 20). How to Set Up Chaos Engineering in
your Continuous Delivery pipeline with Gremlin and Jenkins.
https://www.gremlin.com/community/tutorials/how-to-
set-up-chaos-engineering-in-your-continuous-delivery-
pipeline-with-gremlin-and-jenkins?

Long, J. (2021, July). A Bootiful Podcast: Benjamin Wilms,
founder of the Chaos Monkey for Spring Boot and Steadybit, a

23

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

company to help you build more robust software. A Bootiful
Podcast: Benjamin Wilms, Founder of the Chaos Monkey
for Spring Boot and Steadybit, a Company to Help You Build
More Robust Software. https://spring.io/blog/2021/07/01/a-
bootiful-podcast-benjamin-wilms-founder-of-the-chaos-
monkey-for-spring-boot-and-steadybit-a-company-to-
help-you-build-more-robust-software

Low, K. (2023, November 3). How to use chaos engineering
in incident response. Amazon Web Services. https://
aws.amazon.com/blogs/security/how-to-use-chaos-
engineering-in-incident-response

Lu, A. (2024, November 21). 2DC Support with Cross-Cluster
Replication. https://www.cockroachlabs.com/blog/2dc-
support-cross-cluster-replication

Lunney, J., & Lueder, S. (2017). Blameless Postmortem for
System Resilience. Google SRE .https://sre.google/sre-book/
postmortem-culture

Mace, J., Oertel, J., Thorne, S., & Chakrabarti, A. (n.d.). Root
Cause Analysis for Probing Incident. Google SRE. Retrieved
April 24, 2025, from https://sre.google/workbook/incident-
response/?utm_source=chatgpt.com

Matthew Helmke. (2020, June 18). Chaos Engineering and
Windows: Mitigating common Windows failure scenarios.
Gremlin. https://www.gremlin.com/blog/chaos-
engineering-and-windows

Meiklejohn, C. S., Estrada, A., Song, Y., Miller, H., & Padhye,
R. (2021). Service-Level Fault Injection Testing. Proceedings
of the ACM Symposium on Cloud Computing (pp. 388–402).
https://doi.org/10.1145/3472883.3487005

Michalowski, M. (2024, January 16). Navigating the Multi-Cloud
Ecosystem. DevOps.Com. https://devops.com/navigating-
the-multi-cloud-ecosystem/

Microsoft Learn. (2025, June 7). Azure Chaos Studio fault and
action library—Azure Chaos Studio. Azure. https://learn.
microsoft.com/en-us/azure/chaos-studio/chaos-studio-
fault-library

Mistry, D. (2025, April 20). AI Meets Chaos Engineering: Designing
Self-Healing Systems using Reinforcement Learning.
Medium. https://medium.com/@dhruvmistry_/ai-meets-
chaos-engineering-designing-self-healing-systems-using-
reinforcement-learning-88b7d9940801

Mondal, S. (2021, July 27). How the Resilience Score Algorithm
works in Litmus! LitmusChaos. https://litmuschaos.io/blog/
how-the-resilience-score-algorithm-works-in-litmus-1d22

Mooney, M. (2023, October 10). Security-focused chaos
engineering experiments for the cloud. Datadog. https://
www.datadoghq.com/blog/chaos-engineering-for-security/

Moreschini, S., Pour, S., Lanese, I., Balouek, D., Bogner, J., Li,
X., Pecorelli, F., Soldani, J., Truyen, E., & Taibi, D. (2025). AI
Techniques in the Microservices Life-Cycle: A Systematic
Mapping Study. Computing, 107(4), 100. https://doi.

org/10.1007/s00607-025-01432-z

Nedosekin, V., Kumar, S., & Stoll, A. (2024, November 5).
Introducing AWS Fault Injection Service Actions to Inject
Chaos in Lambda functions. AWS Cloud Operations Blog.
https://aws.amazon.com/blogs/mt/introducing-aws-fault-
injection-service-actions-to-inject-chaos-in-lambda-
functions

Netflix Technology Blog. (2020, November 2). Keeping Netflix
Reliable Using Prioritized Load Shedding. Medium. https://
netflixtechblog.com/keeping-netflix-reliable-using-
prioritized-load-shedding-6cc827b02f94

Newman, A. (2020, December 15). How to train your engineers
in Chaos Engineering. Gremlin. https://www.gremlin.com/
community/tutorials/how-to-train-your-engineers-in-
chaos-engineering

Newman, A. (2023, October 30). How Gremlin’s reliability
score works. https://www.gremlin.com/blog/how-gremlins-
reliability-score-works

Observability in the realm of Chaos Engineering. (n.d.).
National Australia Bank. Medium. Retrieved April 24, 2025,
from https://medium.com/%40nabtechblog/observability-
in-the-realm-of-chaos-engineering-99089226ca51

Palacios Chavarro, S., Nespoli, P., Díaz-López, D., & Niño
Roa, Y. (2023). On the Way to Automatic Exploitation of
Vulnerabilities and Validation of Systems Security through
Security Chaos Engineering. Big Data and Cognitive
Computing, 7(1), 1. https://doi.org/10.3390/bdcc7010001

Palumbo, F., Aceto, G., Botta, A., Ciuonzo, D., Persico, V.,
& Pescapé, A. (2021). Characterization and analysis
of cloud-to-user latency: The case of Azure and AWS.
Computer Networks, 184, 107693. https://doi.org/10.1016/j.
comnet.2020.107693

Payment Card Industry. (2022, April). Self-Assessment
Questionnaire A and Attestation of Compliance. https://
listings.pcisecuritystandards.org/documents/PCI-DSS-v4-
0-SAQ-A.pdf?utm_source=chatgpt.com

PCI Security Standards Council. (2021, October). PCI SSC Global
Community Forum 2021. PCI SSC Global Community Forum.
https://events.pcisecuritystandards.org/global2021/agenda/

Principles of chaos engineering - Principles of chaos
engineering. (n.d.). Retrieved April 24, 2025, from https://
principlesofchaos.org/?utm_source=chatgpt.com

Reuters. (2024, October 31). UK finance firms told to beef up
buffers against CrowdStrike-like events. Reuters. https://
www.reuters.com/technology/cybersecurity/uk-finance-
firms-told-beef-up-buffers-against-crowdstrike-like-
events-2024-10-31

Sachto, A., & Walcer, A. (n.d.). Anatomy of an Incident.

Satyanarayana, S., & Black, R. (2025, April 30). Harness
Guardrails and Resilience. Harness.Io. https://www.harness.
io/blog/harness-guardrails-and-resilience

24

https://journals.stecab.com
Stecab Publishing

Journal of Computer, Software, and Program (JCSP), 2(2), 10-24, 2025 Page

Satyanarayana, S.. (2025, January 9). Integrating Chaos
Engineering with AI/ML: Proactive Failure Prediction.
Harness.Io. https://www.harness.io/blog/integrating-
chaos-engineering-with-ai-ml-proactive-failure-prediction

Schulte, D. (2021, December). Is Chaos Engineering Worth It? A
Cost-Benefit Analysis. https://steadybit.com/blog/if-you-
are-not-doing-chaos-engineering

Service meshes are on the rise – but greater understanding
and experience are required. (2022, May 17). CNCF. https://
www.cncf.io/blog/2022/05/17/service-meshes-are-on-
the-rise-but-greater-understanding-and-experience-are-
required/

Silverthorne, V. (2025, March). Cloud Native Computing
Foundation, & Stephen Hendrick, The Linux Foundation.
Cloud Native 2024.

Sonar, V. (2024, September 6). How to Integrate Chaos Engineering
Into CI/CD. Aviator. https://www.aviator.co/blog/how-to-
integrate-chaos-engineering-into-your-ci-cd-pipeline

State of Chaos Engineering 2021. (n.d.). Retrieved May 3,
2025, from https://www.gremlin.com/state-of-chaos-
engineering/2021

Stripe. (2025). Errors | Stripe API Reference. https://docs.stripe.
com/api/errors?

Summary of June 8 outage. (2021, June 8). Fastly. https://
www.fastly.com/blog/summary-of-june-8-outage?utm_
source=chatgpt.com

Summary of the AWS Service Event in the Northern Virginia
(US-EAST-1) Region. (2021, December 10). Amazon Web
Services, Inc. https://aws.amazon.com/message/12721/

Tavargere, Z. (2025, January 10). Cache Stampede: A Problem
The Industry Fights Every Day. https://newsletter.
adaptiveengineer.com/p/cache-stampede-a-problem-the-
industry

Taylor, H. (2024, July 24). Microsoft to take hit as Fortune 500
suffers $5.4B in CrowdStrike losses: Study. New York Post.
https://nypost.com/2024/07/24/business/microsoft-to-take-
hit-as-fortune-500-suffers-5-4b-in-crowdstrike-losses-
study/

Terraform Registry. (2025a). Resource: Aws_fis_experiment_
template. HashiCorp. https://registry.terraform.io/
providers/hashicorp/aws/latest/docs/resources/fis_
experiment_template?

Terraform Registry. (n.d.-b). Young-ook/eks/aws | chaos-mesh
Submodule. Terraform Registry. Retrieved May 3, 2025,
from https://registry.terraform.io/modules/Young-ook/eks/
aws/1.7.8/submodules/chaos-mesh?utm_source=chatgpt.
com

Torkura, K. (n.d.). Security Chaos Engineering 101: Fundamentals.
Mitigant. Retrieved May 3, 2025, from https://www.
mitigant.io/en/blog/security-chaos-engineering-101-
fundamentals?utm_source=chatgpt.com

Touzi, J. (2020, August 7). Using AWS Global Accelerator to
achieve blue/green deployments. Networking & Content
Delivery. https://aws.amazon.com/blogs/networking-and-
content-delivery/using-aws-global-accelerator-to-achieve-
blue-green-deployments/

Treat, T. (2020, July 6). Guidelines for Chaos Engineering, Part 1.
Medium. https://blog.realkinetic.com/guidelines-for-chaos-
engineering-part-1-e5528a8a219

Vizard, M. (2025, January 29). Harness Applies AI to Chaos
Engineering Testing. DevOps.Com. https://devops.com/
harness-applies-ai-to-chaos-engineering-testing

Warren, T. (2024, July 19). Major Windows BSOD issue hits
banks, airlines, and TV broadcasters. The Verge. https://
www.theverge.com/2024/7/19/24201717/windows-bsod-
crowdstrike-outage-issue?utm_source=chatgpt.com

Weiss, D. (2024, September 3). Video Spotlight: “Chaos Testing –
Behind CockroachDB’s Resilience.” Cockroach Labs. https://
www.cockroachlabs.com/blog/video-chaos-testing

Yu, G., Tan, G., Huang, H., Zhang, Z., Chen, P., Natella, R., &
Zheng, Z. (2024). A Survey on Failure Analysis and Fault
Injection in AI Systems (No. arXiv:2407.00125). arXiv. https://
doi.org/10.48550/arXiv.2407.00125

