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Genotype-by-environment (G×E) interactions frequently derail transgenic 
crops that excel under controlled conditions. Abiotic stress, soil chemistry, 
and photoperiod can suppress promoters, destabilize transcripts, or misfold 
proteins, reshaping phenotypes across locations. Literature from the past two 
decades reveals recurring patterns: Bt Cry toxins lose potency during drought 
and heat; OsTZF5 rice yields rise only within moderate moisture deficits; safe-
harbor insertions and stress-inducible promoters reduce but do not eliminate 
variability. Contemporary toolkits, AMMI and GGE biplots, UAV phenomics, 
multi-omics tracking, and crop simulators detect interaction signals earlier, 
while machine-learning models direct trials toward environments with 
high crossover risk. A staged validation pipeline is proposed: factorial stress 
screens, multi-environment trials, molecular bookkeeping, data integration, 
and iterative redesign through predictive modeling. Environment-responsive 
constructs tested in this framework produce evidence that satisfies regulatory 
comparators, improves deployment targeting, and strengthens confidence 
that laboratory performance will translate to climate-volatile farms.
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1. INTRODUCTION
Genotype-by-environment (G×E) interactions describe 
situations in which the phenotypic difference between genotypes 
changes across environments, producing non-parallel reaction 
norms rather than a uniform shift in trait means (de Leon et 
al., 2016; Malosetti et al., 2013; Napier et al., 2023). In statistical 
terms, G×E is the interaction term of a two-way genotype × 
environment model; biologically, it reflects context-dependent 
gene expression, physiology, and development (Napier et al., 
2023). Reaction norm theory frames the phenotype as a function 
of environmental gradients, while concepts such as phenotypic 
plasticity, stability, and canalization capture how strongly 
or weakly a genotype’s traits fluctuate (Alseekh et al., 2025). 
Together, these ideas highlight that phenotypes are emergent 
properties of both alleles and settings, not simple readouts of 
DNA sequences.
Transgenic plants heighten the challenge because their 
performance can hinge on a single engineered promoter–gene 
cassette rather than a distributed polygenic network (Girón-
Calva et al., 2020). Greenhouse screens often overestimate 
trait robustness: heat, drought, salinity, nutrient limitations, or 
even herbivory can suppress transcription, destabilize mRNA, 
or alter protein folding of the transgene product (Donev et 
al., 2023). Studies on Bt crops have shown that environmental 
stress can reduce Cry protein accumulation, weakening pest 
control, while work on drought-tolerant rice lines (e.g., OsTZF5 
overexpression) reveals yield advantages that are contingent 
on stress severity, timing, or developmental stage (Girón-
Calva et al., 2020; Grondin et al., 2024). Tissue-specific and 
season-specific responses documented in maize illustrate how 
expression patterns and phenotypes diverge once plants leave 
controlled chambers (Gutha et al., 2018). These cases highlight 
that promoter–environment mismatches and stress-induced 
regulatory shifts can generate “spiky” interaction profiles that 
standard single-environment validation cannot capture. 
Such instability matters far beyond academic curiosity. For 
breeders and farmers, G×E can reorder genotype rankings 
across locations, complicating predictions of yield or resistance 
(Demelash, 2024). For regulators, it poses a biosafety and 
performance question: agencies like EFSA in Europe and the 
FDA/USDA/EPA triad in the United States expect evidence 
that genetically modified plants behave consistently and safely 
across relevant agro-ecological zones (EFSA, 2010; USDA, 
2024). Guidance documents explicitly call for comparative 
assessments and field data that reflect ecological realism, not 
just idealized growth-room trials (Organisms (GMO), 2011). 
From a translational genomics perspective, ignoring G×E risks 
costly failures when laboratory successes falter in farmers’ 
fields (Donev et al., 2023). 
This review pursues four objectives: (1) clarify the conceptual 
foundations of G×E as applied to transgenic crops, including 
key terms and how transgenic architectures alter interaction 
patterns; (2) synthesize evidence on environmental modulation 
of transgene expression and resulting phenotypic variability; 
(3) evaluate methodological toolkits, from AMMI/GGE analyses 
to high-throughput phenotyping and molecular assays, that 
dissect interaction effects; and (4) propose design principles 
and regulatory-aligned pipelines for robust, field-relevant 

gene function validation, culminating in recommendations for 
environment-aware engineering and global trial networks.

2. LITERATURE REVIEW
Over the past two decades, a considerable body of research 
has investigated how transgenic crops perform across 
environments. The literature spans major crop species that 
dominate biotech agriculture, notably maize, soybean, cotton, 
and rice, as well as other plants, including wheat, canola, and 
various fruits or model species (Girón-Calva et al., 2020, 2020; 
Napier et al., 2023). Researchers initially framed G×E through 
reaction norms and interaction terms, but recent syntheses 
emphasize plasticity versus robustness as complementary 
breeding targets rather than opposing philosophies (Alseekh et 
al., 2025; Manuck, 2010). 
A common idea is that environmental stress can reduce how 
well transgenes work: conditions like drought, heat, or salt can 
lower promoter activity, make transcripts unstable, or change 
how much protein is produced, which has been observed with 
Cry toxins in Bt cultivars (Girón-Calva et al., 2020; Wu et al., 
2025). Conversely, some engineered lines outperform controls 
only under specific stress windows, as demonstrated by 
OsTZF5-overexpressing rice, where yield gains surfaced under 
defined drought severities and developmental stages. (Grondin 
et al., 2024; Selvaraj et al., 2020). Large-scale greenhouse pre-
screens often misrank candidates, a problem revealed when 
“unexpected winners” emerged in multi-year field trials of 
transgenic aspen (Donev et al., 2023). 
The research shows a clear progression: initially, researchers 
used AMMI and GGE biplots to analyze genetic and 
environmental effects, but later they moved to Bayesian and 
linear-bilinear methods, and then combined these with high-
throughput phenotyping (HTP) and multi-omics (Sharma et 
al., 2020; Yan et al., 2007). UAV-mounted hyperspectral sensors, 
machine learning pipelines, and automated imaging now 
capture temporal trait trajectories at scale, enabling earlier 
detection of crossover interactions (Kaur et al., 2024; Nguyen 
et al., 2025). Parallel advances in RNA-seq and transcriptomics 
under controlled and field-imposed stresses allow researchers 
to pinpoint whether variability originates at transcriptional, 
post-transcriptional, or regulatory-network levels (Hazman et 
al., 2025; Yerlikaya et al., 2025). 
Across studies, two interpretive shifts stand out. First, rather 
than treating G×E as statistical “noise,” many papers now frame 
it as a design variable: transgenes can be tuned for conditional 
advantage if environmental triggers are explicitly encoded (e.g., 
stress-inducible promoters, CRISPRa/i circuits) (Girón-Calva et 
al., 2020; Napier et al., 2023). Second, climate change has pushed 
researchers to model wider, more erratic environmental spaces, 
reinforcing calls for multi-site, multi-season validation networks 
and open data sharing to reduce translation risk (Alseekh et 
al., 2025; Shu et al., 2023). Collectively, the 2000–2025 literature 
converges on a pragmatic conclusion: robust gene-function 
validation in transgenic crops must integrate statistical rigor, 
molecular diagnostics, and real-world agronomic heterogeneity 
if it is to deliver traits that are both high-performing and 
dependable. 
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3. METHODOLOGY
This narrative review surveyed peer‑reviewed literature 
published from January 2010 through April 2025, complemented 
by foundational pre‑2010 studies that remain standard 
references for genotype‑by‑environment (G×E) analysis. 
Searches were conducted in PubMed, Web of Science, Scopus, 
and Google Scholar using Boolean keyword strings such as 
“genotype‑by‑environment AND transgenic,” “AMMI OR 
GGE biplot,” “stress‑inducible promoter,” “CRISPRa plant,” 
“safe‑harbor insertion,” “multi‑environment trial,” and “climate 
resilience crop.” Additional filters included specific crop names 
(rice, maize, sorghum, cassava, Setaria, aspen) combined with 
terms like “drought tolerance,” “heat stress,” or “Bt toxin stability.”
Inclusion criteria required

i. original research or review articles addressing G×E 
interactions in genetically engineered or gene‑edited plants, 
ii. field or controlled‑environment experiments with explicit 
environmental variables.

iii. discussion of statistical, molecular, or modeling 
methodologies relevant to transgene validation. 
Conference abstracts, patents, and non‑English sources 
without translations were excluded. Results were synthesized 
thematically; no PRISMA flow diagram, formal risk‑of‑bias 
scoring, or meta‑analytic aggregation of effect sizes was 
undertaken, consistent with the narrative‑review design.

4. RESULTS AND DISCUSSION
4.1. Conceptual foundations of g×e in transgenic crops 
Genotype-by-environment (G×E) interactions arise when 
the phenotypic gap between genotypes changes across 
environments, yielding non-parallel reaction norms rather 
than a uniform shift in trait means (Napier et al., 2023). In 
plant science, the interaction term of a two-way genotype × 
environment model captures this context dependence, while 
reaction norms visualize how a genotype’s average trait value 
tracks an environmental gradient  (Napier et al., 2023). 
Historically, breeders first noticed “crossover” performance, 
varieties trading places in yield rankings across sites, well before 
molecular explanations were available (Eberhart & Russell, 
1966). Statistical formalisms followed: the Additive Main effects 
and Multiplicative Interaction (AMMI) model merged ANOVA 
with principal component analysis to partition interaction 
structure, and GGE (Genotype + G×E) biplots offered an intuitive 
way to visualize which genotype “wins where” and to delineate 
mega-environments  (Yan et al., 2007). These tools, developed 
for conventional cultivars, now frame how interaction patterns 
are examined in transgenic lines as well.
Three concepts anchor the discourse. Phenotypic plasticity is 
the capacity of a genotype to alter traits across environments; 
stability denotes relative constancy; and canalization, coined 
by Waddington, is the buffering of development such that 
the same phenotype emerges despite perturbations (Alseekh 
et al., 2025). Recent reviews present plasticity and robustness 
(stability/canalization) as two beneficial approaches for 
food security, with plasticity allowing for adaptability and 
robustness ensuring consistent performance, while also linking 
“canalization” to Waddington’s theory from the mid-20th 
century (Hallgrímsson et al., 2002; Waddington, 1942).

Figure 1. Conceptual framework of G×E in a transgenic crop

4.2. Differences between conventional and transgenic 
G×E responses
Conventional varieties typically express G×E through 
distributed polygenic architectures: many loci, each modestly 
environment-sensitive, collectively shape a smooth reaction 
surface. Transgenic events, by contrast, often rely on a single 
promoter–gene cassette whose output can spike or crash when 
specific environmental cues modulate promoter activity, mRNA 
stability, or protein turnover. Girón-Calva et al. (2020) showed 
that drought, heat, or salinity can depress Cry protein levels 
in Bt crops, eroding pest control precisely when protection is 
most needed; the near-isogenic, non-Bt counterparts displayed 
more gradual performance shifts tied to native regulatory 
buffering (Girón-Calva et al., 2020). Meanwhile, Donev et al. 
demonstrated that greenhouse “winners” among transgenic 
aspens did not always translate to field champions after five 
years across diverse sites, underscoring how a construct’s 
apparent superiority can be contingent on highly specific 
growth conditions (Donev et al., 2023). Thus, transgenic G×E 
can seem more unpredictable: specific regulatory elements 
create sudden changes in how plants respond, while regular 
plants usually show a wider range of responses that spread out 
their sensitivity to the environment. Yet transgenics are not 
inherently unstable; when a transgene targets a central stress-
response hub or uses an inducible promoter matched to field 
signals, it can actually dampen variance (Yang et al., 2024).
The conceptual pillars, historical statistical frameworks, the 
plasticity–stability and canalization triad, and the architectural 
contrasts between conventional and engineered genomes 
establish the foundation for contemporary validation 
challenges. They justify integrating molecular assays with 
field-centric statistics and motivate an environment-aware 
design of promoters and constructs. In simple terms, having a 
strong grasp of G×E is essential for validating transgenic work; 
it is the perspective from which we must view claims about 
how genes work (Napier et al., 2023).

4.3. Environmental modulation of transgene expression
Abiotic stresses rarely act as simple “on/off” switches; they 
rewire transcriptomes, shifting both the magnitude and timing 
of transgene expression and downstream protein accumulation, 
as shown by oil palm leaves that mobilized 19,834 differentially 
expressed genes under drought, salinity, waterlogging, heat, 
and cold (Lee et al., 2024). Evidence from light and salt-stress 
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experiments demonstrates that mRNA stability itself is plastic; 
chemical marks such as N6-methyladenosine can either stabilize 
or hasten decay of transcripts, so a transgene’s message may 
persist or vanish depending on the stress regime (Smith et al., 
2024).
Promoters, often assumed to be “constitutive,” are not immune: 
widely used elements like CaMV 35S can show species-, tissue-, 
or stress-dependent variation in strength, undermining the 
notion of a universally stable driver (Amack & Antunes, 2020).
Today’s lists of promoters focus on those that can be turned 
on or created to react to changes in temperature, drought, or 
hormones, but testing them in real fields is challenging because 
the strength and timing of natural signals often don’t match what 
is seen in controlled environments (Villao-Uzho et al., 2023). 
The Bt story is emblematic. Girón-Calva et al. reviewed how 
drought, heat, and salinity frequently depress Cry protein levels 
in Bt crops, diminishing insecticidal efficacy precisely when 
plants are physiologically strained (Girón-Calva et al., 2020). A 
field study on Bt cotton found that adding more nitrogen and 
phosphorus increased the levels of Cry1Ac, while plots with 
low nutrients had toxin levels that were almost one-third of 
those with high fertilizer, showing that how we manage soil 
nutrients directly affects the amount of transgene product 
produced (Khan et al., 2023).
Soil type and nutrient dynamics also feed back on plant 
metabolism; reductions in available nitrogen under Bt cotton 
relative to non-Bt isolines suggest that agronomic context can 
reshape both plant nutrition and protein expression landscapes 
(Beura & Rakshit, 2011).
Photoperiod and light quality complicate matters further: 
stress-responsive RNA-binding proteins and light-induced 
translational controls modulate how long transcripts linger and 
how efficiently they are translated, turning day–night cycles into 

quiet regulators of transgene output (Muthusamy et al., 2021).
Rice offers a contrasting case study. Grondin et al. (2024) 
evaluated OsTZF5-overexpressing lines across nineteen field 
trials and found that yield benefits were real but contingent; 
gains materialized under specific drought severities (−25 to −75 
kPa) and developmental windows, while advantages waned in 
well-watered plots (Grondin et al., 2024).
Earlier fieldwork with a stress-inducible promoter driving 
OsTZF5 confirmed that context-tuned expression could buffer 
yield under drought without depressing performance elsewhere, 
illustrating how promoter choice can sharpen or soften G×E 
signals (Grondin et al., 2024). Similar patterns surface in maize: 
multi-environment trials repeatedly reveal that even near-
isogenic lines bearing transgenes can swap yield ranks across 
sites or seasons, betraying promoter–environment mismatches 
and illustrating the importance of explicit reaction-norm 
mapping rather than single-environment claims (Figure 2) 
(Supriadi et al., 2024). 
Mechanistically, these shifts arise at multiple strata: promoter 
sensitivity to transcription factors that are themselves stress-
regulated, RNA-binding proteins that remodel transcript 
lifespans, and protein-folding machinery that falters under 
heat, triggering unfolded protein responses and dampening 
accumulation of the intended product (Dannfald et al., 2025). 
Because these layers interact, decoupling cause from effect 
demands pairing field phenotyping with molecular assays, qPCR 
or RNA-seq to quantify transcript changes, immunoassays to 
track protein levels, and metabolite profiling to see whether 
altered primary metabolism constrains transgene function 
(Saand et al., 2022). Without keeping track of these molecular 
details, researchers might mistakenly think that changes in 
traits are just due to “field variability” when the real issue is that 
transcription is turned off or the RNA breaks down too quickly.
Environmental modulation of transgene expression is not 
anecdotal but systematic: stressors alter transcriptional 
activation, message stability, and protein fate, while soil fertility 
and photoperiod tweak the dose and duration of expression 
(Girón-Calva et al., 2020). Case studies from Bt maize and 
cotton to drought-tolerant rice converge on the same lesson: 
performance is conditional, and only multi-layered, field-tuned 
validation can reveal where a construct thrives, where it fades, 
and why (Donev et al., 2023).

4.4. Phenotypic variability & context-dependent 
outcomes
Overexpression is rarely free. Pushing a pathway rigorously 
can siphon carbon and nitrogen toward defense metabolites 
or osmoprotectants, trimming growth or yield when stress 
is absent. Growth–defense trade‑offs documented across 
engineered plants show that what looks like resilience under 
drought can morph into a metabolic burden under ideal 
irrigation (Ha et al., 2021; Karasov et al., 2017). 
Constitutive promoters such as CaMV 35S are marketed as 
“always on,” yet field reality is messier: identical cassettes 
have produced markedly different transcript levels depending 
on organ, physiological state, and abiotic stress (Rahamkulov 
& Bakhsh, 2020). Inducible or synthetic promoters promise 
finesse, switching on when drought or heat actually strikes, but 

Figure 2. GGE biplot from an environment-centered G+GE 
matrix showing “which-won-where” across six environments.
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calibration is tricky. Signals that trigger neat expression pulses 
in chambers may trickle or spike unpredictably outdoors, 
leading either to underexpression when needed or costly 
leakage when not (Kiselev et al., 2021; S. Yang et al., 2010).
The Bt story captures this conditionality starkly. When 
drought, heat, or salinity depress Cry toxin accumulation, 
insect resistance weakens precisely as plant vigor declines, 
compounding losses; in fertilized plots, however, higher 
nitrogen and phosphorus can boost Cry1Ac titers, restoring 
efficacy. Here, the “same” trait’s strength becomes a function of 
weather and soil management, not just the gene itself (Girón-
Calva et al., 2020; Khan et al., 2023).
Rice provides an instructive counterpoint. Transgenic lines 
that produced more OsTZF5 showed clear benefits in yield, 
but only during certain drought conditions (−25 to −75 kPa soil 
water potential) and at specific growth stages. In well-watered 
plots, those gains diminish, underscoring that “tolerance” is 
not monolithic but bounded by stress intensity and timing 
(Grondin et al., 2024). 
Long-term fieldwork with transgenic aspen drives the lesson 
home. Lines crowned “best performers” in greenhouse screens 
were not the same lines that excelled after five years across 
diverse sites, revealing that phenotype rankings can reshuffle 
once plants confront real seasonal cycles, soil heterogeneity, 
and unmanaged biotic pressures. Multi-site maize trials echo 
this pattern: hybrids swap yield positions as environments 
change, making single-location claims of superiority tenuous 

at best (Donev et al., 2023; Napier et al., 2023). 
Collectively, these cases expose a simple truth: phenotypes 
are context-sensitive outputs of gene × management × 
environment interactions. Depending on the timing and 
location of its deployment, overexpression can either benefit or 
harm. Constitutive expression ensures presence but risks waste 
or mistimed activity; inducible systems curb metabolic cost 
but may misfire if field signals differ from lab triggers. Only by 
tracking traits across sites, seasons, and stress gradients, and 
pairing those observations with molecular diagnostics, can we 
separate genuine robustness from situational success (Grondin 
et al., 2024). 

4.5. Methodologies to Dissect G×E 
Multi-environment trials (METs) remain the backbone of 
G×E dissection: breeders plant the same genotypes across 
contrasting sites and seasons, then ask not just “who yields 
most?” but “who wins where, and why?” (Demelash, 2024). 
AMMI (Additive Main effects and Multiplicative Interaction) 
marries ANOVA with principal components to parse interaction 
structure, while GGE (Genotype + G×E) biplots visualize the 
“which‑won‑where” pattern and help carve mega‑environments 
for targeted recommendations (Yan et al., 2007). These visual 
tools, which were first popularized in conventional breeding, 
now guide transgenic assessments by revealing instances when 
a single event excels in one environment but underperforms in 
another (Wodebo et al., 2023). 

Table 1. Representative transgenic traits, g×e patterns, environmental drivers, validation tools, and evidence-informed next steps

Trait / Transgene 
(crop) Observed G×E pattern

Primary 
environmental 
drivers

Validation tools 
used Suggested next step

Cry toxins (Bt) — 
Cry1Ab/Cry1Ac 
(maize, cotton)

Toxin titers decline under stress; 
efficacy weakest under drought/
heat/salinity; performance varies 
across locations and seasons 
(Girón-Calva et al., 2020).

Drought, heat, 
salinity, and plant 
nutritional status

Multi‑site field 
assays; ELISA 
for Cry; AMMI/
GGE for efficacy 
crossover

Replace/stack with 
stress‑responsive 
promoters; specify 
agronomic bounds of 
efficacy in dossiers.

Bt Cry1Ac (cotton)

Higher N–P fertilization increases 
Cry1Ac concentration; low N–P 
reduces expression. (Khan et al., 
2023)

Soil N and P 
availability; 
fertilization 
regime

Split‑plot fertilizer 
× genotype 
trials; ELISA 
quantification

Couple fertilizer 
recommendations to 
resistance stewardship; 
evaluate NUE stacks to 
stabilize titers.

OsTZF5 
overexpression 
(rice, IR64 
background)

Yield advantage only within 
defined drought window (≈ −25 to 
−75 kPa); gains taper when well 
watered. (Grondin et al., 2024)

Moderate 
reproductive‑stage 
drought; stress 
timing

19‑trial MET; 
qPCR; phenology 
& harvest index 
analyses

Tune promoter (e.g., 
LIP9 variants) for onset/
severity; extend METs to 
heat–drought co‑stress.

CspB (MON 87460 
“DroughtGard®”, 
maize)

Consistent yield lift under 
water‑limited conditions; minimal 
to no advantage in well‑watered 
sites. (Obunyali et al., 2024)

Seasonal rainfall 
deficit; managed 
drought regimes

Large METs; 
Bayesian mixed 
models across 
hybrids

Pair with envirotyping 
to target deployment; 
quantify crossover risk 
with FieldSimR before 
trials.

rd29A::DREB1A 
(tobacco model)
(Kasuga et al., 
2004)

Inducible expression preserves 
drought/cold tolerance while 
avoiding growth penalties in 
benign conditions.

Dehydration, 
low temperature 
(ABA‑linked)

Controlled stress 
assays; field pilots; 
transcript profiling

Port inducible circuits to 
crops; compare against 
constitutive drivers for 
fitness cost curves.
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proactive experimental design under conditions of uncertainty 
(Smith et al., 2001). High-throughput phenotyping (HTP) has 
changed what “environmental response” looks like on paper. 
Rather than scoring end-of-season yield alone, researchers 
now fly drones equipped with multispectral or hyperspectral 
cameras, track canopy temperature with thermal sensors, and 
pipe millions of pixels through machine- and deep-learning 
pipelines to flag stress signatures days before they manifest 
visually (Xie & Yang, 2020). Reviews chart a steady march from 
single-trait “stamp collecting” toward integrated, robotics-
enabled platforms that pair sensor data with environmental 

Statistical practices have advanced beyond classical biplots 
(Smith & Cullis, 2018). Bayesian linear-bilinear formulations 
address heteroscedastic errors and missing data that are typical 
in field trials, while factor-analytic mixed models combine 
the interpretability of AMMI/GGE with the shrinkage and 
flexibility offered by mixed-model frameworks (Jarquín et al., 
2016). Recent studies suggest new methods that mix AMMI, 
GGE, and factor analysis, along with simulation techniques, 
to assess how well a specific MET matches the environments 
that breeders aim for (De Oliveira et al., 2016). These advances 
shift the field from relying on post hoc descriptions to adopting 

Targeted 
safe‑harbor 
insertion of 
carotenoid cassette 
(rice)

Stable transgene expression and 
phenotype from defined genomic 
“safe harbors”; reduced positional 
variability (Dong et al., 2020).

Chromatin 
context; insertion 
site

CRISPR‑Cas 
targeted insertion; 
compositional & 
performance tests

Build a catalog of 
crop‑specific safe 
harbors; test stability 
under heat/salinity stress.

MET analytics 
(methodological 
exemplar)

GGE biplots reveal 
“which‑won‑where” and 
mega‑environments; AMMI/GGE 
outperform simple means for 
crossover detection. (Wodebo et 
al., 2023; Yan et al., 2007)

Site–season 
contrasts; 
heterogeneous 
error

AMMI, GGE; sector 
analysis

Standardize inclusion 
of GGE/AMMI visuals 
in regulatory dossiers; 
report vertex winners per 
zone.

Simulation 
frameworks 
(FieldSimR; 
ORYZA/APSIM)(C. 
R. Werner et al., 
2024)

Virtual METs forecast 
performance and crossover 
probability; optimize site selection 
before planting.

Historical 
weather, soils, 
management; 
assumed G×E 
structure

FieldSimR with 
AlphaSimR; crop 
models

Pre‑register trials using 
simulated power/
accuracy; iterate 
designs to hit target 
environments.

Figure 3. Integrated methodological framework for genotype-by-environment (G×E) dissection in transgenic crops
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logs; yet bottlenecks persist in data curation, algorithm 
transferability, and the sheer logistics of field-scale imaging 
(Zhang & Zhang, 2018). 
Molecular tracking adds mechanistic resolution to our 
understanding of these phenotypes. RNA‑seq under drought, 
salt, or heat reveals whole-transcriptome reprogramming, 
identifying modules whose plasticity mirrors, or precedes, 
field trait shifts. Meta-analyses spanning more than 100 stress 
datasets illustrate that many “core” stress genes respond across 
contexts, but transgenes can insert novel hubs or bottlenecks 
into these networks (Bano et al., 2022). Targeted qPCR, 
immunoassays, and metabolite profiling are still important to 
determine if changes in expression lead to functional proteins 
or biochemical results. Even post-transcriptional controls, such 
as mRNA methylation or RNA-binding proteins, alter message 
stability, reminding us that expression plasticity is multi-
layered and stress-contingent (Rudy et al., 2023).
Finally, modeling and simulation tools provide a “virtual MET” 
(Holzworth et al., 2014). Crop models like ORYZA2000 and 
APSIM simulate genotype performance across weather, soil, 
and management scenarios, allowing researchers to prioritize 
real-world trials that maximize information gain (Li et al., 2013). 
Recent frameworks embed multiplicative G×E structures directly 
into simulation engines (e.g., FieldSimR), helping quantify 
expected accuracy and tune experimental designs for crossover 
vs. non‑crossover interactions (Werner et al., 2024). Coupled with 
genotype‑by‑environment‑by‑management (G×E×M) modeling, 
these tools shift validation from reactive “measure and see” to 
predictive “simulate, deploy, verify,” integrating statistical rigor 
with agronomic foresight (Holzworth et al., 2014).

4.6. Discussion
4.6.1 Strategies for robust validation 
Robust validation begins with a staged pipeline, hypothesis 
screens in growth chambers, factorial stress assays in controlled 
rooms, and multi‑environment field trials that sample the 
target population of environments (Pour-Aboughadareh et 
al., 2025). Five‑year fieldwork on transgenic aspen showed 
that greenhouse “winners” did not remain winners outdoors, 
underscoring why early screens cannot substitute for real 
environments (Donev et al., 2023). Consequently, METs should 
be interrogated with interaction‑sensitive statistics: AMMI and 
GGE biplots reveal “which‑won‑where” patterns and identify 
crossover responses that single‑location means obscure (Yan 
et al., 2023). At every stage, phenotyping needs molecular 
bookkeeping, qPCR, or RNA‑seq to verify transcript shifts 
and immunoassays for protein titers, so a lost phenotype is 
not blamed on “field noise” when the real culprit is expression 
collapse (Gan et al., 2024).
In tobacco plants, using stress-responsive promoters like rd29A 
instead of constant drivers helped reduce growth issues while 
still keeping the plants tolerant to drought and cold (Kasuga 
et al., 2004). Chemically inducible CRISPRa/i systems built 
on dCas9 now allow post‑integration tuning of endogenous 
loci, letting developers dial traits up or down when field cues 
demand it (Zhang et al., 2024). Targeted insertion into genomic 
safe‑harbor loci in rice yielded marker‑free, carotenoid‑enriched 
lines with predictable expression, illustrating how precise 

landing sites reduce positional effects and silencing (Cantos et 
al., 2014). Crop models such as ORYZA2000 simulate genotype 
performance across weather, soil, and management scenarios, 
guiding trial placement toward environments where crossover 
risk is highest (Li et al., 2013). The combination of staged 
experimentation, environment-responsive engineering, precise 
integration, and predictive modeling gives gene-function 
claims a competitive edge in the complex heterogeneity of real 
farms (Tadese et al., 2024).

4.6.2. Lessons from emerging crops & climate-resilience
Rice offers the clearest demonstration of context-bound 
promise: OsTZF5-overexpressing lines outperformed IR64 in 
19 field trials only when drought intensity fell within a defined 
window and gains tapered under well-watered conditions 
(Grondin et al., 2024). Maize tells a complementary story, 
hybrids routinely swap yield rankings across low‑nitrogen 
and optimal sites, making “best” a moving target rather than 
a universal label (Mafouasson et al., 2018). Sorghum takes this 
idea even further; a study looking at different environments 
found specific genes for drought that only showed up when 
both heat and water stress were present, highlighting that the 
genes that help plants adapt are specific to certain environments 
rather than being the best everywhere (Bernardino et al., 2024). 
Field phenotyping for these traits increasingly leans on sUAS-
based remote sensing, as illustrated by USDA projects using 
drones to screen stay‑green sorghum lines and aphid tolerance 
at scale (USDA, 2025a).
Model species help plug knowledge gaps for “orphan” 
crops. Setaria viridis, fast-cycling, genetically tractable, 
and phylogenetically close to maize and millets, has been 
championed as a surrogate to accelerate gene discovery and 
trait dissection in under-studied C4 cereals (Huang et al., 2016). 
Yet many neglected crops remain sidelined despite robust 
stress tolerance and nutritional value, largely because research 
funding and breeding infrastructure favor global staples (Talabi 
et al., 2022). Translating lessons from Setaria or rice into 
these species requires researchers to do more than just port 
constructs; they must develop envirotyping frameworks that 
capture local stress mosaics so that transgenes or edited alleles 
are tuned to the right signals (Xu, 2016). 
Climate change broadens the environmental landscape by 
introducing erratic rainfall, heat spikes, and compound 
stresses, which increase the GEO space that validation pipelines 
need to navigate (Raza et al., 2019). As that space expands, 
single-location or single-season trials become statistical dead 
ends; only coordinated networks that span agro-ecological 
gradients can reveal whether a line is truly robust or merely 
lucky (Dias et al., 2018). In practice, that means pairing MET 
analytics with predictive modeling to target “stress hot spots,” 
then looping molecular readouts back into design choices, 
promoters, integration sites, and inducible CRISPRa/i modules, 
so expression tracks real-world cues instead of lab surrogates 
(Gao et al., 2023). The emerging consensus across rice, maize, 
and sorghum, and the orphan crops waiting in their shadow, is 
blunt: environment-aware validation is not an optional add‑on 
but the price of reliable transgenic performance in a climate-
volatile century (Cooper & Messina, 2023). 
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4.6.3. Regulatory expectations for G×E
The European Food Safety Authority (EFSA) asks applicants 
to perform a comparative analysis that spans “agro‑ecological 
zones representing the expected range of cultivation,” explicitly 
flagging G×E as part of environmental‑risk assessment (ERA) 
(European Food Safety Authority, 2010). Its detailed ERA 
guidance reiterates that applicants must supply multi‑site field 
data and describe any interactions that could shift agronomic 
or ecological behavior (European Food Safety Authority, 2010). 
Across the Atlantic, USDA‑APHIS permits a single notification 
to cover “multiple environmental releases” as long as field sites 
collectively capture the crop’s target geography, signaling that 
U.S. regulators likewise expect evidence beyond greenhouse 
trials (USDA, 2025b). The agency’s Biotechnology Regulatory 
Services portal further clarifies that risk determinations 
weigh location‑specific data on pest pressure, climate, and 
management (Animal and Plant Health Inspection Service, 
2025). Internationally, OECD consensus documents encourage 
jurisdictions to consider local protection goals and stress that 
risk characterization must integrate environmental context, 
essentially codifying G×E thinking into global best practice 
(OECD, 2023a, 2023b). Yet none of these frameworks dictate 
analytic tools, leaving developers to decide whether AMMI, 
GGE, or Bayesian models best reveal crossover risks. 

5.6.4. Translational failures rooted in G×E blind spots
The stakes of under-characterizing interactions are tangible. 
A meta‑analysis shows drought, heat, and salinity can 
depress Bt toxin expression, eroding insect control precisely 
when plants face the most stress (Girón-Calva et al., 2020). 
Field experiments in India confirmed that combined high 
temperatures and waterlogging reduced Cry protein efficacy in 
Bt cotton, increasing pest damage despite genetic protection 
(Jehangir & Ali, 2023). Likewise, a five‑year study on transgenic 
aspen revealed that clones crowned “best” in the greenhouse 
were outperformed by different lines once exposed to diverse 
soils and climates, illustrating how indoor screens can misrank 
true field champions (Donev et al., 2023). Even high‑profile 
humanitarian projects are not immune: Philippine courts 
revoked approval of Golden Rice after activists argued that 
local environmental data were insufficient, a regulatory setback 
that cost years of deployment time (McKie & editor, 2024).

4.6.5. Toward standardised, environment‑aware 
validation
First, dossiers should include pre‑registered multi‑environment 
trials analyzed with interaction‑sensitive statistics; disclosing 
AMMI or GGE plots would let reviewers see crossover 
directly. Second, molecular readouts, transcripts, proteins, and 
metabolites should accompany field phenotypes so agencies 
can trace failures to mechanistic roots rather than blame 
“environmental noise.” Third, data capture needs harmonization: 
cloud‑based field‑trial platforms already streamline collection 
and validation, hinting at a shared infrastructure for regulators 
and developers alike. Finally, international bodies could adopt 
an OECD‑style validation annex prescribing minimal site 
numbers, climatic breadth, and analytic standards, thereby 
reducing redundancy while preserving regional safeguards 

(OECD, 2023b). Implementing these steps would transform G×E 
from a regulatory stumbling block into a predictable hurdle, one 
that robust, transparent pipelines can clear with confidence.

4.7. Implications for functional genomics & engineering
Genotype-by-environment (G-E) interactions are compelling 
genomics to relinquish basic, context-free gene labels in favor 
of more detailed, conditional narratives: the actions of a gene 
now carry an asterisk, indicating its location and timing (Baye 
et al., 2011). This shift ripples through discovery science, 
quantitative genetics, and the engineering bench.
6. 1 Rethinking gene‑function claims
Allele‑specific expression surveys reveal thousands of loci 
whose cis‑regulation flips between drought and well‑watered 
conditions, warning that single‑environment screens can 
miscast causal variants (Murani & Hadlich, 2023). Functional 
annotations are therefore migrating toward “reaction‑norm 
profiles,” bundling sequence, expression plasticity, and 
environmental triggers into one dossier (Saltz et al., 2018).

4.7.1. Environment‑enriched GWAS and predictive 
breeding
Statistically, the adjustment is no longer GWAS alone but 
GWAS‑by‑environment, where climatic or soil covariates 
sit beside SNPs in the linear model (Costa-Neto et al., 2022). 
In maize, adding satellite‑derived weather layers to genomic 
prediction raised accuracy by seven percent relative to pure 
genotype models, a non‑trivial boost in a crop whose margins 
are thin (Fernandes et al., 2024). Similar gains appear when 
deep‑learning frameworks fuse high‑resolution envirotyping 
with sequence data, outpacing classic factor‑analytic mixed 
models while trimming compute time (Crossa et al., 2025). A 
flurry of algorithms, GEFormer among them, now treat G×E as 
signal, not noise, turning environment‑specific effect sizes into 
actionable breeding indices (Yao et al., 2025).

4.7.2. Toward environment‑aware engineering
Engineering needs to adapt quickly. Stress‑inducible promoters, 
once limited to rd29A, now span bespoke libraries responsive 
to heat, salinity, or hormones, letting developers meter 
expression rather than overexpress by default (Villao-Uzho et 
al., 2023). Chemically switchable CRISPR‑a payloads push that 
logic further, activating native genes only when a foliar spray 
or temperature cue demands it (Zhang et al., 2024). By coupling 
dCas9 activators to light‑sensitive domains, teams have edited 
yield pathways in rice without the growth penalties typical of 
always‑on constructs (Sami et al., n.d.). Safe‑harbor insertion 
sites add another layer of predictability, insulating transgenes 
from chromatin quirks that can amplify or silence them in 
stress‑specific ways (Ye et al., 2024). Beyond the plant, synthetic 
biology startups are engineering root-associated microbes that 
modulate nitrogen supply as soils warm, externalizing part of 
the G×E buffer to the microbiome (Walsh, 2021). Prototype 
“sentinel plants” that flush anthocyanin when pesticides spike 
showcase how expression circuits can double as environmental 
sensors, tightening the feedback loop between field conditions 
and genetic response (Ford, 2023).
The takeaway is clear: functional genomics, statistical genetics, 
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and bioengineering are converging on an environment‑first 
mindset, where performance curves, not point estimates, define 
value. Designers who embrace that mindset and arm their 
constructs with ecological situational awareness will own the 
next wave of crop innovation. 

5. CONCLUSION 
Genotype-by-environment interactions are not statistical clutter 
around a clean genetic signal; they are the signal. For transgenic 
crops, this means a gene’s “function” is inseparable from the 
environmental envelopes in which it is deployed. Promoters 
drift in strength, transcripts decay at stress-dependent rates, 
proteins misfold under heat, and phenotypes reorder across sites 
and seasons. Any validation regime that freezes these dynamics 
into a single greenhouse snapshot will overstate robustness, 
misprice risk, and invite regulatory friction.
What follows is a different mindset: dynamic, environment-
aware validation as the norm. Traits should be advanced 
through staged pipelines that deliberately widen environmental 
contrast, analyzed with interaction-sensitive statistics, and 
coupled to molecular readouts so lost performance can 
be traced to mechanism rather than hand-waved as “field 
noise.” Engineering choices must match that realism, stress-
responsiveness, or sensor-linked promoters, inducible 
CRISPRa/i circuits, and precise, safe-harbor integrations that 
tame positional effects. Prediction should precede planting: AI 
models and crop simulators can map where crossover is most 
likely, guiding scarce field trials to the environments that matter.
Ecological realism, then, is not a luxury tacked on at the end of 
development; it is the scaffolding for making any claim about 
gene function credible outside the growth chamber. Adopt it, 
and transgenic innovation becomes more predictable, more 
defensible, and far likelier to deliver under the volatile climates 
farmers actually face.

RECOMMENDATIONS
Artificial intelligence models are now accurate enough to guide 
where a transgenic line should be field-tested, but only if their 
training data span the full spectrum of environments. That 
reality argues for three converging moves: AI engines that learn 
G×E surfaces from enviromic covariates, multidisciplinary 
teams that bind statisticians to agronomists, and a truly global, 
open trial network.
Firstly, we introduce AI engines. Gradient-boosted trees and 
deep nets already lift genomic prediction accuracy by 5–7 % 
when daily weather or soil layers are folded into the model 
(Fernandes et al., 2024). Neural‑network variants such as 
GxENet and GEFormer go further, ingesting raw climate grids 
to output environment‑specific yield scores for each genotype 
(Jubair et al., 2023; Yao et al., 2025). Envirotyping pipelines in 
sorghum and wheat show that even a modest set of covariates, 
vapor‑pressure deficit, and temperature amplitude can rescue 
prediction power for stress loci invisible to genotype‑only 
scans (Garin et al., 2024; Winans et al., 2024). For hypothesis 
testing and trial design, the open‑source FieldSimR package lets 
breeders simulate crossover risk under hundreds of weather 
scenarios before a single plot is planted (Werner et al., 2024).
Second, success hinges on cross‑disciplinary pipelines. “Smart 

breeding” roadmaps now pair data scientists with physiologists 
to turn remote‑sensing outputs into biologically grounded 
features, leaf temperature and chlorophyll fluorescence, that 
machine learning can digest (Xu et al., 2022). CGIAR’s Excellence 
in Agronomy Initiative formalizes that model, embedding 
AI specialists inside agronomy hubs across Africa, Asia, and 
Latin America (CGIAR, 2025). Crop‑ontology standards ensure 
that trait labels remain interoperable across labs, preventing 
semantic drift that sabotages meta‑analyses (CGIAR, 2018).
Finally, predictions are only as reliable as their ground truth, so 
a federated global trial network is indispensable. A Global Crop 
Improvement Network, long championed by CGIAR big‑data 
advocates, would pool multi‑environment trials under a single 
data‑governance umbrella (Reynolds et al., 2017). Wheat’s 
Borlaug Global Rust Initiative already functions as a prototype, 
coordinating disease nursery data from Kenya to Australia 
and serving summaries through an open portal (BGRI, 2025). 
Scaling that ethos to other crops requires the development 
of harmonized ontologies, cloud-based audit trails, and FAIR-
compliant repositories, which are currently being piloted by the 
agronomy-at-scale arm of CGIAR (Initiative, 2025). Together, 
AI models, cross‑disciplinary pipelines, and a federated trial 
network would turn G×E from a regulatory headache into 
a predictable design variable, accelerating the march from 
construct to climate‑ready cultivar.
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