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Climate change induced by global warming is the most important 
environmental concern facing the globe today. The study aimed to develop 
a model in determining the aboveground biomass of forest stands through 
remote sensing in licuan-baay abra, Philippines. It determined the total carbon, 
carbon dioxide of the forest stands. The developed models of ndvi, savi, sri, 
and evi were also compared to select the best model suited for estimation 
above ground biomass of forest stand. The estimated above-ground biomass 
using the regression models developed is 8m mg/ha-1 for ndvi, sri and savi 
while evi has an estimated agb of 7m mg/ha-1 respectively. But the four-model 
developed has a correlation of above ground biomass and the vegetation 
index. Therefore, enhance vegetation index is highly recommended in this 
study since R squared among the four-vegetation index has the highest total 
value computed and has the lowest total value computed in the rsme (mg/ha-

1) which indicated as the most accurate to predict the above ground biomass 
of forest stand.About Author
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1. INTRODUCTION
Climate change caused by global warming is the most pressing 
environmental problem of the world today.  Carbon dioxide is 
one of the leading gases causing this climatic anomaly which 
is abundant in the atmosphere. Forest ecosystems have a 
significant potential in this respect. Carbon can be stored in 
the biomass, soil, litter, and coarse woody debris pools in forest 
ecosystems. Above Ground Biomass (AGB) and carbon uptake 
of a forest are key ecological indicators for various technical 
and scientific applications and sustainable forest management 
(Bao Huy et al., 2022). The relationships amongst environmental 
conditions, stand age, tree diversity, and trait identity with 
Above Ground Biomass (AGB) remain highly debated in forest 
ecosystems, but these relationships across forest strata (i.e., 
over-story and understory) remain poorly assessed (Hae-In 
Lee et al., 2022). Understanding the drivers of Above Ground 
Biomass (AGB) variation in present-day tropical forests can 
contribute to management strategies that help mitigate against 
CO2-driven climate change and provide other services related 
to high AGB. Higher tree diversity can lead to higher woody 
productivity and carbon storage (Borges et al, 2021). At present, 
only limited studies have been conducted to identify and assess 
the Above Ground Biomass of mixed stand forest and pure stand 
forest, and even more research are needed to assess the Carbon 
stock of the forest stand in addressing the concerns on Carbon 
sequestration and adaptation to climate change. The result of 
this study provided basis in gathering data on Above Ground 
Biomass of forest stand. To estimate the biomass of the forest 
stand, the equation based on breast height diameter (DBH). The 
tree DBH was estimated using calibrated tape measure. 
There are also many kinds of sensor that were used to gather 
information in the ground such as landsat 1-5 multispectral 
scanner while the latest satellite that were used today carried 
just one sensor was the landsat8 which acquires data in 11 
bands from two separate sensors like the Operational Land 
Imager (OLI) and the Thermal Infrared Sensor (TIRS) which 
was used in the study. The OLI and TIRS images consist of nine 
spectral bands with a spatial resolution of 30 meters for bands 
1 to 7 and 9. The new band 1 (ultra-blue) is useful for coastal 
and aerosol studies. Landsat Surface Reflectance-derived 
Normalized Difference Vegetation Index (NDVI) is derived 
from Landsat 4–5 Thematic Mapper (TM), Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+), and Landsat8 Operational Land 
Imager (OLI)/Thermal Infrared Sensor (TIRS). NDVI is used to 
quantify vegetation greenness and is useful in understanding 
vegetation density and assessing changes in plant health. NDVI 
is calculated as a ratio between the red (R) and near infrared 
(NIR) values. It calculated using the reflectance value of red and 
near-infrared bands of optical imagery, and is widely accepted 
as an indicator of green foliage (Fraser et al., 2011).  Linking 
with that, the Landsat8 was used in this study to monitor the 
NDVI, EVI, SAVI, SRI of the forest stand of Licuan Baay. The 
area of the municipality is hilly and mountainous with a slope 
of ranging to 50 percent. 
In this study, Above Ground Biomass of forest stands in Licuan-
Baay, Abra was estimated.  In order to estimate the Above 
Ground Biomass of the forest stand gathered data in the field 
the brown model (1997) was used in the study. Allometric 

functions at tree-level species and site-specific as sited in 
the study of Macedo et al. (2018) are most commonly used to 
estimate biomass, frequently with diameter at breast height 
and total height as explanatory variables. Data from forest 
inventory and vegetation indices (NDVI, EVI, SRI and SAVI) 
derived from high spatial resolution satellite images was used. 
The statistical analysis included correlation, variance analysis 
and linear regression (Macedo et al., 2018).
Generally, the study aimed to develop a model in estimating the 
aboveground biomass of forest stands through satellite image.  
Specifically, it aimed to Quantify the Above Ground Biomass 
(ABG) and carbon sequestered by the mixed forest stand in the 
area, Determine the relationship of vegetation indices (NDVI, 
SAVI, SRI and EVI) acquired from satellite image and Above 
Ground Biomass (ABG) of forest stand obtained from field data, 
and Compare the total computed ABG and sequestered carbon 
of forests stand from the product of developed equation model. 
Since field measurement of carbon stock is costly and laborious, 
this study seeks cost-effective method of estimating carbon 
stock and estimate the Above Ground Biomass of forest stand. 
Determining the best resolution to be use in estimating the 
Above Ground Biomass and monitoring the vegetation cover of 
Licuan-Baay, Abra forest stands. The tools used in estimating 
the Above-ground Biomass is NDVI, EVI, SAVI, SRI. 

2. LITERATURE REVIEW
2.1. Methods of estimating above-ground biomass (ABG)
Carbon exists as carbon dioxide in the atmosphere and 
constitutes about 0.04% of the atmosphere. In the recent 
past, it has gained a lot of attention as a greenhouse gas, as 
it has potential to influence the climate pattern of the world. 
Anthropogenic activities like industrialization, deforestation, 
forest degradation and burning of fossil fuel, has caused an 
increase in the level of carbon in the atmosphere and disrupted 
the global carbon cycle. However, nature has its own mechanism 
of sequestering and storing the carbon in its “reservoirs” or 
“sinks’’ (Vashum et al., 2012). Estimates made by the Global 
Forest Resources Assessment as cited by Zhi et al.  (2016) show 
that the world’s forests store more than 650 Gt of carbon and 
289 Gt in biomass. The Assessment of C stocks can be aimed 
at a specific ‘area’, what-ever it’s vegetation or land use, or at 
a specific ‘activity’ or form of land use or land cover as found 
within a specified geographic domain. Allometric equations 
can be locally developed by destructive sampling, derived from 
literature for supposedly comparable forest types, or estimated 
from fractal branching analysis. They normally use the tree 
diameter at breast height (DBH, measured 1.3 m above the 
ground) as basis (Hairiah et al., 2001). In destructive sampling, 
Xiaofang Wei et al. (2017) develop allometric equations by 
establishing the relationship between Above Ground Biomass 
with an average of basal diameter, tree height and the total basal 
area. The validity and the strength of the allometric models 
were examined with the adjust coefficient of determination 
(r2), Standard Error of Estimate (SEE) and Akaike Information 
Criterion (AIC). In the study of Beets et al. (2012), Above Ground 
Biomass allometric equations were also developed through the 
equation based on breast height diameter (DBH) and tree height 
(H) provided acceptable estimates of stem plus branch (>10 cm 
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in diameter over bark) volume, which was multiplied by live 
tree density to estimate dry matter. As studied by Hao Zhang et 
al. (2017), the data gathered was the trees of average size (i.e., 
height, stem, and crown diameter), located near the middle of 
each plot and as close to each other as possible, were selected 
for destructive sampling to determine tree biomass. Each 
selected tree was separated into foliage, stem, branch, root, 
and fruit. The fresh weights of ecosystem components (foliage, 
stem, branch, root, and fruit) were measured in situ, and six 
subsamples of each component from each collected plant were 
dried at 65°C to estimate dry biomass density (Mg ha−1) and C 
concentration. The effects of stand age on C concentration, C 
storage, and biomass accumulation of ecosystem components 
were compared using one-way ANOVA, followed by Fisher’s 
LSD method for testing the null hypothesis. On the other 
hand, non-destructive methods are the most common use by 
many researchers to study carbon stock in the forest because 
Quantification of carbon stocks using allometric equations is 
the most practiced method since destructive method is labor 
intensive, time and resource consuming. Kim Calders et al. 
(2015), emphasize that Allometric equations are currently 
used to estimate Above Ground Biomass (AGB) based on the 
indirect relationship with tree parameters. They develop an 
approach to estimate AGB from TLS data, which does not 
need any prior information about allometry. They compare 
these estimates against destructively harvested Above Ground 
Biomass estimates and Above Ground Biomass derived from 
allometric equations. They also evaluate tree parameters, 
diameter at breast height (DBH) and tree height, estimated 
from traditional field inventory and TLS data. In addition, in the 
study of Chaturvedi et al. (2013) in non-destructive methods, 
they compared biomass estimates of seven tropical tree species 
measured on the basis of two methods these are allometric 
equations relating destructively measured tree biomass and 
the circumference at breast height (CBH), and non-destructive 
equations having wood specific gravity in the estimator. It 
emphasizes also that once an allometric equation has been 
established for different classes of trees in a vegetation, one 
only needs to measure DBH (or other parameter used as a 
basis for the equation) to estimate the biomass of individual 
trees. The sum of the biomass estimates for all trees within the 
measurement transect can be converted to a biomass in Mg ha–1.

2.2. Remote sensing
The used of remote sensing in gathering Above Ground 
Biomass are now popular and used by many researchers 
to know the status of one area. There are studies on Above 
Ground Biomass using satellite images have been collected 
to guide and strengthen this study on determining the Above 
Ground Biomass of forest stand located in the municipality of 
Licuan-Baay, Abra. According to Gunawardena et al. (2015), 
Remote Sensing (RS) is popular as a nondestructive method of 
biomass estimation since it can reduce the measurements and 
monitoring in the field to a considerable extent. Dengsheng 
Lu et al. (2014) says that Remote sensing-based methods of 
Above Ground Biomass (AGB) estimation in forest ecosystems 
have gained increased attention, and substantial research has 
been conducted in the past three decades. Biomass estimation 

methods using remote sensing data and discusses four critical 
issues – collection of field-based biomass reference data, 
extraction and selection of suitable variables from remote 
sensing data, identification of proper algorithms to develop 
biomass estimation models, and uncertainty analysis to refine 
the estimation procedure. Light Detection and Ranging (lidar) 
can remove data saturation, but limited availability of lidar 
data prevents its extensive application. Karakoc et al. (2019) 
study uses hyperspectral remote sensing techniques to predict 
Above Ground Biomass in grasslands. In order to reach this 
goal, biomass properties with different ecological features and 
altitudes of 550 m, 1200 m, and 1400 m above sea level. Wani et 
al. (2015) Realizing the importance of forest carbon monitoring 
and reporting in climate change. In their study, they derived 
spectrally modeled Above Ground Biomass and mitigation 
using Landsat data in combination with sampled field inventory 
data in the coniferous forest. After conducting preliminary 
survey in 2009, 90 quadrats (45 each for calibration and 
validation) of 0.1 ha were laid in six forest types for recording 
field inventory data viz. diameter at breast height, height, 
slope and aspect. Kumar et al. (2017) also says that the role 
of Remote Sensing in estimating grassland, forest and woody 
biomass using a plethora of data and processing methods. 
Seasonality information was successfully built into biomass 
models with improved accuracies. The fusion of microwave 
and multispectral/hyperspectral data also reduced uncertainty 
errors in biomass estimation, especially in environments with 
complex canopy structure. Of critical importance is that the 
special issue highlighted methods and data sets that solves 
the problem of saturation in biomass estimation using the 
conventional vegetation indices. The issue provides a platform 
for day-to-day methods and approaches to operationalize 
Remote Sensing in vegetation productivity management.

2.3. Vegetation indices
According to Liu et al. (2015) study Vegetation normalized 
difference vegetation index (NDVI) data from 1998 to 2012 and 
a field survey investigation in 2013, demonstrated that annual 
NDVI values varied greatly with an increasing trend. Goswami 
et, al. (2015) showed that the NDVI values for the six species 
studied varied within a range of ~ 0.3 with corresponding change 
in values in LAI and biomass. The strong relationships between 
NDVI and biomass and LAI for the species studied support the 
use of NDVI as a spectral index for indirectly measuring plant 
community structure. The strong relationship between NDVI 
and biomass found in this study is similar to studies conducted 
in other tundra ecosystems including tussock tundra (Boelman 
et al. 2003), shrub and high arctic tundra. While Boelman et 
al., (2003) reported a linear relationship between NDVI and 
biomass, an exponential relationship between NDVI and 
biomass. Lumbierres et al. (2017) proposes a method to estimate 
standing Above Ground plant Biomass using NDVI Land Surface 
Phenology (LSP) derived from MODIS, which calibrate and 
validate in the Doñana National Park’s marsh vegetation. Out 
of the different estimators tested, the Land Surface Phenology 
maximum NDVI (LSP-Maximum-NDVI) correlated best with 
ground-truth data of biomass production at five locations from 
2001–2015 used to calibrate the models (R2 = 0.65). Estimators 
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based on a single MODIS NDVI image performed worse (R2 
≤ 0.41). The LSP-Maximum-NDVI estimator was robust to 
environmental variation in precipitation and hydroperiod, 
and to spatial variation in the productivity and composition 
of the plant community. The determination of plant biomass 
using remote-sensing techniques, adequately supported by 
ground-truth data, may represent a key tool for the long-term 
monitoring and management of seasonal marsh ecosystems. 
In Gunawardena et al. (2015) study, they use ALOS PALSAR, 
IRS LISS III and Thermal bands of Landsat OLI images to 
estimate Above Ground Biomass. There were 55 field sampling 
plots used and diameter at breast height, total tree height, and 
canopy cover percentage of all trees (dbh >10 cm), and slope 
and GPS locations of each sampling plots were collected. 
Previously developed relevant allometric equations were used 
to estimate biomass using DBH and height in each plot. In 
addition, Hogrefe et al. (2017) on their study, they use Tools 
that can monitor biomass and nutritional quality of forage 
plants are needed to understand how arctic herbivores may 
respond to the rapidly changing environment at high latitudes. 
The Normalized Difference Vegetation Index (NDVI) has been 
widely used to assess changes in abundance and distribution 
of terrestrial vegetative communities. However, the efficacy of 
NDVI to measure seasonal changes in biomass and nutritional 
quality of forage plants in the Arctic remains largely un-
evaluated at landscape and fine-scale levels. They modeled the 
relationships between NDVI and seasonal changes in Above 
Ground Biomass and nitrogen concentration in halophytic 
graminoids, a key food source for arctic-nesting geese. The 
model was calibrated based on data collected at one site and 
validated using data from another site.

3. METHODOLOGY
3.1. Study area
The study area was in the municipality of Licuan-Baay, Abra 
(Figure 1). It is located at the Northern part of the Philippines 
with geographic coordinates of 17°35’08.60” N and 120°32’33.50” 
E. The area is 30,567.70 hectares with a population of 4, 864 
during the 2015 census. Based on the Modified Coronas 
Classification, the study area is under climatic type II which 
is characterized by two seasons, dry during the months of 
November to April while wet during the months of July to 
November.  The average annual temperature is 24.0°C while the 
average annual rainfall is 3,012 mm.
The land cover of the study area (Figure 1) shows that forests 
has the highest area (69.90%) as shown in table 1. Recently, it is 
observed that there is an increase in forest cover of the area as a 
result of various reforestation projects of the government such 
as the National greening program. In addition, the forest cover 
is maintained because of the implementation of traditional 
forest management in the municipality. The main possible 
threats to forest cover loss in the area are small scale illegal 
logging and forest fires.

3.2. Field Data Collection
3.2.1. Materials
The materials used in the gathering of field data are: diameter 
tape to measure the DBH of trees; tape measures used in 

determining the size and for lay-outing of the sample plots, 
Global positioning System (GPS) receiver determined the 
coordinates of the sample plots and camera was used to photo 
document the activities. Other materials such as cutting tools 
were used in clearing paths in the lay-out of plots.

3.2.2. Modified Plot Establishment
Biomass and carbon stock estimation was determined 
following the carbon stocks assessment protocol formulated by 
Hairiah et al. (2001) which was also used by other researchers 
in the Philippines with modifications (Figure 2). Sixty-nine (69) 
measuring 30 x 30 meters was established. Trees within the plot 
with DBH (1.3 meters above the ground) of more than 15 cm 
were recorded.
The coordinates of the established plots were taken at the 
center of the plot using a GPS receiver. Since GPS receivers 
have positional errors, it is nearly impossible to accurately 
locate every sample plot on the center of the 30 m by 30 m 
grid of Landsat OLI pixels. To remedy this, moving window 
techniques (Gunlu et al., 2014) such as 3 by 3 pixels were used 
in the study.  This technique used to determine the average 
index values of the various vegetation indices of each of the 
sample plots.

3.3. Mathematical equations and symbols
3.3.1. Above Ground Biomass Computation
In this study, aboveground biomass of the forest stand was 
determined by using the generalized allometric equation created 
by Brown et al. (1997) as cited by Lasco et al. (2006). Based on her 
study, Brown’s equation is a generic biomass regression used 
170 trees with different species were destructively sampled in 
the moist forest zone of three tropical regions which have been 
used in local studies to determined indirectly the biomass and 
carbon storage of ecosystem.
Y (Kg) = exp (-2.134 + 2.53*InD) for Natural Forest and plantation
Where:

Y = biomass per tree in kg;
Exp (…) = “raised to the power of”;
In = natural logarithm
DBH = diameter at breast height (cm) at 1.3 m

3.3.2. Data Acquisition
Landsat 8 satellite images was downloaded from the United 
States Geological Survey (USGS) website and used in this 
study. Satellite image with less cloud cover was selected for this 

Table 1. Land cover classes of the study area

Land Cover Area (has) %

Agriculture 552.93 1.81 

Bare ground 85.30 0.28 

Built-Up 440.10 1.44 

Inland Water 28.32 0.09 

Grassland/Shrubland 8,092.91 26.48 

Forest 21,367.41 69.90 

Total 30,566.97 100.00 
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study which was coincide with the time of field data gathering. 
Landsat 8 was launched on February 2013 and it carries the 
Operational Land Imager (OLI) and the Thermal Infrared 
Sensor (TIRS) instruments. The OLI sensor collects 9 shortwave 
spectral bands over a 190 km swath with a 30 meter (m) spatial 
resolution for all bands except the 15 m Pan band while The 
TIRS sensor collects image data for two thermal bands with a 
100 m spatial resolution over a 190 km swath. The two thermal 
infrared bands encompass the wavelength range of the broader 
TM and ETM+ thermal bands and represent advancement over 
the single-band thermal data. The following table presents the 
spectral bands of Landsat 8 OLI/TIRS sensor.

ρλ = TOA planetary reflectance
θSE = Local sun elevation angle; the scene center sun elevation 

angle in degrees is provided in the metadata
θSZ = Local solar zenith angle; θSZ=90°-θSE

3.3.4. Vegetation Indices
After preprocessing the images, the images were processed and 
analyzed to determine the quantitative values of the various 
vegetation indices. QGIS 3.22.5 software utilized the data 
processing.

Table 2. Features of landsat 8 OLI/TIRS spectral bands

Bands Wavelength
(micrometers)

Resolution
(meters)

Band 1 - Coastal aerosol 0.43-0.45 30

Band 2 - Blue 0.45-0.51 30

Band 3 - Green 0.53-0.59 30

Band 4 - Red 0.64-0.67 30

Band 5 - Near Infrared (NIR) 0.85-0.88 30

Band 6 - SWIR 1 1.57-1.65 30

Band 7 - SWIR 2 2.11-2.29 30

Band 8 - Panchromatic 0.50-0.68 15

Band 9 - Cirrus 1.36-1.38 30

Band 10 - Thermal Infrared 
(TIRS) 1

10.6-11.19 100

Band 11 - Thermal Infrared 
(TIRS) 2

11.50-12.51 100

3.3.3. Image Preprocessing
The satellite image was used in this study undergo preprocessing 
in order to improve the accuracy of the quantitative values of 
the various vegetation indices. Image preprocessing involves 
geometric, and atmospheric corrections. For geometric 
correction, the satellite image was the geo-referenced to WGS 
84/ UTM 51 N projection system. Atmospheric correction was 
done to remove atmospheric effects from satellite images. This 
was done by converting the DN values of the spectral bands 
to Top of Atmosphere (TOA) Reflectance using the following 
formula provided in the Landsat 8 (L8) Data Users (Ihlen & 
Zanter, 2019). 
Formula 1. ρλ’ = Mρ * Qcal + Aρ
Where:

ρλ’ = TOA Planetary Spectral Reflectance, without correction 
for solar angle (Unitless)

Mρ = Reflectance multiplicative scaling factor for the band 
(REFLECTANCEW_MULT_BAND_n from the metadata).

Aρ = Reflectance additive scaling factor for the band 
(REFLECTANCE_ADD_BAND_N from the metadata).

Qcal = Level 1 pixel value in DN
Formula 2. ρλ =   ρλ’ / cos (θSZ)  = ρλ’ / in (θSE)
Where:

Table 3. Vegetation indices

Vegetation 
Indices

Equation References

NDVI NIR - RED/NIR + 
RED

Gunlu et al. (2014); 
Estoque et al. 
(2017); Wahlang and 
Chaturvedi (2020)

EVI 2.5 x (NIR-RED) Das and Singh 
(2012); Eckert (2012); 
Gigachew et al. (2018); 
Macedo et al. (2018)

(NIR + 6 x RED -7.5 
x BLUE +1)

SRI NIR/Red Jordan, 1969;
Chen, 2018

SAVI (1 + L) (NIR - Red) Huete, (1988)

(NIR + Red + L)

4. RESULT AND DISCUSSION
NDVI, SAVI, SRI, and EVI model equations are developed in 
this study by using linear regression analysis.  Since linear 
regression is a commonly used method to estimate Above 
Ground Biomass in most studies. The four vegetation indices 
model equations developed used to predict the entire Above 
Ground Biomass of the study area. The study located at the 
Municipality of Licuan-Baay, Abra. The four-vegetation index 
which is the NDVI, SAVI, SRI, and EVI derived from Landsat 8 
image served as the dependent variables and field data gathered 
served as the independent variables data in developing the 
model equations to estimate or predict the Above Ground 
Biomass of forests stand. The following are the results and 
discussion based on the objectives of the study.
The sixty-nine (69) sample plots were used in the study has a 
total biomass of 2,844.36 Mg/ha-1 and a total of 1,279.96 Mg/ha-1 
carbon and a total of 4,697.46 Mg/ha-1 carbon dioxide. The mean 
of the biomass is 41.22 and carbon mean is 18.55 and carbon 
dioxide mean is 68.08.  The average biomass tons per hectares 
is 458.03 Mg/ha-1 and the carbon average is 206.11, and carbon 
dioxide average is 756.43. Consequently, the overall total 
estimated biomass of the forests stand of Licuan-Baay Abra is 
9,786,273.78 tons based on the field data gathered.  With that, 
the estimated biomass of Licuan-Baay forest stands from actual 
data will be served as inputs and update data of the municipality 
to be used by the DENR and other agencies concerned.
The correlation between VIs and AGB was calculated to 
determine the relation between the two variables.  Correlation 
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exists if a change in one variable affects the other variable. If 
increase in one variable increases the other variable, then these 
variables are considered to have positive correlation and vice-
versa. There is various statistical measures to determine the 
degree of correlation.  In this study, the Pearson’s correlation was 
used. The degree of relationship is represented by correlation 
coefficient (r).  Figure 1, 2, 3 and 4 shows the scatterplot between 
the measured ABG and VI values derived from Landsat 8. It also 
shows the relationship between vegetation indices acquired 
from Landsat8 images and Above Ground Biomass of forest 
stand obtained from field data.
Table 4 presents the result of the correlation analysis. The 
coefficient of correlation ranges from 56.7 % to 59.4 %. The 
result shows a negative correlation between the vegetation 
indices values and Above Ground Biomass. Compared to other 
studies, vegetation indices are positively correlated with Above 
Ground Biomass. For instance, the studies of Das and Singh 
(2012); Gizachew et al. (2016); Askar et al. (2018); Baloloy et al. 
(2018); and Macedo et al., (2018) showed a positive correlation 
between VI and AGB. However, other studies also showed a 
negative correlation. 

Table 4. Correlation analysis results

Vegetation Indices R

1 NDVI -0.567**

2 SAVI -0.586**

3 SRI -0.585**

4 EVI -0.594**

** Correlation is significant at the 0.01 level (2-tailed).

Although there are still problems of high value estimation 
in Above Ground Biomass field data gathered and low value 
estimation for vegetation index as shown in the graphs 
results leads to a trend negative correlation of the biomass to 
the vegetation indices. Yet, the results of the study were still 
reliable because the correlation of the Above Ground Biomass 
and the vegetation index are correlated to each other. The 
reasons why the results have a negative trend correlation was 
even the vegetation index is healthy based on the landsat8 
image but when it comes to the diameter at breast height, the 
diameter of the trees present in the plots are small or big leads 
to overestimated or underestimated of Above Ground Biomass 
in forest stand. Vis versa, in the study of Moradi et al. (2022) as 
expected to be caused of the negative trend correlation of VI 
and AGB are the canopy shadowing of trees, canopy size, stand 
volume and density, and consequently, by a more complex 
vertical structure of the forest. They also mentioned in their 
study that FVC Fraction Vegetation Cover of the ground at 
the pixel level is another reason that affecting the radiation 
behaviour at the canopy level, particularly in taller stands.
The Table 5 shows the Developed model used to estimate 
Above Ground Biomass of forest stands at local scale by using 
high spatial resolution satellite images. The result shows that 
the four-vegetation indices are significant in correlation at 
the 0.01 level (2-tailed) which indicates a good correlation of 

Figure 1. Normalized Difference Vegetation Index Biomass 
Scattered Plots

Figure 2. Soil Adjusted Vegetation Index Biomass Scattered plots

Figure 3. Simple Ratio Index Biomass Scattered Plots

Figure 4. Enhance Vegetation Index Biomass Scattered Plots
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the Vegetation Indices and the Above Ground Biomass of the 
Forests Stand. The results showing that the models are reliable 
in predicting the Above Ground Biomass of a Forest stand in 
Licuan Baay Abra. The NDVI R squared value is 0.321 and its 
RSME (Mg/ha-1) value is 23.77; the SAVI R squared has a valued 
of 0.343 and the RMSE value is 23.39. The SRI indices R squared 
is the same with SAVI with a value of 0.343 and the RMSE (Mg/
ha-1) value is 23.40 which is the same with SAVI value, and while 
EVI R squared value is 0.353 and the RMSE (Mg/ha-1) value is 
23.20. In the study of Hamdan et al. (2014) as mentioned by 
Ismail et al. (2018) using NDVI and SAVI in mangrove forest 
they obtained RMSE = 43.77 Mg/ha-1 (r2 = 0.59) and 68.21 Mg 
ha-1 (r2 = 0.01) respectively. However, the correlation coefficients 
obtained in the study were lower than those reported by LIMA 
JÚNIOR et al. (2014) with Pearson’s correlation coefficient of R 
= 0.84 as mentioned in the study of Luz (2022).  This study also 
implies that the Rs range to 0.321 to 0.353 which lower than the 
Rs in the study of Luz (2022) with correlation coefficients (Rs) 
varying between 0.64 and 0.58. Nevertheless, it was shown in 
figure 1, 2, 3, 4 that the biomass obtained from the field data 
gathered and vegetation indices have a relationship. Therefore, 
the results of the study indicated that the four-vegetation 
model equation have a significant correlation of Above Ground 
Biomass and Vegetation Index in 0.01 level 2-tailed which 
shows that the four vegetation index model equations can be 
used to determined and analysed the biomass of a forest stand. 
with that, EVI vegetation index model is the most accurate 
model develop to use in estimating the Forest Stand Biomass, 

carbon and carbon dioxide based on its R squared which has the 
highest total value computed among the four Vegetation Index 
and has the lowest total value computed in the RSME (Mg/ha-

1). It also mentioned in the study of Askar et al. (2018) EVI is 
more reliable than NDVI to measure AGB on dense vegetation 
because of its ability to reduce the effect of atmosphere and 
canopy background. But the other model equations developed 
also be used as well to predict and estimate the AGB of Forest 
Stand because they have also a significant correlation at the 
0.01 level (2 tailed) where the result showing the vegetation 
Index quantitative values and Biomass gathered from the field 
have a relationship.
In addition, EVI tends to be more sensitive to plant canopy 
differences like leaf area index (LAI), canopy structure, and 
plant phenology and stress than the other vegetation indices 
like NDVI which generally responds just to the amount of 
chlorophyll present, SAVI is a vegetation index that attempts 
to minimize soil brightness influences using a soil-brightness 
correction factor; This is often used in arid regions where 
vegetative cover is low, and SRI is a quick way to distinguish 
green leaves from other objects in the scene and estimate the 
relative biomass present in the image. EVI was developed as an 
alternative vegetation index to address some of the limitations 
of the NDVI where it was specifically developed to be more 
sensitive to changes in areas having high biomass, reduce the 
influence of atmospheric conditions on vegetation index values, 
and correct for canopy background signals.

Table 5.  Model Summary

Model Equation R R Squared Adjusted R Squared RSME

(Mg/ha-1)

1 (NDVI) -285.01*NDVI + 138.97 -0.567 0.321 0.311 23.77

 2 (SAVI) -304.67*SAVI + 122.76 -0.586 0.343 0.333 23.39

 3 (SRI) -63.174*SRI + 171.82 -0.585 0.343 0.333 23.40

 4 (EVI) -240.29*EVI + 117.64 -0.594 0.353 0.343 23.20

Table 5 shows the model equations developed based on the 
data gathered in the field and the vegetation indices which 
were derived from the Landsat8 images. This computed ABG 
and sequestered carbon of forests stand from the product of 
the developed equation model compared to estimate the Above 
Ground Biomass Forests stand of Licuan-Baay, Abra from the 
actual filed data gathered. The predicted Above Ground Biomass 
for NDVI model equation (-285.01*NDVI + 138.97) estimated 
a total value of 8,292,975.10 Mg/ha-1 of AGB and 3,731,838.80 
Mg/ha-1 of C, the SAVI model equations (-304.67*SAVI + 122.76) 
also estimated a total value of 8,399.57.76 Mg/ha-1 of AGB 
and 3,779,796.49 of C, and SRI model equations (-63.174*SRI + 
171.82) estimated a total value of 7,999,078.74 Mg/ha-1 of AGB 
and 3,599,585.43 of C, and in EVI model equation (-240.29*EVI 
+ 117.64) estimated a total value of 8,228,374.73 Mg/ha-1 of AGB 
and 3,702,768.63 of C of the forest stand of Licuan-Baay, Abra 
with an area of 21,367.41 hectares. The estimated Above Ground 
Biomass using the actual data gathered in the field has a total 
value of 9,786,273.78 Mg/ha-1 and 4,403,823.20, showing that 

the estimated Above Ground Biomass from the four vegetation 
indices model equations developed shown in Table 6 was not 
over projected compared to the actual biomass from the field 
data. It also shown that the estimated value of Licuan-Baay, 
Abra forest stand biomass using the four models are reliable 
to estimate the Above Ground Biomass of the Forest Stands. 
The results also shown that they are not far from each other. 
In the study of Patriya et al. (2018) using the NDVI, SAVI, and 
ARVI showed the total biomass estimated was approximately 
243.85 million kg in a forest stand mixed with Albizia saman, 
Pterocarpus indicus, Swietenia macrophylla, and Roystonea 
regia with an area of 50,149 km2 which implies that the larger 
vegetation covers the biomass value increases.   
Based on the results shown in the Table 6 it implies the different 
estimated Above Ground Biomass of Licuan-Baay, Abra using 
the four vegetation Indices Model Equations developed and the 
estimated value of Above Ground Biomass also be utilized by 
the people of Licuan-Baay. The developed model equations will 
be used not only for monitoring the Above Ground Biomass 
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of the municipality, but it also used to monitor the vegetation 
cover of the forest stands of the municipality. With that, it is a 
big contribution for them to improve their records particularly 
in the forest stand biomass of the Municipality without going 
to the field. The model equations develop also be used by the 

leading agency DENR in monitoring the biomass and carbon 
sequestration of the forest stand particularly in Abra. With 
that, the Figure 8 shows the predicted Above Ground Biomass 
map of Licuan-Baay, Abra which was generated through the 
four-model equations develop.

Table 6. Estimated AGB, Carbon and Carbon Dioxide of Licuan-Baay Abra

VI Estimated AGB Carbon Carbon dioxide

NDVI 8,292,975.10 3,731,838.80 13,695,848.38

SAVI 8,399,547.76 3,779,796.49 13,871,853.13

SRI 7,999,078.74 3,599,585.43 13,210,478.54

EVI 8,228,374.73 3,702,768.63 13,589,160.87

Field Data 9,786,273.78 4,403,823.20 16,162,031.15

Figure. 5. Predicted above ground biomass maps of Licuan-Baay, Abra using vegetation indices

5. CONCLUSION
Based on the results of the study, the vegetation indices derived 
from Landsat8 images have the capability to estimate Above 
Ground Biomass of a Forest Stand since the vegetation indices 
above ground biomass values and the above ground biomass 
obtained from the field are correlated to each other. The 
vegetation indices acquired from the satellite image and above 
ground biomass of forest stand obtained from the field data 
have a relationship using linear regression. The results of the 
study in figure 1, 2, 3, & 4 showed a negative trend but then still 
the vegetation indices and above ground biomass values have a 
relationship. The above ground biomass values of forest stand 
computed using the vegetation indices model equation develop 
is low compared to the computed value of above ground biomass 

obtained from the field using the Brown’s Model 1997. The 
carbon stock absorbs by the forest stand using the four-model 
equation develop are lower than the computed value of carbon 
stock obtained from the field. The Develop model to estimate 
above-ground biomass of forest stands at local scale by using 
high spatial resolution satellite images are the Normalized 
Vegetation Index, Soil Adjusted Vegetation Index, Soil Ratio 
Index, and Enhanced Vegetation Index model equations. Since, 
the vegetation indices and above ground biomass obtained from 
the field have a relationship or correlated to each other, the four 
model equations develop have the capability to estimate above 
ground biomass of forests stand.



9

https://journals.stecab.com
Stecab Publishing

Journal of Environment, Climate, and Ecology (JECE), 2(1), 1-10, 2025 Page 

RECOMMENDATIONS
To improve the results of the study, gathering of the data in 
the field needs more plots to establish. This is to improve the 
correlation of the above ground biomass from the field and the 
vegetation index. Furthermore, it is highly recommended to use 
other non-destructive equations to compute the Above Ground 
Biomass of the Forest stands. The four-models developed are 
still recommended to use in computing the Above Ground 
Biomass, carbon, carbon dioxide of forest stands because the 
biomass and the vegetation indices results are correlated. It 
still recommends a furthermore studies on estimation of Above 
Ground Biomass Forest stands using the four-vegetation 
indices. With that, the results of the study will be compared.
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