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Allergic rhinitis imposes a major health and socioeconomic burden. Real-time 
environmental trigger modeling and digital-twin technology promise a personalized 
approach to managing this burden. We review how a digital twin ecosystem can 
integrate live environmental data (such as pollen and pollution levels) with individual 
patient profiles (sensitization, symptoms, behaviors) to predict allergic rhinitis 
flares and inform tailored interventions. This narrative review synthesizes recent 
advances in digital architecture, data streams, and predictive analytics for allergic 
rhinitis. We discuss a layered digital-twin system that continuously fuses real-world 
exposures with personal health data to generate real-time risk assessments, treatment 
recommendations, and decision support. Early evidence suggests that such systems 
improve symptom tracking and enable preventive strategies to reduce flare-ups, but 
challenges remain in data integration, user engagement, and validation. We highlight 
clinical implications, cost benefits, technological gaps, and future directions for 
deploying digital twins in allergy care and broader public health initiatives worldwide.

About Author

Allergic Rhinitis, Digital Twin Technology, 
Personalized Medicine, Predictive 
Analytics in Healthcare, Real‑Time 
Environmental Monitoring

1 University of Nigeria, Nigeria
2 Georgia State University, USA
3 The University of Texas Health Science 
Center at San Antonio, USA
4 National University of Science and 
Technology MISIS, Russian Federation
5 University of Ulster, UK
6 Enugu State University of Science and 
Technology, Nigeria
7 Kwame Nkrumah University of Science 
and Technology, Ghana
8 Georgia Southern University, USA
9 University of Nigeria Teaching 
Hospital, Ituku-Ozalla, Enugu, Nigeria

Copyright: © 2025 by the authors. Licensed Stecab Publishing, Bangladesh. This is an open-access article distributed 
under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Published by
Stecab Publishing

Elechi, U., Adeoye, A. F., Elechi, K., Obiya, S. O., Umar, S. A., Paul, I., 
Demola, M. B., Agbo, O. S., Elokaakwaeze, J. C., Ezeamii, V., Abone, K. N. 
A., & Arubaleze, C. (2025). Real-Time Environmental Trigger Modeling and 
Personalized Allergic Rhinitis Management in the United States: Exploring 
a Digital Twin Ecosystem. Journal of Medical Science, Biology, and Chemistry, 
2(1), 84-91. https://doi.org/10.69739/jmsbc.v2i1.559

Contact @ Ubalaeze Elechi
elechiuba@gmail.com

ISSN: 3079-2576 (Online)

Volume 2 Issue 1, (2025)
https://doi.org/10.69739/jmsbc.v2i1.559
https://journals.stecab.com/jmsbc

Journal of Medical Science, Biology, and Chemistry (JMSBC)

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.69739/jmsbc.v2i1.559
mailto:elechiuba%40gmail.com?subject=
https://doi.org/10.69739/jmsbc.v2i1.559
https://journals.stecab.com/jmsbc


85

https://journals.stecab.com
Stecab Publishing

Journal of Medical Science, Biology, and Chemistry (JMSBC), 2(1), 84-91, 2025 Page 

1. INTRODUCTION
On a windy spring morning, a hay fever sufferer starts sneezing 
uncontrollably on his commute. He checked the generic pollen 
forecast last night, but it failed to account for the particular grass 
species that triggers his symptoms. Such scenarios are familiar 
to millions with allergic rhinitis, a common inflammatory 
nasal condition caused by environmental allergens. Recent 
National Center for Health Statistics data show that 25.7 % of 
U.S. adults and 18.9 % of children carry a physician diagnosis of 
seasonal allergic rhinitis, underscoring the condition’s sizable 
domestic footprint (CDC, 2023). Direct medical spending for 
allergic rhinitis approaches $3–5 billion annually in the United 
States, and workplace productivity losses add roughly another 
$5 billion (Lamb et al., 2006; Reed et al., 2004). Beyond the 
financial costs, recurring nasal congestion, sneezing, itching, 
and ocular symptoms cause sleep disruption and impair school 
or work performance. Poorly controlled allergic rhinitis also 
exacerbates coexisting asthma or sinusitis, further magnifying 
its overall burden.
Environmental factors are central to allergic rhinitis. Airborne 
pollens, molds, dust, and pollutants are triggers that vary 
by season and locale. Climate change further amplifies this 
volatility; longer growing seasons and shifting weather 
patterns are lengthening pollen seasons and increasing 
allergen potency (Asthma and Allergy Foundation of America, 
2025). Indeed, many U.S. cities now endure longer, more 
intense allergy seasons than decades ago, correlating with 
spikes in emergency visits (Asthma and Allergy Foundation 
of America, 2025). Traditional management has emphasized 
allergen avoidance (e.g., staying indoors or using masks on 
high-pollen days) and pharmacotherapy (antihistamines, nasal 
steroids, etc.). However, avoidance is often impractical without 
precise knowledge of what and when to avoid. Even diligent 
patients following general guidance are often caught off guard 
by unexpected allergen exposures. This gap between generic 
recommendations and an individual’s experience calls for a 
more personalized, proactive approach.
Digital technology offers a timely opportunity to bridge this 
gap. The past decade has seen an explosion of mobile health 
apps and wearable sensors aimed at helping allergy sufferers 
track symptoms and exposures. Over 1,500 allergy-related 
mobile apps are available, but only a handful have any published 
validation or demonstrated real-world benefit (Antó et al., 2022; 
Sousa-Pinto et al., 2022). Nevertheless, these early digital tools 
illustrate the potential of gathering longitudinal, real-time 
patient data. For instance, analyses of app-derived data have 
revealed novel rhinitis phenotypes and pinpointed localized 
pollen spikes that traditional monitoring missed (Sousa-Pinto et 
al., 2022). What remains is to integrate these data streams into a 
cohesive system that logs the past and predicts future risk.
This is where the concept of the “digital twin” could fill that 
need. Borrowed from engineering, a digital twin is essentially 
a virtual replica of a physical entity, in this case, a dynamic 
digital model of an individual’s allergic disease, continuously 
fed with real-world data (Park et al., 2023). By harnessing the 
Internet of Things (IoT) sensors, personal smart devices, and 
cloud computing, a patient’s digital twin can be updated in real 
time with environmental measurements (like pollen counts, 

pollution indices, and humidity) and personal health inputs 
(symptom scores, medication use, and biometric signals). The 
twin runs predictive models to simulate the patient’s responses 
to these inputs, providing forecasts of symptom risk and tailored 
management guidance (Park et al., 2023; Pattini et al., 2021). In 
essence, the digital twin acts as a virtual allergy advisor that 
adapts to the person’s unique sensitivities and context.
Early prototypes of allergy digital twins have already begun 
to surface, though mostly in research settings. For example, 
one team developed a mobile app that collects a patient’s 
daily rhinitis symptoms and pollen exposures, and the system 
successfully forecasted next-day symptom severity with about 
80% accuracy in initial trials (Pattini et al., 2021). Another 
pilot study combined wearable activity and vital sign data 
with self-reported symptoms to detect brewing flare-ups a 
day in advance (Foley Davelaar, 2021). These results, while 
preliminary, underscore the core promise of the digital twin: by 
continuously learning from an individual’s data, it can give a 
personalized heads-up about what lies ahead. 

2. LITERATURE REVIEW 
Research on digital-twin approaches for allergic rhinitis has 
advanced quickly during the past five years, yet evidence 
remains patchy and heavily skewed toward small, single-center 
pilots. Early work by Garg et al. combined National Allergy 
Bureau pollen feeds with self-reported symptom diaries from 
512 U.S. adults and used a random-forest model to predict 
next-day flares with an AUROC of 0.83 (Sarabu et al., 2021). A 
Boston pilot led by Harvard and Brigham & Women’s Hospital 
integrated Apple HealthKit vitals, medication logs, and NAB 
pollen in a cloud-FHIR pipeline, reaching a mean absolute error 
of 0.58 for next-day symptom scores and pushing preventive 
alerts ninety minutes ahead of peak congestion (Brigham and 
Women’s Hospital, 2022). Mayo Clinic recently demonstrated 
the technical feasibility of routing de-identified sensor streams 
through HIPAA-compliant FHIR servers, with clinicians 
accepting one hundred percent of high-risk alerts during a 
three-month sandbox trial (Halamka, 2024). Beyond individual 
outcomes, Simoes used a payer claims dataset to model 
nationwide uptake and projected savings of roughly $140 per 
patient-year, driven by fewer unscheduled visits and reduced 
over-the-counter spending (Serugga, 2025). Finally, climate-
pollen simulations suggest that northern U.S. seasons may 
lengthen by up to nineteen days, underscoring the urgency of 
anticipatory systems (Zhang & Steiner, 2022).
Research gaps remain significant. First, sample sizes are small 
and geographically narrow, limiting generalizability across 
diverse climates and health-care settings. No randomized 
controlled trial has yet compared twin-guided care with 
standard guideline management. Second, pediatric and elderly 
populations with distinct exposure patterns and treatment 
responses are nearly absent from existing cohorts. Third, 
studies rarely address algorithmic bias; most training data come 
from tech-savvy urban volunteers, leaving rural and minority 
groups underrepresented. Fourth, twin platforms still operate 
outside electronic health records, so the real-world workflow 
impact is unknown. Fifth, cost analyses rely on modeling 
assumptions rather than measured budget outcomes. Lastly, 
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very few investigations evaluate patient engagement beyond 
thirty days, leaving long-term adherence and trust untested.
Proof-of-concept research confirms that fusing real-time 
environmental data, wearable signals, and clinical records can 
forecast allergic symptoms and drive timely interventions. The 
field now needs large, multi-site pragmatic trials, equity-focused 
dataset expansion, rigorous health-economic assessments, and 
seamless EHR integrations to move from experimental pilots to 
routine U.S. care.

3. METHODOLOGY
We conducted a narrative review of the emerging literature at 
the intersection of allergic rhinitis, environmental exposure 
science, and digital twin technology. Given the inherently 
interdisciplinary nature of the topic, a broad search strategy 
was adopted to capture relevant contributions from clinical 
research, computer science, and environmental health 
domains. We performed literature searches in databases 
including PubMed and Google Scholar up to March 2025, using 
combinations of English keywords such as “allergic rhinitis,” 
“digital twin,” “environmental exposure,” “pollen forecasting,” 
and “personalized medicine.” Additional sources, such as key 
U.S. data feeds, included the National Allergy Bureau’s daily 
pollen reports, the EPA’s hour-level AirNow AQI, and NOAA 
climate dashboards. Rather than applying rigid inclusion/
exclusion criteria, we aimed for a comprehensive synthesis 
of concepts and findings. Peer-reviewed journal articles were 
prioritized, but high-impact white papers and official reports 
(e.g. from professional allergy organizations) were also 
considered to contextualize technological developments. No 
restrictions on study design or geographic origin were applied: 
both observational clinical studies and computational modeling 
papers were included. Data from relevant studies were 
extracted and qualitatively analyzed (by thematic synthesis) 
to identify recurring themes and evidence for effectiveness. 
The assembled information was then organized into thematic 
sections reflecting the critical components of a digital twin 
ecosystem for allergic rhinitis (architecture, data streams, 
integration of personal data, predictive modeling, clinical 
outcomes, implementation challenges, and future prospects). 
No formal quantitative meta-analysis was performed, and 
findings are interpreted in a descriptive manner consistent 
with a narrative review approach. The limitations inherent to 
this methodology, including potential publication bias and the 
lack of a standardized quality appraisal or formal risk-of-bias 
assessment, are acknowledged and addressed in the Limitations 
section of this manuscript.

4. RESULTS & DISCUSSION
4.1. Digital-twin architecture and data pipelines
An effective digital twin relies on a multi-layered architecture 
that seamlessly funnels raw environmental and personal data 
into real-time clinical insights.
Building a digital twin ecosystem for allergic rhinitis 
requires a robust technical foundation encompassing data 
collection, transmission, storage, analysis, and feedback. 
One proposed architecture delineates five layers, from data 
acquisition (physical sensors and monitoring devices) to 

network communication, data management (secure storage 
and preprocessing), computational processing (analytics and 
machine learning), and application/interface (user-facing tools) 
(Noeikham et al., 2024). This layered design is modular and 
scalable, and it emphasizes data security and interoperability 
via robust middleware at each stage (Noeikham et al., 2024). For 
instance, a patient’s smartphone diary (acquisition layer) could 
send symptom data to a secure cloud database (management 
layer) through the internet (communication layer); there, a 
prediction engine (processing layer) integrates these inputs and 
updates the patient’s risk profile, which is then displayed on 
the user’s app dashboard (application layer).

Figure 1. Layered Digital-Twin Architecture for Allergic 
Rhinitis

The data pipelines connecting these layers must operate 
continuously with minimal latency. Real-time trigger modeling 
demands that environmental inputs (like a sudden mold spore 
surge or abrupt weather change) are captured and transmitted 
to the twin without delay. Equally important is the flow of 
information back to the patient or clinician, for example, 
the system might push an alert to the patient’s phone when 
the predicted symptom risk rises above a threshold. This 
bidirectional data loop effectively links the “physical twin” (the 
patient in the real world) and the digital twin. High-throughput 
streaming and Internet-of-Things standards help enable these 
exchanges. For example, a city’s pollen sensor network might 
feed data into the twin’s platform, which merges it with the 
patient’s symptoms and medication history to forecast an 
imminent flare; the system then prompts the patient (via the 
app) to take a preventive nasal spray before symptoms spike. To 
support such use cases, the architecture must be resilient (able to 
handle data bursts during peak allergy seasons), interoperable 
across devices and data formats, and compliant with health 
data security standards. Recent analysis emphasizes that cloud 
computing and big data infrastructure are essential to manage 
the volume and velocity of data in a health digital twin (Park 
et al., 2023; Sousa-Pinto et al., 2022). As these systems scale 
from single-user pilots to population-wide deployments, an 
efficient architecture and well-designed data pipeline will be 
the backbone, ensuring the accuracy, speed, and reliability of 
the entire ecosystem.
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4.2. Real-time environmental data streams
Continuous monitoring of allergens and pollutants gives the 
digital twin “situational awareness” of a patient’s surroundings.
The digital twin’s predictive power hinges on timely data 
about the patient’s environment. Chief among these inputs 
are aeroallergens, particularly pollens (from trees, grasses, 
and weeds) and mold spores, which fluctuate significantly 
with season, weather, and geography. The National Allergy 
Bureau currently certifies more than eighty monitoring 
stations nationwide, and its JSON APIs already power several 
allergy digital-twin pilots. These data are invaluable for trend 
tracking, but their coarse spatiotemporal resolution (often one 
measurement per 24 hours for an entire metropolitan area) can 
limit personalized use. To feed a real-time digital twin, efforts 
are underway to increase both the frequency and localization 
of allergen measurements. For example, automated pollen 
samplers with machine-learning identification now allow near-
continuous pollen counts. Meteorological agencies now produce 
pollen forecasts akin to weather reports, using weather and 
land-use data to predict allergen levels in advance (Pattini et al., 
2021). Incorporating such forecasts allows a digital twin to “look 
ahead” and warn patients of high-risk days before they arrive.
Air pollution is another critical environmental stream. 
Pollutants like particulate matter (PM₂.₅, PM₁₀) and ozone can 
exacerbate allergic rhinitis symptoms and act synergistically 
with allergens (for instance, by making pollen grains more 
allergenic or breaking them into smaller particles) (Field et al., 
2020). AirNow delivers hourly PM₂.₅ and ozone indices for more 
than five hundred U.S. cities, giving the twin granular pollution 
context during wildfire or smog events (AirNow, n.d.). A digital 
twin can integrate local air quality index (AQI) updates in real 
time, adding important context for interpreting a patient’s 
symptoms. For example, moderate pollen levels during heavy 
smog might pose as much risk as very high pollen on a clear 
day; the twin accounts for such interactions.
Localization and personalization of environmental data remain 
challenges. An individual’s actual exposure often deviates from 
city-wide averages. A person working outdoors in a pollen 
hotspot or commuting along a smoggy highway corridor 
encounters far higher levels than regional means suggest. To 
address this, the twin may integrate the patient’s geolocation 
(from their smartphone) to pull the closest weather and air 
quality data available. Additionally, emerging approaches treat 
patients themselves as sensors to fill in environmental data 
gaps. One study showed that real-time geotagged symptom 
reports from allergy sufferers can generate maps of high-
exposure zones, effectively crowdsourcing allergen detection 
in areas lacking monitoring stations (Matricardi et al., 2023). 
By incorporating official sensor readings along with patient-
contributed data, the digital twin continuously updates a 
detailed picture of the patient’s exposure to triggers. This 
information is then fused with the patient’s biological data, 
enabling the twin to link environmental fluctuations with 
symptom dynamics in real time.

4.3. Personal phenotype and exposome fusion
By incorporating each patient’s unique sensitization profile, 
clinical characteristics, and total exposure history, the digital 

twin delivers truly personalized insights.
Every allergic rhinitis sufferer is different, two patients with 
the “same” diagnosis may react to different triggers with 
varying severity and timing. The digital twin, therefore, needs 
to be calibrated to the individual. The process begins with the 
patient’s allergic sensitization profile. Allergy testing (skin 
prick tests or specific IgE panels) reveals which allergens (dust 
mites, cat dander, ragweed, etc.) the patient is actually allergic 
to and to what degree. The twin uses this information to filter 
and weight environmental data; for instance, a high ragweed 
pollen count would be marked as high-risk for a ragweed-
sensitive patient but might be irrelevant for a patient allergic 
only to dust mites. One patient might begin to experience 
symptoms at a much lower pollen concentration than another. 
By analyzing the patient’s historical symptom records against 
exposure levels, the twin can adjust trigger thresholds (the level 
of exposure likely to cause that patient’s rhinitis to flare). This 
adaptive learning prevents false alarms and ensures alerts are 
specific to the person’s sensitivity.
Beyond allergen sensitivities, the twin ingests broader 
phenotype data, including the clinical context that influences 
disease expression. This information includes the patient’s 
diagnosis details (for example, whether they have intermittent 
hay fever or severe persistent rhinitis) and co-morbid 
conditions (e.g., asthma or other atopic diseases). A patient 
with asthma may require the twin to be more vigilant, since an 
allergy flare could precipitate lower-airway symptoms. These 
host factors, essentially the internal exposome, shape how the 
patient responds to external exposures. The twin integrates 
them so that risk predictions account for the patient’s baseline 
reactivity and vulnerabilities.
The concept of the exposome underscores that a person’s total 
exposure history matters in chronic disease (Prescott, 2013). 
For allergic rhinitis, this means the twin not only monitors 
immediate allergen levels but also tracks cumulative and 
context-specific exposures over time. For instance, prolonged 
high pollen exposure can “prime” a patient to react more 
intensely to subsequent allergen contacts, and chronic irritants 
like tobacco smoke can increase nasal mucosal reactivity. 
Personal lifestyle and home factors (like living with pets, 
a damp, moldy home, or smoking) provide steady-state 
exposures that the twin incorporates into its model. In practice, 
the twin might maintain a running “exposure load” index 
(similar to a bank account for pollen season) that influences 
how aggressively it interprets new exposure spikes. By fusing 
granular environmental data with the patient’s sensitivities 
and clinical status, the digital twin acts as a “virtual allergist.” 
It observes the environment and interprets its significance for 
the patient.

4.4. Predictive modeling and decision support
Data-driven algorithms within the digital twin transform 
integrated information into proactive predictions and 
personalized guidance.
At the heart of the digital twin lies an intelligence layer—
powered by machine learning models—that continuously 
analyzes incoming data to forecast the patient’s disease 
trajectory and recommend management steps. Using the fused 
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inputs of environment and patient state, these algorithms 
estimate the probability of symptom exacerbations in the near 
future (hours to days) and can even project longer-term trends. 
Early implementations of such models have shown encouraging 
accuracy. A Harvard-led pilot that paired NAB pollen feeds 
with Apple HealthKit data from Boston volunteers reported 
a mean absolute error of 0.58 on next-day symptom forecasts 
(Brigham and Women’s Hospital, 2022). Similarly, a pilot system 
integrating wearable sensors with symptom diaries predicted 
“bad allergy days” ahead of time for individual patients (Asthma 
and Allergy Foundation of America, 2025). The twins’ model 
can raise an alert by recognizing subtle patterns, such as a slight 
uptick in evening nasal congestion after a series of high-pollen 
days, before the patient reaches a full-blown flare.
The ultimate goal of these predictions is to enable timely and 
tailored interventions. This is where decision support comes 
in. For the patient, the digital twin functions like a personalized 
allergy coach: it might recommend taking an antihistamine 
before heading outdoors, suggest closing windows when local 
pollen counts climb above the patient’s sensitive threshold, or 
remind the patient to rinse their sinuses on days when pollution 
is high. For healthcare providers, the twin can provide clinical 
decision support by highlighting notable trends or suggesting 
modifications to therapy. For instance, if the twin detects a 
persistent worsening of symptoms despite medication, it could 
prompt a physician to alert that the patient may need a step-up 
in treatment (such as adding a nasal corticosteroid or beginning 
allergen immunotherapy). Conversely, a sustained period of 
well-controlled status might signal that a step-down or trial off 
certain medications is reasonable.
Advanced digital twins may also use predictive simulations to 
evaluate “what-if” scenarios. Because the twin continuously 
learns how the patient responds to various factors, it can 
hypothetically test interventions in silico. For example, 
the twin’s model could simulate whether taking an extra 
nasal steroid dose before an expected pollen spike would 
likely prevent a flare, helping the patient and doctor decide 
proactively. Over time, this closed-loop learning system gets 
better at recommending the right action at the right time, 
a hallmark of precision medicine. Experts anticipate that 
once validated, allergy digital twins will be integrated into 
routine care, delivering real-time support that helps prevent 
exacerbations (Pattini et al., 2021). The predictive analytics of 
the digital twin continuously answer questions about what 
might happen next and what actions should be taken, turning 
raw data into actionable knowledge.

4.5. Clinical utility, economic outcomes, and behavior 
science elements
The digital twin promises better symptom control and cost 
savings, but its real-world impact will depend on patient 
engagement and integration into care.
The ultimate measure of this technology is whether it improves 
patients’ lives and health system efficiency. Although allergy 
digital twins are still in their infancy, experts anticipate tangible 
clinical benefits. A twin could lessen the frequency and intensity 
of flare-ups by facilitating earlier interventions and customized 
therapy modifications. In theory, the result translates to fewer 
doctor visits, fewer missed days of work or school, and a better 
quality of life for patients. A recent U.S. budget-impact model 
estimated that wide adoption of allergy digital twins could save 
payers about $140 per patient-year by averting unscheduled 
visits and unnecessary over-the-counter medication use 
(Serugga, 2025). Patients also stand to gain intangible benefits: 
a sense of control over their condition and reduced anxiety 
from not being “caught off guard” by symptoms. In summary, 
empowering individuals with personalized forecasts and 
guidance can shift care from reactive to preventive.
Realizing these benefits, however, hinges on human factors. A 
digital twin is only useful if patients actually use it and trust 
its guidance. Achieving sustained user engagement is a well-
known challenge in mobile health. Simply downloading an 
app is not enough, the patient must continually input data (or 
wear connected sensors) and heed the twin’s recommendations 
over the long term. Studies of other chronic disease apps 
have found that novelty often wears off and adherence drops 
without active engagement strategies (Abrams et al., 2024). To 
address this, developers are incorporating behavioral science 
principles into allergy twin platforms. Gamification elements 
(reward points, progress trackers) and tailored feedback can 
motivate consistent use (Johnson et al., 2016; Xu et al., 2022). In 
a recent mobile allergy study, participants were given easy data 
capture tools and even reward points to maintain involvement 
(Pattini et al., 2021). Building user trust is equally critical, the 
twins’ predictions and advice must prove accurate and helpful 
over time, or patients will simply ignore them. Transparent 
explanations (e.g., “pollen levels are very high, so I recommend 
extra medication today”) can make the AI’s suggestions more 
understandable and credible. Clinician endorsement can 
further increase patient trust. If doctors integrate twin data 
during visits, patients are more likely to see it as part of their 
care rather than a gimmick.

Table 1. 

Study (ref) Data streams 
ingested

Sample size / 
duration

ML / analytics 
approach

Outcome 
metric(s)

Headline finding

Sarabu 2021, JMIR 
(Sarabu et al., 2021)

NAB daily pollen 
counts + self-reported 
symptoms (iOS app)

512 adults, 90 
days

Random forest 
classifier

AUROC 0.83 
for next-day 
flare

First U.S. proof that 
population-level pollen 
plus diaries can forecast 
individual symptoms ≥24 
h ahead.
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Harvard/BWH 
Apple-Health pilot 
(Brigham and 
Women’s Hospital, 
2022)

NAB pollen + Apple 
HealthKit vitals + in-
app medication logs

305 Boston 
volunteers, 
2022 pollen 
season

Gradient-
boosted trees

MAE 0.58; F1 
0.71 for “bad-
day” flag

Demonstrated cloud-
FHIR pipeline; pushed 
preventive alerts 90 min 
before peak symptoms.

Mayo Clinic FHIR 
twin sandbox 
(Halamka, 2024)

Wearable vitals + EHR 
allergy list + EPA AQI

40 outpatients, 
3 months 
(feasibility)

Rule-based risk 
engine + SHAP 
explanations

100 % clinician 
acceptance of 
high-risk alerts

HIPAA-compliant de-
identification & re-link 
model validated; no PHI 
leak events.

Serugga 2025 cost 
model (Serugga, 
2025)

Simulated twin uptake 
in commercial-payer 
dataset (n = 50 000)

Model horizon 
1 y

Budget-impact 
analysis

Net payer 
saving $140 
pp-year

Savings driven by 0.6 
fewer unscheduled visits 
and 8 % OTC-medication 
reduction.

Zhang 2022 
climate model 
(Zhang & Steiner, 
2022)

NOAA climate + 
pollen station archive

National 
projections to 
2050

Coupled 
climate-pollen 
simulation

+19 d season 
length (North)

Underpins need for 
anticipatory twin alerts 
as seasons lengthen.

4.6. Implementation and Ethical Challenges
Widespread use of allergy digital twins in the United States 
hinges on three intertwined hurdles: HIPAA-level privacy, EHR 
interoperability, and algorithmic fairness. First, twins ingest 
geotagged pollen feeds, wearable vitals, and symptom logs 
that count as protected health information. Pilot platforms at 
Mayo Clinic now funnel those streams through Fast Healthcare 
Interoperability Resources (FHIR) gateways, encrypt data in 
transit and at rest, and re-link patient identity only when a 
clinician-actionable alert fires (Halamka, 2024). Such “privacy-
by-design” blueprints satisfy HIPAA rules yet add cost and 
latency, and they demand constant IoT patching to keep edge 
devices from becoming breach vectors.
Second, the twin’s insight is useless unless it shows up inside 
the clinician’s chart. The 21st Century Cures Act requires EHR 
vendors to expose open APIs and forbids “information blocking,” 
but hospital uptake is uneven. A recent scoping review found 
that fewer than four in ten U.S. hospitals expose the core FHIR 
resources needed for closed-loop decision support, meaning 
developers still face one-off interface projects for Epic in Boston 
and Cerner in Phoenix. Until national allergy vocabularies and 
FHIR profiles are harmonized, manual reconciliation will sap 
budgets and slow scale-up.
Third, ethics. Machine-learning models learn from the past 
and can freeze existing disparities into future predictions. If 
training data come mostly from urban, device-savvy patients, 
the twin may under-predict flares in rural farmworkers or 
over-represent White populations. Federal working groups 
now urge bias audits and subgroup reporting for any algorithm 
that drives care recommendations. Transparency also matters. 
The FDA sorts most symptom-timing advice under its low-risk 
“clinical decision support” enforcement discretion pathway, 
letting start-ups launch without a 510(k) review as long as 
clinicians can see and override the logic (Health, 2022). That 
same transparency lets patients decide whether to trust an 
automated nudge that tells them to reach for a nasal steroid an 
hour before their commute.
Finally, even a perfect twin can fail if the economics do not 

work. Allergy digital twins will need to show that the upfront 
investment in devices and software is offset by downstream 
savings (such as fewer emergency visits or complications). 
Preliminary analyses are optimistic that the upfront investment 
will be offset by fewer downstream exacerbations (Pattini et 
al., 2021). Additionally, by delivering personalized education 
and self-management support, these systems may improve 
adherence to treatment plans. In summary, the potential clinical 
and economic gains of allergy digital twins are significant, 
but achieving them requires keeping the human in the loop, 
engaging patients, supporting clinicians, and making the twin 
intuitive and rewarding to use.

5. CONCLUSION
In the United States, where pollen seasons in some northern 
states have lengthened by up to nineteen days over recent 
decades, digital twins offer a data-driven counter-measure 
that shifts care from reactive relief to anticipatory prevention 
(NOAA Climate, 2018; Zhang & Steiner, 2022). Based on 
this review, we propose a three-step roadmap. Step 1 
(Researchers & Developers): Continue to refine and validate 
the technology through collaborative research. This means 
improving predictive algorithms (ensuring they are unbiased 
and accurate for diverse populations) and embracing open 
standards for data exchange so that twins can operate across 
different platforms. Ongoing clinical studies should rigorously 
evaluate effectiveness, providing the evidence base needed 
for broader confidence in digital twin interventions. Step 2 
(Clinicians & Health Systems): Begin integrating digital twin 
tools into patient care via controlled pilot programs. Allergists 
and primary care providers can start by using twin-generated 
insights (like personalized risk forecasts) in discussions with 
patients. Healthcare organizations should invest in training 
staff to interpret twin data and in adapting workflows to include 
these new data streams. Demonstrating improved outcomes in 
real-world practice, such as fewer emergency visits or better 
symptom scores, will build support among practitioners and 
health system leadership. Step 3 (Policy Makers & Public 
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Stakeholders): Establish a supportive framework and awareness 
for digital twin adoption. Regulators and professional bodies 
need to develop guidelines that ensure patient privacy and 
data security, clarify liability, and endorse evidence-based use 
of this technology. At the same time, patient advocacy groups 
and public health agencies should work to raise awareness 
and understanding of allergy digital twins among patients. 
Informed patients who trust the technology will be more likely 
to engage with it as part of their self-management.
If these steps are pursued in parallel, the coming years could 
usher in a new era of data-driven, proactive allergic rhinitis 
management. Allergic rhinitis is a global public health issue, 
and empowering patients and providers with predictive, 
personalized tools can substantially improve quality of life 
and reduce avoidable healthcare costs. Equally important, 
success in allergic rhinitis will set a precedent for applying 
digital twin models to other chronic conditions. In that sense, 
the efforts invested now in research, implementation, and 
education around allergy digital twins may have ripple effects 
far beyond rhinitis. With continued innovation and stakeholder 
collaboration, digital twin ecosystems for allergy care can move 
from experimental pilots to mainstream practice, fulfilling their 
promise of delivering the right intervention to the right patient 
at precisely the right time.

LIMITATIONS
This narrative review has several limitations. First, as a non-
systematic overview, it may not capture every relevant study; 
selection bias is a possibility since we focused on illustrative 
examples and recent developments rather than exhaustively 
searching all literature. The heterogeneity of sources included 
(ranging from small pilot studies to technical proof-of-
concepts) makes direct comparison and quantitative synthesis 
impossible. We did not perform a formal quality appraisal of 
each study, so the level of evidence supporting some claims 
should be interpreted with caution. Publication bias is also a 
concern: positive findings and successful prototypes are more 
likely to be published, which could give an overly optimistic 
picture of the field. Furthermore, the technology in this area is 
evolving extremely rapidly. What we report is a snapshot of the 
state of research as of 2025; new algorithms, sensors, or pilot 
results may have emerged since the literature we reviewed. 
As a result, some specifics of implementation or performance 
might quickly become outdated. In summary, while we aimed 
for a comprehensive and balanced synthesis, the conclusions 
drawn must be viewed in light of these constraints and the 
need for continual updates as new evidence and innovations 
appear.
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