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Parkinson’s disease (PD), one of the most common neurodegenerative 
disorders in the United States, is rising in prevalence and exposing persistent 
gaps in access to specialist care. Advances in artificial intelligence (AI) 
now offer new ways to improve diagnosis, monitoring, and treatment. 
This narrative review synthesizes recent clinical studies, regulatory filings, 
reimbursement policies, and expert commentary to describe how machine-
learning approaches applied to wearable sensors, speech and typing analysis, 
neuroimaging, and adaptive deep-brain stimulation are reshaping PD care. 
Several of these tools, such as Apple Watch-based StrivePD and NeuroRPM, 
KinesiaU™ sensor kits, and Medtronic’s adaptive DBS platform, have received 
U.S. FDA clearance since 2020, and early trials suggest they can enrich clinical 
decision-making and support more continuous, personalized management. 
Because this is a narrative (rather than systematic) review, the literature 
search was not exhaustive, study quality was not graded with formal 
scoring instruments, and no meta-analysis was performed; consequently, 
selection bias and incomplete coverage are possible, and effect sizes across 
studies cannot be pooled or compared quantitatively. Real-world adoption 
also remains limited by workflow friction, regulatory and reimbursement 
uncertainty, data-privacy obligations, and algorithmic bias. Closing these 
gaps will require larger pragmatic trials, clinician training, and interoperable 
data infrastructure to ensure AI innovations are validated, equitable, and 
clinically useful for the growing U.S. PD population.
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1. INTRODUCTION
Parkinson’s disease (PD) affects over one million people in 
the United States, with nearly 90,000 new diagnoses each year 
(Rebecca Gilbert, MD, 2024; Willis et al., 2022). As the U.S. 
population ages, PD prevalence is expected to grow substantially, 
reaching about 1.2 million by 2030 (Mark Michaud, 2017). 
PD’s motor and non-motor symptoms impose a high burden 
on patients, caregivers, and the healthcare system. The total 
economic cost of PD in the U.S. was estimated at $52 billion in 
2020, rising to about $61.5 billion by 2025 (Carol Blymire, 2019; 
Michael J. Fox Foundation, 2019). Despite this burden, many 
Americans with PD face challenges accessing specialized care. 
Approximately 40% of U.S. PD patients do not see a neurologist, 
relying instead on primary care or no regular provider (Bajaj, 
2023). This care gap, driven by specialist shortages and 
geographic disparities, is associated with worse outcomes. In 
our view, innovative solutions are needed to extend expert-
level PD care to a broader patient population.
Artificial intelligence (AI) has emerged as a promising tool 
to enhance PD care delivery. “AI” in this context typically 
refers to machine learning (ML) algorithms capable of pattern 
recognition and predictive analytics using large datasets. In 
the past few years, researchers have leveraged AI to recognize 
subtle PD biomarkers from diverse sources, including wearable 
motion sensors, smartphone data, digitized voice recordings, 
medical imaging, and electronic health records. These AI-driven 
approaches can potentially detect PD earlier than clinical exams 
alone, continuously monitor symptom fluctuations in patients’ 
home environments, and optimize treatment decisions based on 
individualized predictions. For example, advanced algorithms 
now achieve over 90% accuracy in distinguishing early PD from 
healthy controls using vocal features, and wearable sensors 
analyzed with ML can reliably capture tremor and bradykinesia 
outside the clinic (Atri et al., 2022; Lonini et al., 2018; Malekroodi 
et al., 2024; Shen et al., 2025; Sigcha et al., 2023).

2. LITERATURE REVIEW 
Such capabilities could augment clinicians’ assessments, which 
are often limited by brief in-person exams and subjective 
patient reports. Equally important, AI may help personalize 
therapy for PD’s highly heterogeneous course. Patients often 
face fluctuating medication responses, motor complications 
such as dyskinesias, and non-motor symptoms. AI algorithms 
can analyze continuous patient-generated data to identify 
patterns (Rebecca Gilbert, 2025) (for instance, linking certain 
motor fluctuations to medication timing or activity levels) and 
recommend tailored adjustments.
A notable example is the advent of adaptive deep brain 
stimulation devices that use embedded algorithms to modulate 
stimulation in real time according to the patient’s neural signals 
(The BRAIN Blog, 2025). Early results suggest that such AI-
enabled systems can improve symptom control with fewer side 
effects compared to traditional approaches (Guidetti et al., 2025; 
Kim, 2025; Li et al., 2025; The BRAIN Blog, 2025; Williams, 2025).
In summary, there is growing enthusiasm that AI technologies 
could transform PD care by easing diagnostic uncertainty, 
extending monitoring beyond clinic walls, and aiding treatment 
optimization. This narrative review examines the state of these 

AI applications in U.S. Parkinson’s disease care. We focus on 
key domains, diagnostic tools, symptom monitoring modalities, 
and treatment optimization, and discuss the integration of AI 
into healthcare systems, including regulatory, reimbursement, 
and ethical challenges. We also appraise the current evidence 
for AI-driven interventions in PD and offer recommendations 
to ensure these innovations truly benefit patients and providers. 
Ultimately, leveraging AI in a thoughtful, patient-centered 
manner could help bridge existing gaps in PD care and improve 
outcomes for the growing number of Americans living with 
this disease.

3. METHODOLOGY 
We performed a comprehensive narrative literature review to 
identify publications and information on AI applications in 
Parkinson’s disease care. Using PubMed and Google Scholar, 
we searched for English-language articles published from 
January 2018 through May 2025 that evaluated or discussed 
AI techniques (including machine learning, deep learning, and 
related data-driven approaches) in the context of PD diagnosis, 
monitoring, or treatment. Key search terms combined 
“Parkinson’s” with words such as “artificial intelligence,” 
“machine learning,” “deep learning,” “diagnosis,” “wearable,” 
“sensor,” “remote monitoring,” “digital biomarker,” “treatment,” 
“management,” and “outcomes.” We prioritized studies with 
clinical data, especially those relevant to U.S. healthcare. Given 
the narrative (non-systematic) scope, we also included seminal 
earlier studies to provide background and select conference 
papers, regulatory documents, and industry releases for the 
current context.

4. RESULTS AND DISCUSSION
4.1. AI Technologies & modalities in PD care
A diverse range of AI technologies and data modalities are 
being explored to address different aspects of Parkinson’s 
disease. Machine learning algorithms form the backbone of 
these innovations. In PD applications, supervised learning 
models are trained on labeled datasets (e.g., patients vs. 
controls or symptom severity ratings) to detect patterns that 
human observers might miss. Traditional classifiers (support 
vector machines, random forests) have been used alongside 
more complex deep learning architectures (convolutional and 
recurrent neural networks) for feature extraction from raw 
data. Unsupervised learning has also been applied to cluster PD 
subtypes or discover novel digital biomarkers (Dadu et al., 2022). 
Importantly, recent efforts prioritize explainable AI techniques 
like SHAP (SHapley Additive exPlanations) to interpret what 
features drive an AI model’s output, given the need for clinician 
trust in AI decision support (Shen et al., 2025).
Wearable and mobile sensors provide one key modality fueling 
AI development in PD (Benyoucef et al., 2025; Bougea, 2025; 
di Biase et al., 2024; Smits Serena et al., 2025). Body-worn 
sensors (accelerometers, gyroscopes, etc.) can continuously 
capture movement data related to tremor, bradykinesia, 
dyskinesia, gait, and balance. An accelerometry-based wearable 
on the wrist or belt can capture tremor episodes and motor 
fluctuations throughout the day. AI algorithms process these 
high-frequency time-series signals to quantify symptom 
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4.2. Clinical applications
AI applications in Parkinson’s disease care can be grouped into 
three broad clinical domains: diagnosis, symptom monitoring, 
and treatment optimization. Within each domain, we highlight 
how AI is being used in real or near-real clinical practice and 
the outcomes achieved to date. While many projects are still in 
pilot or research stages, a few have already leaped from routine 
care or commercial availability in the U.S.

4.3. Diagnosis & early detection
Diagnosing PD early remains a challenge; accuracy can be 
poor, and up to 30% of cases may be misdiagnosed at onset 
(Coarelli et al., 2019; Parkinson’s Resource Organization, 2020). 
AI tools aim to detect subtle signals before clinicians might. 
Voice-based ML models, for instance, detect mild dysarthria 
in prodromal cases and can flag risk for further evaluation 
(Dudek et al., 2025; Rusz et al., 2024). Typing-pattern analysis 
from smartphones has shown promise in distinguishing PD 
patients with excellent accuracy in early studies. While these 
tools aren’t yet used widely in U.S. clinics, they demonstrate 
moderate evidence (proof-of-concept accuracy >90%) and, if 
validated in broader cohorts, could be integrated into primary-
care decision support to prompt neurology referrals.
Imaging-based AI, such as ML classifiers for DaTscan 
interpretation, may assist radiologists in ambiguous cases. 
Though tools that aid diagnosis in other conditions (e.g., 
Alzheimer’s PET interpretation) have already been FDA-
cleared, no PD diagnostic AI holds standalone U.S. approval 
yet; current systems are positioned as adjunctive decision 
support, not replacements. As AI performance improves and 
clinicians become more comfortable, these tools are likely to 
gain traction.

4.4. Symptom monitoring & disease progression
Continuous symptom tracking has emerged as the most 
impactful AI application in PD. Unlike static clinic exams, these 
systems allow clinicians to follow patients over days.
The Personal KinetiGraph (PKG), FDA-cleared and widely 
used, captures movement data over 6–10 days and generates 

severity and patterns. The Personal KinetiGraph (PKG) watch 
uses a wrist accelerometer and special algorithms to create 
scores for bradykinesia, dyskinesia, and fluctuations, which 
closely match the results from UPDRS and AIMS scales in both 
lab and home environments (Moreau et al., 2023a; Santiago et 
al., n.d.). Systems like Kinesia and STAT‑ON similarly couple 
inertial sensors with ML models to detect motor states, 
validated in multiple studies (Cox et al., 2024a; Moreau et al., 
2023b; Rodríguez-Martín & Pérez-López, 2024; Santos García 
et al., 2023). These platforms exemplify how sensors plus AI 
can create a “digital phenotype” of PD motor features in real-
world settings. Smartphone sensors likewise support gait or 
tremor measurement through accelerometers and gyroscopes, 
and touchscreen tapping tasks. Typing-pattern analysis, as in 
the “neuroQWERTY” concept, shows promise for early motor 
impairment detection.
Voice and speech analysis is another active AI modality in PD. 
Dysarthria, characterized by voice changes, can be detected via 
acoustic markers. In a 2025 study by Shen et al. 2025, a hybrid 
CNN‑RNN model analyzing mel-frequency cepstral coefficients 
and jitter achieved 91.11% accuracy with an AUC of 0.9125, 
using SHAP for interpretability (Shen et al., 2025). Such voice-
based models are being explored for monitoring progression or 
medication effects. Voice AI offers a noninvasive, cost-effective 
biomarker suitable for integration into telehealth or automated 
screening hotlines.
Neuroimaging AI has been investigated for PD, with mixed 
results (Valerio et al., 2025). Studies apply ML to MRI and 
dopamine transporter (DaTscan) imaging to diagnose or predict 
disease (Klyuzhin et al., 2018; Majhi et al., 2024; Zhang, 2022). 
Radiomics and deep learning show potential in distinguishing 
PD and atypical Parkinsonism (Bian et al., 2023; Feng et al., 
2024; Ling et al., 2024). However, a recent review found only 
~20% of neuroimaging AI studies met minimal methodology 
quality, and just 8% employed external test sets, indicating 
concerns about overfitting and inflated accuracy (Dzialas et al., 
2024; Shen et al., 2025). Nonetheless, semi-automated tools like 
GE’s DaTQUANT already aid dopamine-deficit quantification, 
and more sophisticated AI could further improve diagnostic 
specificity.
Emerging modalities include sensor-equipped pens or 
tablets to analyze handwriting and micrographia, camera-
based computer vision systems to assess facial masking or 
bradykinesia in patient videos, and physiological sensors 
tracking autonomic markers like heart-rate variability linked 
to medication states. AI also facilitates multimodal data fusion, 
integrating wearables, voice, imaging, and clinical information 
into a comprehensive patient model (Information Fusion and 
Artificial Intelligence for Smart Healthcare, 2023; Shaik et al., 
2024). Such approaches can cross-verify signals, e.g., a tremor 
occurring with voice changes, thus enhancing robustness. 
To illustrate the breadth of artificial-intelligence applications 
across the Parkinson’s disease (PD) care journey, Figure 1 maps 
key digital modalities onto the sequential phases of diagnosis, 
monitoring, and treatment.

Figure 1. Artificial intelligence across the parkinson’s care 
continuum.
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objective bradykinesia and dyskinesia scores. A blinded 
randomized study showed that integrating PKG into care 
resulted in significantly greater symptom improvements, and 
clinicians changed management in ~30–40% of visits based on 
PKG insights (Nahab et al., 2019). Additional studies document 
improved UPDRS scores and enhanced patient compliance in 
PKG-guided care (Nahab et al., 2019). We judge such findings 
as moderate-to-high evidence of clinical benefit (Virbel-
Fleischman et al., 2023).
Other wearable systems, Kinesia 360 and STAT‑ON, capture 
tremor, gait, freezing of gait, and dyskinesia (Santos García et 
al., 2023). Although primarily validated in European cohorts, 
they are being introduced to U.S. practices; expert consensus 
now conditionally recommends these systems for remote 
symptom monitoring (Krause et al., 2021). Mobile apps such as 
StrivePD, paired with Apple Watch, passively track tremor and 
motor fluctuations. FDA-cleared in 2022 via Apple’s Movement 
Disorder API, this system allows clinicians to view symptom 
trends between visits and make medication adjustments based 
on those patterns. (Lindsey Mulrooney, 2022) This technology 
represents a new frontier of accessible, continuous monitoring.
Beyond motor symptoms, AI tools assess adherence, sleep, 
and non-motor features (Babel et al., 2021). Some smart pill 
dispensers detect medication intake using sensor fusion. Apps 
track sleep disruptions, which are common and burdensome 
in PD. These emerging tools represent a more comprehensive 
care model that extends beyond just movement to include other 
aspects of patient functioning (Chaudhuri et al., 2022).

4.5. Treatment optimization & personalization
AI is now helping tailor PD therapies, especially in two areas: 
medication management and neuromodulation. Automated 
dosing tools, though still experimental, analyze symptom 
diaries and wearable data to suggest optimized levodopa timing 
and dosing intervals. Early pilot trials have shown that AI-

recommended adjustments can improve motor control (Iii et 
al., 2025; Lam et al., 2022; Rasa, 2024). While low-level evidence 
(small sample sizes) currently limits adoption, these systems 
function as clinician aids rather than replacements.
Deep brain stimulation (DBS) is seeing transformative gains 
with AI. Automated programming algorithms analyze electrode 
location, patient signals, and symptom-response curves to infer 
optimal settings; Early feasibility studies show these match 
clinician-selected settings more quickly and reliably (Roediger 
et al., 2023).
Adaptive DBS (aDBS) takes customization further. These 
systems sense brain activity (beta oscillations) and adjust 
stimulation in real time (Li et al., 2025; The BRAIN Blog, 
2025). Medtronic’s Percept PC with BrainSense, FDA-approved 
in February 2025, allows this closed-loop therapy on U.S. 
patients (Franchina, 2025). North America’s first clinical 
implantations took place shortly after approval. Early clinical 
trial data, such as the ADAPT-PD study, show sensory-derived 
stimulation significantly reduced motor symptoms compared 
to conventional DBS and was well tolerated (Stanslaski et al., 
2024). Financial accessibility remains limited to specialized 
centers, but this technology marks moderate evidence for 
personalization and efficacy due to its FDA clearance and trial 
results.
AI is also making inroads into rehabilitation (Rasa, 2024). Vision-
based coaching apps offer exercise guidance for gait and voice 
therapy; gait-assist devices now recognize freezing episodes 
and provide cues. Although the data is still preliminary, these 
tools demonstrate an increasing role for AI in enhancing and 
expanding therapy beyond clinical settings. Table 1 provides a 
concise inventory of AI-enabled devices and software that have 
already secured FDA or CE approval, detailing their regulatory 
pathways, clinical functions, and current deployment status to 
ground the subsequent discussion on adoption gaps and unmet 
needs.

Table 1. Regulatory-cleared or CE-marked AI technologies for parkinson’s disease care

Platform (Modality) Regulatory Pathway & Year Core Clinical Function Deployment Status

StrivePD (Rune Labs, 
Apple Watch)

FDA 510(k) K213519, 2022 
(Aguilar, 2024; Practical 
Neurology, 2022).

Passive detection of tremor 
& dyskinesia; medication, 
sleep, activity logs

Free U.S. App Store download; deployed 
in health-system pilots(Rune Labs 
Secures FDA Clearance for Parkinson’s 
Disease Monitoring through StrivePD 
Ecosystem on Apple Watch, n.d.)

NeuroRPM 
(NeuroRPM Inc., 
Apple Watch)

FDA 510(k), 2023 (Business 
Wire, 2023).

Continuous AI 
quantification of 
bradykinesia, tremor & 
dyskinesia

Prescription-only rollout through 
academic movement-disorder centres 
(Business Wire, 2023).

Parky (H2O 
Therapeutics, Apple 
Watch)

FDA 510(k), 2022 + EU MDR 
cert., 2025 (Business Wire, 
2023).

Real-time monitoring of 
tremor/dyskinesia with 
clinician dashboard

U.S. launch 2024; reimbursable via RPM 
codes; expanding in EU.

KinesiaU™ 
(Great Lakes 
NeuroTechnologies)

FDA-cleared Kinesia 
sensors (2014; portal 2021) 
(NeuroTechnologies, 2021).

Objective scoring of 
tremor, slowness & 
dyskinesia for therapy 
titration

Prescription system in U.S.; NICE 
conditional recommendation in UK 
(Moreau et al., 2023a).
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4.6. Healthcare-system integration & implementation 
challenges
Efforts to pull AI for Parkinson’s disease out of pilot studies and 
into everyday U.S. practice collide with five knotty obstacles: 
workflow fit, regulation, payment, privacy/security, and equity. 
Together, they explain why only a handful of AI tools have left 
the lab despite impressive technical accuracy. As a roadmap for 
overcoming translational hurdles, Figure 2 pairs the five most 
cited implementation barriers with pragmatic, system-level 
solutions.

vendors have begun offering SMART-on-FHIR launch points for 
digital Parkinson logs, but each new device still needs mapping 
and security vetting. Clinicians also demand explainability; if 
an algorithm warns that a patient’s freezing risk doubled last 
week, the graph of stride-length variability must be one click 
away, or the alert will be ignored.

4.8. Regulatory landscape
The FDA treats most diagnostic or therapeutic AI as Software 
as a Medical Device (SaMD). Three draft guidance documents 
since 2023 sketch the road map: (1) Predetermined Change 
Control Plans allow manufacturers to pre-specify algorithm 
updates (Center for Devices and Radiological Health, 2024). 
(2) Guiding Principles on Transparency urge clear user-facing 
explanations of ML logic (Center for Devices and Radiological 
Health, 2024a); and (3) a 2024 AI lifecycle draft (now open for 
comment) details real-world performance monitoring and post-
market algorithm tweaks (Center for Devices and Radiological 
Health, 2025). For clinics, the takeaway is simple: choose 
vendors with an FDA-cleared model and a documented change-
control plan or be ready to shoulder the regulatory burden 
yourself.

4.9. Reimbursement & financial incentives
Without payment, even FDA-cleared tools remain unutilized. 
The 2022–24 Physician Fee Schedule rules established Remote 
Therapeutic Monitoring CPT codes 98975–98981, which are 
intended to reimburse for device set-up and monthly data 
review related to non-physiologic metrics such as symptoms 
and adherence (Centers for Medicare & Medicaid Services, 
2023). Neurologists can bill for services if the documentation 
connects the wearable data to active management; however, 
early adoption of this practice is inconsistent, as many 
clinicians are unaware of the billing codes, and some Medicare 
Administrative Contractors (MACs) have provided conflicting 
guidance. Private payers say they will cover AI wearables when 
solid evidence shows fewer ER visits or admissions—a hurdle 
the field has not yet cleared.

4.10. Privacy & security
Continuous motion, voice, and location signals are rich 
clinical fodder—and attractive personal fingerprints. HIPAA 
protects data once it enters a covered entity’s system, but 
many Parkinson’s apps collect information before any clinical 
hand-off, leaving them outside HIPAA’s safe harbor (Office for 
Civil Rights (OCR), 2008). De-identification is not a panacea: 
researchers have re-identified >80% of supposedly anonymous 
sensor traces with pattern-matching algorithms (Malekzadeh 
et al., 2019). Federal guidance, therefore, steers implementers 
toward privacy-by-design techniques: on-device preprocessing, 

PDMonitor® (PD 
Neurotechnology)
BrainSense™ 
Adaptive DBS 
(Medtronic Percept 
PC)

CE Mark (Class IIa), 2023 
(Moreau et al., 2023a).
FDA approval, Feb 2025

Whole-body motor-
symptom profiling (tremor, 
bradykinesia, gait)
Closed-loop DBS auto-
adjusts stimulation using 
beta LFPs beta Power

Deployed in 12 EU countries; U.S. 
510(k) submission in preparation
Commercial launch anticipated H2 2025 
(U.S.); available in EU since 2024

Figure 2. Barriers and solutions to AI implementation in 
parkinson’s disease care.

The flowchart illustrates five implementation barriers: Data 
Integration, Regulation, Reimbursement, Privacy, and Equity, 
and their corresponding solutions: Interoperability, Standards, 
Coverage, Data Security, and Access. Each barrier is represented 
by a light-blue icon box; solutions appear in light-green boxes 
below, connected by arrows that indicate the remedial pathway. 
Curved connectors at the bottom highlight interdependencies 
among solutions, emphasizing that reimbursement coverage, 
for example, depends on regulatory standards and data security 
assurances.

4.7. Data integration & workflow
Raw sensor streams or model scores must land in front of a 
busy clinician at the right moment and in the right format. 
Prototype dashboards built at movement-disorder centers now 
ingest wearables through FHIR pipes and visualize trends such 
as “late-afternoon tremor spikes,” yet building those interfaces 
required custom integrations and dedicated analysts (Center 
for Biologics Evaluation and Research, 2025). Commercial EHR 
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federated learning, and differential privacy, all featured in 
NIST’s AI Risk Management Framework released in 2023 
(Tabassi, 2023). Health systems deploying AI wearables must 
add robust consent flows, encryption, and breach-response 
plans—costs that can dwarf device price tags.

4.11. Bias & equity
AI models inherit the skew of their training data. Paik et al. 
coined the term “health-data poverty” to describe how under-
representation of racial minorities and rural populations in 
training sets can amplify disparities when AI tools hit the 
wild (Paik et al., 2023). For Parkinson’s, wearables calibrated 
mainly on older white men may mis-score tremor amplitude 
in women or Black patients, leading to undertreatment. FDA’s 
good-machine-learning-practice principles explicitly call for 
pre-market bias testing and post-market drift monitoring 
(Health, 2025), and NIST’s framework adds practical checklists. 
Clinics piloting AI monitors now run subgroup accuracy audits 
and retrain models with more diverse datasets, but their use 
remains ad hoc. We need subsidy programs, such as loaner 
smartwatches and phone-free sensors, to prevent the digital 
divide from widening.

4.12. Organisational & human factors
Successful rollouts pair technology with change management. 
Early adopter centers designate an “AI nurse navigator” who 
filters sensor alerts, sparing neurologists from inbox overload. 
Liability questions persist: Who is responsible if an algorithm 
misses a fall risk flag? Current malpractice norms still place 
ultimate accountability on the physician, though legal 
scholars predict case law will evolve as AI autonomy rises. 
Interoperability headaches loom as clinics stack multiple AI 
tools: a gait-analysis app, an adaptive DBS programmer, and 
a speech monitor, all demanding their data channels. National 
efforts to standardize data models (FHIR “digital biomarker” 
profiles) are underway but incomplete.
Bottom line: AI promises more timely, personalized Parkinson’s 
care, yet adoption hinges on solving workflow integration, 
aligning FDA and payer pathways, hard-wiring privacy, and 
ensuring fairness. Multi-stakeholder coordination, including 
clinicians, technologists, payers, regulators, and patients, is 
essential if AI is to move from pilot projects to an equitable 
national standard of care.

4.13. Current outcomes & evidence base
4.13.1. Diagnostic accuracy
Voice, gait, and typing classifiers routinely post 85–95% 
sensitivity/specificity in controlled datasets (Adams, 2017). 
Tabashum et al. found that only 35% tested models on an 
external cohort and barely 60% reported any hyperparameter 
tuning, leading the authors to grade evidence as “low–
moderate” overall (Tabashum et al., 2024). External-validation 
gaps are slowly closing: the Parkinson Voice Initiative and 
mPower are now enrolling thousands to prospectively verify 
voice and smartphone biomarkers, but results are pending. 
No stand-alone diagnostic AI is FDA-cleared; current tools 
act as screening adjuncts, not replacements for neurological 
examination.

4.13.2. Monitoring & management
Randomized and controlled studies give the strongest support 
to date. In a blinded trial, adding the Personal KinetiGraph 
(PKG) to usual care cut bradykinesia scores and drove more 
therapy adjustments than control visits (Cox et al., 2024b). A 
multi-center “PKG Impact” study reported treatment changes 
in 74% of encounters when clinicians reviewed the device’s 
objective motor graphs and fluctuation scores (Dominey et 
al., 2020). Kinesia 360, another inertial-sensor suite, correlates 
closely with in-clinic UPDRS ratings and is being evaluated for 
remote titration workflows (Moreau et al., 2023b). The Apple 
Watch/StrivePD pair, listed by the FDA in 2022, passively 
streams tremor and dyskinesia metrics to dashboards that early 
adopters say guide dose timing tweaks between visits (Larkin, 
2022; Trevor Dermody, 2024). These data justify a moderate 
evidence grade for wearables: objective measurement changes 
practice, but most trials remain <200 patients and lack long-
term health-economic endpoints.

4.13.3. Treatment optimisation
Medication-dosing decision support remains exploratory. 
Small N-of-1 app studies show improved diary scores when ML 
suggests schedule tweaks, yet cohorts are too small to draw 
firm conclusions (evidence is low).
Neuromodulation evidence is firmer. Automated programming 
algorithms (e.g., StimFit) matched expert-selected DBS settings 
and cut programming time in a crossover feasibility trial (Nahab 
et al., 2019). aDBS, which senses beta oscillations and adjusts 
stimulation on-the-fly, reduced motor-symptom time by roughly 
50% versus conventional continuous DBS in the ADAPT-PD 
pilot (Bott & Cookson, 2024) and gained FDA clearance for 
Medtronic’s BrainSense platform in early 2025 (Park, 2025). A 
2025 Nature Parkinson’s Delphi study of 21 experts concluded 
that aDBS would benefit patients with fluctuating motor states 
and dyskinesia within five years (Guidetti et al., 2025). Given 
regulatory approval plus converging trial data, we assign 
moderate evidence to AI-enhanced DBS, with the caveat that 
long-term QoL and battery-sparing advantages remain under 
study.

4.13.4.  Patient-centred outcomes & safety
Wearable-guided care yields small yet statistically significant 
UPDRS improvements, but quality-of-life (PDQ-39) changes are 
inconsistent (Cox et al., 2024b). Surveys indicate many patients 
feel “seen” between visits, though some report data fatigue 
when feedback lacks context (Dominey et al., 2020). No major 
safety events attributable to AI software have surfaced; sensors 
are low-risk, and aDBS devices include hard-wired limits to 
prevent overstimulation (Rachel Dolhun, MD, DipABLM, 2025). 
False-positive alerts and anxiety remain theoretical concerns 
requiring post-market surveillance, now mandated in FDA 
lifecycle guidance.

4.13.5. Evidence gaps
• External validity: Most diagnostic AIs still lack U.S. 

community-cohort testing.
• Health economics: No study has yet shown reduced 

hospitalizations or net savings from AI monitoring.
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•  Equity: Few trials report subgroup accuracy; wearable 
datasets are skewed toward tech-savvy, higher-income users.

• Long-term outcomes: aDBS and dosing-advisor apps need 
multi-year follow-up to confirm durability and battery or 
medication-sparing claims.

4.13.6. Verdict
The evidence base is emerging but incomplete. Wearables 
already influence clinical decisions; adaptive neuromodulation 
has cleared the regulatory bar; diagnostic AIs are promising but 
unproven in the wild. Over the next five years, large pragmatic 
trials and payer-linked utilization studies will determine 
whether AI truly delivers safer, cheaper, and more equitable 
Parkinson’s care or remains a high-tech side project awaiting 
its breakthrough moment.

5. CONCLUSION
Artificial intelligence has edged from novelty to necessity in 
Parkinson’s practice, yet the journey is only half-run. Wearable 
dashboards already nudge levodopa schedules, adaptive 
stimulators quiet beta bursts in real time, and voice apps flag 
subtle dysarthria long before a clinic visit. Still, the evidence 
that these gains translate into longer walks, fewer falls, or a 
lighter caregiver load remains patchy. Regulatory sign-off 
means the tools are safe; it doesn’t promise they change lives. 
The next five years must therefore pivot from accuracy papers 
to pragmatic trials embedded in day-to-day care, with costs, 
equity, and clinician workload tracked as tightly as UPDRS 
scores. Success will also turn on design: interfaces that fold 
quietly into the electronic chart, billing pathways clinicians 
actually understand, and privacy locks strong enough for 
skeptical patients. Done well, AI offers more than convenience; 
it can close the geographic and economic gaps that leave 
many Americans without specialist input. Done poorly, it risks 
amplifying them. Our review charts both the promise and the 
pitfalls; it hands stakeholders a practical agenda rather than 
a prediction. Whether we meet that agenda will determine 
whether AI becomes a silent partner for Parkinson’s disease or 
just another gadget. The responsibility and opportunity belong 
equally to every sector today.

RECOMMENDATIONS
A decade from now, artificial intelligence could shift Parkinson’s 
care from episodic check-ups to a learning system that fine-
tunes therapy every day, yet only if three conditions are met: 
we prove benefit in diverse patients, build tools clinicians and 
payers can live with, and explore new science without repeating 
today’s blind spots.

i. Prove real-world benefit: FDA clearance confirms that an 
algorithm works in a test lab; payers and guidelines demand 
evidence that it changes outcomes. Most diagnostic ML papers 
still skip external validation; only 35% in a 2024 systematic 
review used an independent cohort, and fewer than two-thirds 
tuned hyperparameters correctly (Tabashum et al., 2024). 
Future trials should randomize usual care against the “usual + 
wearable dashboard,” track UPDRS scores, falls, and utilization 
for 12–24 months, and publish neutral results as well as wins. 
The agency’s Predetermined Change Control Plan draft tells 

developers they must collect post-market performance data as 
software evolves (Center for Devices and Radiological Health, 
2024b; Health, 2024), giving a regulatory nudge toward larger, 
longer studies.

ii. Make AI workable, payable, and fair: Human-factors 
guidance already details usability testing for medical devices 
(Health, 2019), yet many Parkinson’s apps still swamp clinicians 
with raw graphs. Co-design sessions with people who have 
tremor or impaired dexterity should shape every interface. On 
payment, neurologists can bill Medicare’s Remote Therapeutic 
Monitoring codes 98975-98981 if wearable data informs active 
care—an option too few practices use because billing rules are 
unfamiliar (Department of Health & Human Services & Centers 
for Medicare & Services, 2021). National societies should add 
RTM billing to CME and certify “AI nurse navigators” who 
triage sensor alerts. Privacy and bias must stay front-of-mind: 
the NIST AI Risk-Management Framework urges federated 
learning and differential privacy to curb re-identification 
(Fried, 2022; Tabassi, 2023), while the White House AI Bill of 
Rights sets fairness and opt-out as baseline expectations for 
automated systems in health care (The White House, n.d.). 
Health systems deploying PD algorithms should publish annual 
accuracy audits by sex, race, and rurality; if error rates diverge, 
retraining or workflow tweaks are mandatory.

iii. Strive for responsible advancement in this field: Medtronic’s 
2025 FDA-approved BrainSense device shows adaptive DBS 
can exit the lab when safety controls are embedded from day 
one (Medtronic, 2025). Next up are multimodal models that 
fuse wearables, genomics, and imaging to forecast disease 
trajectories. Consortia are already piloting federated pipelines 
so centers can train shared models without shipping raw 
data (Health, 2024). Richer sensors are coming, too: sweat-
chemistry patches for levodopa levels, mini-EMG chips for 
rigidity, and even cobot walkers that detect freezing and cue 
movement. Each leap will rekindle old challenges, workflow 
fit, reimbursement, and privacy, so every project should bake 
in usability testing, payer dialogue, and bias scans alongside 
classic algorithm metrics.
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