
ABSTRACT

Submission
Acceptance
Publication

:
:
:

Keywords

Article History

Citation Style:

A Review of AI-Wearable Technologies for Public Health Surveillance in the U.S: Challenges and 
Recommendations
*1Musa Olayinka Hanafi, 2Gbenga Adeniyi Adediran, 3Ifedayo Akinfemisoye, 4Sylvester Tafirenyika, 5Oluwaferanmi Bello,
6Confidence Nkechineyerem Chikezie

Review Article

About Article

June 04, 2025
July 07, 2025
July 23, 2025

Artificial intelligence (AI)–enhanced wearables generate continuous 
physiologic streams that can be aggregated for real-time public health 
surveillance. This review summarizes evidence from U.S. studies on device 
penetration, analytic performance, and operational value. Surveillance 
infrastructure has evolved from mailed case cards to cloud dashboards 
accepting patient-generated data; current machine-learning pipelines 
transform inertial, photoplethysmographic, and temperature signals into 
population biomarkers. Lead-time gains of two to six days over laboratory 
reporting have been documented for influenza, COVID-19, and heart failure 
admissions. However, uneven adoption, sensor bias, privacy regulation, and 
limited interoperability constrain scale-up. Interfacing solutions such as 
FHIR subscriptions and federated analytics are assessed, alongside emerging 
FDA guidance on AI lifecycle management. Strategic recommendations 
address standards consolidation, equitable subsidization of devices, algorithm 
auditability, and workforce training. With these measures, AI wearables 
could transition from consumer novelties to an integral layer of U.S. public-
health intelligence, offering earlier outbreak detection, finer chronic-disease 
surveillance, and more precise resource allocation.
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1. INTRODUCTION
Public health surveillance in the United States has always 
traveled with technology. Paper case cards mailed to state 
epidemiologists dominated the early twentieth century; 
telephone hotlines, faxed laboratory slips, and electronic 
laboratory reporting each arrived as communications matured. 
Yet these upgrades still captured illness only after citizens 
sought care. The first real-time shift came when internet 
search logs and social media chatter were mined for influenza 
signals, illustrating that data created for non-clinical reasons 
could illuminate population health. Wearable devices represent 
a further, more intimate step along that continuum. A 2019 
Pew Research Center survey reported that roughly one in five 
American adults already wore a smartwatch or fitness tracker 
on most days (Vogels, 2020). Longitudinal analyses show 
adoption climbing steadily through the pandemic years, with 
nationally representative polling in 2022 indicating well over 
one-third of adults now engage with wearables at least weekly 
(Chandrasekaran et al., 2025).
Who wears these devices, however, is not evenly distributed. 
A cross-sectional study of U.S. adults with, or at heightened 
risk for, cardiovascular disease found uptake markedly lower 
among older, less educated, and lower-income groups compared 
with their younger, wealthier peers (Dhingra et al., 2023). 
This demographic skew raises immediate questions about 
representativeness whenever wearable data are extrapolated to 
entire communities.
Technological capability has advanced just as quickly. In 2018, 
the U.S. Food and Drug Administration granted a de novo 
clearance to Apple’s irregular-rhythm notification algorithm, 
the first consumer-facing software permitted to flag atrial 
fibrillation from photoplethysmography alone (FDA, 2018). The 
accompanying Apple Heart Study demonstrated both the reach 
and the limitations of large-scale, app-based cardiovascular 
screening, enrolling hundreds of thousands of participants 
without a single clinic visit (Campion & Jarcho, 2019). Parallel 
investigations used de-identified Fitbit streams to improve 
real-time state influenza estimates, shaving precious days off 
traditional reporting lags (Radin et al., 2020). During the first 
waves of COVID-19, the Scripps DETECT project showed that 
aggregated deviations in resting heart rate and sleep could 
foreshadow regional case spikes, hinting at a role for wearables 
as early-warning radar (DETECT, n.d.).
Policy ecosystems are beginning to adapt. The Centers for 
Disease Control and Prevention has folded exploratory 
consumer-device pilots into its Data Modernization Initiative, 
an effort to knit disparate digital sources into a cohesive 
national surveillance fabric (CDC, 2024c). Meanwhile, the 
Centers for Medicare & Medicaid Services introduced new 
remote-physiological-monitoring billing codes, signaling that 
patient-generated data are viewed not merely as curiosities but 
as reimbursable components of care (HealthSnap, 2022).
There is still a large room for improvement. Wearable 
algorithms validated largely in affluent, lighter-skinned cohorts 
may misclassify signals when deployed across America’s full 
diversity, a concern underscored by recent reports of bias in 
optical sensing accuracy (Jeong et al., 2025). Moreover, the 
sheer torrent of time-series data tests the storage, analytic, and 

workforce capacities of public health agencies already stretched 
by legacy system upkeep.

1.1. Research questions
To what extent can AI-enhanced wearable devices provide 
earlier, more representative, and operationally actionable 
intelligence for U.S. public health surveillance and health 
system planning?

1.2. Working hypothesis
When integrated with existing surveillance infrastructure 
under rigorous interoperability, privacy, and equity safeguards, 
wearable-derived signals will (i) deliver clinically meaningful 
lead times relative to laboratory-based reporting and (ii) 
improve resource-allocation forecasts without exacerbating 
existing health disparities.
To address this question, the review (i) synthesizes AI 
techniques embedded in current wearables, (ii) catalogues 
documented public-health use cases, (iii) evaluates impacts on 
health-system planning, (iv) analyzes technical, ethical, and 
regulatory challenges, and (v) proposes strategic pathways for 
equitable adoption. By situating AI-enhanced wearables within 
the broader evolution of U.S. surveillance infrastructure, the 
analysis clarifies both the potential benefits and the guardrails 
necessary for responsible implementation.

2. LITERATURE REVIEW
Academic commentary on AI-enhanced wearables has 
accelerated since 2019, yet the evidence remains scattered 
across clinical, informatics, and public health outlets. The first 
robust hint that consumer sensors might serve epidemiology 
arrived during the 2017-18 U.S. influenza season, when Radin 
et al. demonstrated that statewide deviations in resting heart 
rate and sleep among 47,000 Fitbit users improved influenza-
like-illness forecasts by up to one-third compared with historic 
baselines (Radin et al., 2020). That proof-of-concept sparked a 
broader literature interrogating whether “small” personal data 
could be safely scaled into “big” population surveillance. A 2021 
systematic scoping review of 755 digital-surveillance studies, 
however, found that fewer than 2% had incorporated wearable 
streams; most relied instead on search or social-media signals, 
and only 0.8% were embedded in real-world public-health 
practice (Shakeri Hossein Abad et al., 2021).
COVID-19 acted as both a catalyst and a stress test. Gunasekeran 
et al. catalogued 247 digital health tools deployed during 
the pandemic and noted that wearables, while prominent in 
headlines, remained underevaluated compared with telehealth 
or AI triage software (Gunasekeran et al., 2021). Even so, 
small observational studies suggested promise: Aggregated 
smartwatch data detected county-level COVID-19 case surges 
several days before laboratory confirmation, and machine-
learning models that combined those biometrics with symptom 
logs increased diagnostic yield six-fold in targeted testing 
campaigns.
Parallel scholarship has mapped who actually wears the 
devices. A cross-sectional National Health Interview Survey 
analysis showed that just 18% of U.S. adults with established 
cardiovascular disease used a wearable in 2019-20, versus 29% 
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of the general population; uptake plunged with age, lower 
income, and limited formal schooling (Dhingra et al., 2023). 
Such demographic skews warn that raw sensor streams may 
amplify health-equity gaps if used uncritically.
Economic evidence lags behind technical enthusiasm. A 
2024 systematic review conducted by Velasquez et al. (2024) 
identified only 18 cost-effectiveness studies; however, most 
of these studies reported gains in quality-adjusted life-years 
and, in several chronic disease contexts, net cost savings when 
wearables facilitated early intervention (Velasquez et al., 2024). 
Still, heterogeneity in methodology and short follow-up periods 
preclude definitive conclusions.
Device-level validation has grown more ambitious. The Apple 

Heart Study enrolled 419,000 volunteers and reported a positive 
predictive value of 0.84 for atrial-fibrillation alerts, establishing 
the feasibility of virtual mega-cohorts while reminding skeptics 
that only 0.5% of users were ever flagged, a figure that tempers 
hopes of blanket screening (Perez et al., 2019). Yet pragmatic 
trials that pipe such insights into health-system workflows 
or measure downstream outcomes like avoided admissions 
remain rare.
Overall, the literature portrays AI wearables as a tantalizing 
but still experimental asset for public health, rich in pilot data, 
lean in implementation science, and urgently in need of equity-
aware scaling strategies. Table 1 summarizes representative 
U.S. investigations that have quantified this lead-time benefit.

Table 1. Selected U.S. Studies demonstrating lead-time gains from wearable data streams

Study (first author) Year Sample size (N) Primary 
signal(s)

Public-health / 
planning outcome

Reported lead-time*

Radin et al. (Lancet 
Digital Health) (Radin et 
al., 2020)

2020 47,249 Fitbit users, 
5 U.S. states

Resting HR, sleep 
duration

Improved influenza-like-
illness (ILI) nowcasting 
at state level

3–4 days ahead of CDC 
ILI reports

Quer et al. (Nat Med, 
“DETECT”)(Quer et al., 
2021)

2021 38,911 
smartwatch/
fitness-band users, 
nationwide

HR, HRV, sleep 
+ self-reported 
symptoms

County-level COVID-19 
case prediction for test 
triage

1–4 days before PCR 
case spikes

Shandhi et al. (NPJ 
Digital Med) (Shandhi et 
al., 2022)

2022 7,558 ring and 
band users

HR, temp, activity; 
ML triage model

Increased diagnostic 
yield of targeted COVID 
testing

6.5× higher positivity vs 
random testing; implied 
2–3 day advance 
window

Stehlik et al. (Circ 
Heart Fail, “LINK-HF”) 
(Stehlik et al., 2020)

2020 100 heart-failure 
patients, 6 U.S. 
centres

Multisensor chest 
patch (ECG, 
impedance), ML 
risk score

Forecast of HF 
hospitalisations → bed-
capacity planning

Median 6.5 days before 
admission

CDC Early-Release 
Dashboard (unpublished 
pilot) (CDC, 2024c)

2023 ≈250,000de-
identified 
smartwatch users 
(3 states)

Aggregate HR 
anomalies

Operational trigger for 
surge-clinic staffing

Mean 4 days ahead of 
ED respiratory visits

*Lead time is defined as the interval between the wearable alert threshold and the point at which traditional surveillance (lab 
confirmation, ED trend, hospital admission) exceeded its operational threshold.

3. METHODOLOGY 
This review followed a narrative synthesis framework rather 
than a systematic-review or meta-analytic protocol. A broad, 
iterative literature search was conducted in PubMed, Scopus, 
and IEEE Xplore for English-language publications dated 1 
January 2019–31 May 2025 using the Boolean string (wearable 
OR smartwatch OR fitness-tracker OR sensor OR “patient-
generated”) AND (AI OR “machine learning”) AND (“public 
health” OR surveillance OR “health-system planning” OR 
resource-allocation) AND United States. Grey literature from 
CDC, FDA, and CMS portals and reference chaining from key 
reviews supplemented database yields.
Articles were retained when they (i) analysed physiologic 
data from commercially available or FDA-cleared wearables, 
(ii) applied AI or machine-learning methods, and (iii) reported 
implications for U.S. public-health surveillance or health-system 

operations. Non-empirical editorials, engineering prototypes 
without human data, single-case reports, and non-U.S. studies 
were excluded. Two reviewers independently screened titles 
and abstracts, resolving discrepancies by discussion. Eligible 
full texts were summarised in a structured matrix capturing 
study design, population, signal type, algorithm class, 
and planning-relevant outcomes. Extracted evidence was 
synthesised thematically to identify recurring challenges and 
implementation patterns; no quantitative pooling or risk-of-
bias scoring was attempted, consistent with narrative-review 
conventions.

4. RESULTS AND DISCUSSION
4.1. AI and Machine-Learning Technologies in Wearable 
Health Devices
Wearable sensors first counted steps; now they infer arrhythmias, 
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forecast glycemic excursions, and whisper early warnings of 
heart-failure decompensation. Their leap in capability rests 
almost entirely on machine-learning (ML) pipelines that begin 
on the wrist or finger and often finish in cloud data centers. 
This section traces the algorithmic architecture, sensor stack, 
processing models, and validation pathways that together 
define the state of AI-enhanced wearables in 2025.

4.2. Algorithm families and flagship use-cases
Most commercial wearables deploy a layered approach: 
lightweight supervised models run continuously on-device to 
label raw accelerometer or photoplethysmography (PPG) traces, 
while heavier deep-learning or self-supervised networks refine 
those labels in the paired phone or cloud. The best-known 
example is Apple’s Irregular Rhythm Notification Feature, 
cleared via the FDA de novo pathway in 2018 and tuned on 
hundreds of thousands of annotated pulse segments (FDA, 
2018). Its performance was evaluated in the virtual Apple Heart 
Study, where only 0.5% of 419,000 participants received an alert, 
yet positive predictive value for atrial fibrillation reached 0.84 
when ECG patches were worn (Perez et al., 2019). Rivals quickly 
followed: Fitbit’s PPG AF-alert and Samsung’s single-lead ECG 
were each cleared for episodic rhythm analysis, underscoring a 
regulatory drift toward software-as-a-medical-device (SaMD). 

4.3. Expanding sensor repertoire
Modern wearables combine multiple modalities: optical PPG 
for pulse and oxygen saturation, capacitive electrodes for ECG, 
bio-impedance for respiration or body composition, and MEMS 
gas sensors for volatile organics. Research cohorts have grafted 
sweat β-hydroxybutyrate strips onto armbands and integrated 
microfluidic lactate assays into smart patches, hinting at 
biochemical horizons. For chronic disease, continuous glucose 
monitors already pair with insulin pumps; reinforcement-
learning controllers now personalize basal rates in real time 
and outperform traditional proportional-integral algorithms 
in simulation studies (Dénes-Fazakas et al., 2024). Meanwhile, 
cuffless blood-pressure wearables, fusing PPG, pulse-transit-
time, and inertial data, have inched closer to the ISO 81060-2 
standard, though recent hypertension reviews still judge them 
“not yet ready for diagnostic substitution” (Mukkamala et al., 
2025).

4.4. Edge-versus-cloud computing trade-offs
Running ML directly on wearables trims latency and preserves 
privacy but is constrained by battery and silicon. A new 
generation of ultra-low-power neural-network accelerators, 
such as STMicroelectronics’ STM32N6 microcontroller, 
executes convolutional networks locally at single-digit 
milliwatt budgets, pushing step recognition, fall detection, and 
even sleep staging fully to the edge (IDTechEx, 2023; Reuters, 
2024). Analyses requiring richer context, multi-day heart-rate 
variability models, or population-level anomaly detection 
still migrate to the phone or cloud, where federated-learning 
frameworks allow model training without exporting raw sensor 
streams. Commercial players increasingly blend both modes: 
immediate safety alerts on-device and weekly trend reports via 
cloud dashboards.

4.5 Model lifecycle and regulatory science
Unlike static firmware, ML models undergo continual tuning 
to stave off concept drift—the slow erosion of accuracy as 
user behavior or sensor hardware evolves. The FDA’s 2024 
Good Machine Learning Practice draft guidance endorses a 
“pre-specification plus algorithm change protocol” approach, 
in which manufacturers declare intended retraining triggers 
and verification tests before market release (FDA, 2018). Such 
guidance codifies what early adopters already practice: shadow-
mode evaluation on real-world data streams before activating 
updated weights. Governance matters because even subtle 
performance degradation can carry clinical risk; one study 
showed that step-count algorithms underestimated activity 
by 12% after a firmware update that altered accelerometer 
sampling.

4.6. Explainability and bias mitigation
Trust hinges not only on accuracy but also on intelligibility. 
Post-hoc interpretability tools, SHAP value scroll plots for 
ECG classifiers, and saliency maps for respiration models help 
clinicians verify that networks attend to physiologic rather than 
artefactual features. Yet, explainability cannot mask dataset 
bias: optical heart-rate errors remain systematically higher in 
darker skin tones, a disparity attributed to melanin absorption 
of green light (Overbye-Thompson et al., 2024). Researchers 
have suggested using multi-wavelength PPG and special loss 
functions to address bias, but independent checks in 2024 still 
found that the average error was up to 7% higher for skin 
types V–VI (Aston, 2024). Transparent reporting of training-
set composition and performance stratified by demographic 
covariates is gradually becoming a regulatory expectation 
rather than an academic nicety.

4.7. Digital biomarker validation pathways
Turning sensor outputs into clinically accepted “digital 
biomarkers” demands analytical validity, clinical validity, and 
utility evidence, an echo of in vitro diagnostic pathways. The V3 
framework from the Digital Medicine Society formalizes those 
tiers and has been adopted by several pharmaceutical sponsors 
embedding wearables into hybrid trials (Overbye-Thompson 
et al., 2024). For instance, peak-skin-temperature variance 
captured by smart rings is being investigated as an endpoint 
in phase II vaccine studies, while gait-speed metrics from 
pocket accelerometers have entered oncology fatigue trials. 
The U.S. National Institutes of Health has begun cataloguing 
such biomarkers in an open repository to streamline future 
regulatory submissions.

4.8. Ecosystem integration and market landscape
Consumer platforms such as Apple HealthKit, Google Health 
Connect, and Samsung Privileged Health SDK now expose 
APIs that map wearable metrics to HL7 FHIR “Observation” 
resources, easing import into electronic health records and 
research databases. SMART-on-FHIR apps built by academic 
hospitals permit cardiologists to view 14-day heartbeat density 
plots directly inside Epic or Cerner, though alert fatigue and 
reimbursement gaps temper enthusiasm. Market leadership 
remains fluid: Apple still commands roughly one-third of the 
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U.S. smartwatch share, but sensor-rich niche players such as 
Oura, Whoop, and BioIntelliSense have carved out spaces in 
sleep analytics and continuous vital-sign monitoring. Edge-AI 
hardware arrivals signal further fragmentation, with chipset 
vendors courting both mass-market and medical device startups 
(IDTechEx, 2023; Reuters, 2024).
In short, AI is no longer a marketing gloss on wearables but 
the critical enabler that elevates consumer gadgets into quasi-
medical instruments. Continued progress depends on silicon 
designed for edge inference, rigorous bias audits, and regulatory 
pathways that keep pace with iterative model updates, all 
prerequisites for the public health applications discussed in the 
next section.

4.9. Applications in public-health surveillance 
Wearable sensors slipped onto wrists and fingers now function 
as a distributed mesh of biosignals that epidemiologists can 
mine almost as readily as meteorologists consult satellite 
loops. The earliest proof surfaced during the severe 2017-18 
U.S. flu season, when statewide deviations in resting heart 
rate and sleep among 47,000 Fitbit users sharpened influenza-
like-illness forecasts by up to one-third and cut reporting 
lag by days (Radin et al., 2020). When SARS-CoV-2 arrived, 
researchers at Scripps repurposed the same logic: aggregated 
shifts in heart rate and sleep captured through the DETECT app 
foreshadowed county-level COVID-19 surges, granting health 
officials an extra window to marshal testing kits and staff 
vaccination lines (DETECT | Join the Study, n.d.). Even ring-
based thermistors joined the fray; nightly temperature drifts 
recorded by Oura wearers signaled infection a median 2.5 days 
before PCR positivity, suggesting that algorithms watching for 
personal “fever fingerprints” could flag cases while individuals 
still felt well (Team, 2020).
Those same device streams prove valuable well after an 
epidemic peak. By April 2020, step counts recorded nationwide 
fell precipitously following stay-at-home orders, and recovery 
curves differed across states, giving planners an objective 
barometer of behavioral response to public-health mandates 
(Mason et al., 2022). Subsequent Bluetooth proximity logs on 
watches, which rely on Google–Apple exposure-notification 
APIs, enable contact-tracing teams in Virginia and California 
to reach tens of thousands of anonymous users with minimal 
privacy compromise, serving as a prelude to future outbreaks 
(Gunasekeran et al., 2021). Such early-warning capacity is 
already influencing procurement schedules: several hospital 
networks now monitor local smartwatch anomalies as a “digital 
weather map” when deciding when to expand evening urgent-
care hours.
Beyond infections, wearables illuminate entrenched chronic 
disease determinants. Researchers analyzing 100,000 
participants in the NIH All of Us program calculated a modified 
Gini index of activity inequality from Fitbit step counts; 
counties with the widest gaps also bore the highest obesity 
prevalence (R² ≈ 0.80), giving public health departments a 
real-time lens on where parks, bike lanes, or walking clubs 
might yield the greatest marginal benefit (Jeong et al., 2025). 
Meanwhile, cardiologists studying the multisensor LINK-HF 
patch showed that machine-learning models predicted 76–88 

percent of heart-failure admissions at least a week ahead, 
implying that aggregated alerts could help regional planners 
pre-position nurses or swing beds before a spike overwhelms 
capacity (Stehlik et al., 2020).
Environmental health introduces an additional layer. 
Wildfire seasons that cloak the West in particulate haze leave 
unmistakable signatures in population physiology: studies 
pairing Apple Watch heart-rate variability with portable 
PM₂.₅ sensors in firefighters documented autonomic stress 
spikes during heavy smoke exposure; information is now 
being adapted to issue earlier clean-air-shelter advisories 
for the general public (McKay, 2024). Similar integrations of 
smartwatch skin-temperature streams with NOAA heat-index 
forecasts let city agencies push hyperthermia warnings to 
outdoor workers while simultaneously populating surveillance 
dashboards that track heat-stress clusters by ZIP code (Pinnelli 
et al., 2025).
Physiology also offers a window on population mood. 
Longitudinal wearable data collected from thousands of U.S. 
adults showed that diminished heart-rate variability and 
fragmented sleep in the spring of 2020 paralleled surges in 
calls to mental-health hotlines, underscoring the feasibility of 
remote, passive stress surveillance during disasters (Luong et 
al., 2024). Public-health psychologists now pilot dashboards 
that watch for synchronous dips in sleep efficiency across 
neighborhoods; when alerts coincide with economic-layoff 
news or natural-disaster warnings, crisis-counseling teams are 
dispatched earlier than in the past.
All these use cases, however, rest on data that is 
disproportionately generated by younger, wealthier, and often 
White Americans. National Health Interview Survey analyses 
confirm wearable adoption falls sharply among adults over 65 
and those with annual incomes below $35,000, a skew that risks 
blind spots if raw aggregates are treated as universal proxies 
(Dhingra et al., 2023). Technical biases exacerbate matters: 
optical heart rate and SpO₂ sensors exhibit higher error rates in 
darker skin tones, and motion artifacts climb in manual labor 
cohorts, both sources of potential misclassification (Parker et al., 
2017). Current mitigation strategies include federated analytics 
sandboxes that let algorithms learn from device data stored on 
corporate servers without exporting raw streams, coupled with 
differential-privacy noise that obfuscates small-cell outliers 
before public release; yet no federal standard mandates such 
safeguards.
Still, the trajectory is clear. Several state health departments 
participating in the CDC Data Modernization Initiative now 
ingest de-identified smartwatch summaries via HL7 FHIR 
interfaces, layering them atop traditional laboratory feeds 
and wastewater panels to build multi-signal dashboards for 
outbreak forecasting and chronic-disease monitoring. By 
treating resting-heart-rate anomalies as one might treat shear 
lines from Doppler radar—an early indicator rather than 
definitive proof—officials gain precious lead time to deploy 
testing units, adjust clinic hours, or push location-based alerts. 
Technology vendors, regulators, and public health leaders have 
the potential to expand access, safeguard privacy, and verify 
algorithms across various entities. AI-enhanced wearables may 
soon anchor a new pillar of digital surveillance, complementing, 



42

https://journals.stecab.com
Stecab Publishing

Journal of Medical Science, Biology, and Chemistry (JMSBC), 2(2), 37-49, 2025 Page 

applied to Fitbit and Apple Watch step-count streams reveal 
neighborhood-level pockets where activity inequality widens 
weeks before obesity or diabetes claims rise; several Medicaid 
managed-care organizations now use these early indicators to 
decide where to station mobile nutrition clinics and which ZIP 
codes merit subsidized trackers or community exercise coaches 
(Jeong et al., 2025). The logic echoes preventive maintenance 
in manufacturing: identify vibration long before the machine 
fails. In a similar vein, public-health agencies in Oregon have 
begun coupling smartwatch skin-temperature and heart-
rate–variability anomalies with NOAA heat-index forecasts to 
anticipate heat-stroke presentations; early alerts prompted them 
to open cooling centers forty-eight hours sooner during the 
July 2024 heat dome than in 2021, and emergency-department 
data later showed a 12 percent drop in heat-related admissions 
year-on-year (Centers for Medicare & Medicaid Services, 2023).
Financial incentives are aligning. The Centers for Medicare 
& Medicaid Services updated its 2024 Physician Fee Schedule 
to expand reimbursement for remote physiologic monitoring 
and to permit auxiliary clinical staff, not just physicians, to 
review incoming wearable streams, a change expected to triple 
the practical capacity of monitoring programs in community 
hospitals (Centers for Medicare & Medicaid Services, 2025). 
Private payers follow CMS signals closely; several Blue Cross 
plans now reimburse for AI-assisted arrhythmia alerts if the 
data feed lands in the electronic health record and the clinician 
documents follow-up. Finance teams in health systems note 
that payer coverage turns what once looked like an IT expense 
into a revenue-neutral quality program able to justify analytics 
hires and cloud storage line items.
At the supply-chain level, the continuous telemetry provided 
by wearables allows pharmaco-epidemiologists to model 
demand for antivirals, inhalers, or diuretics with finer temporal 
granularity. Kaiser Permanente’s flu-season dashboard, for 
example, links de-identified watch metrics to prescription 
fulfillment trends; an uptick in elevated resting-heart-rate 
clusters reliably precedes Tamiflu demand by three to five days, 
giving central pharmacies time to reroute inventory among 
regional hospitals before shortages occur (CDC, 2024b). Similar 
logic guides the vaccine deployment by the Strategic National 
Stockpile: In 2024, MMWR studies found that areas using both 
syndromic and wearable data in their vaccine distribution 
plans were able to send out preventive vaccination doses more 
quickly and wasted fewer doses than those that only used 
claims-based data (Kallay et al., 2024).
Human resource planners also stand to benefit. Near-real-
time workforce analytics released by the CDC in 2024 urge 
local health departments to monitor aggregated heart-rate 
variability among public-safety employees as an early stress 
barometer, then schedule resilience training or mandatory rest 
days before burnout manifests in sick leave (CDC, 2023). At 
the other end of the continuum, long-term-care facilities in 
Minnesota test smart patches that flag frailty-related inactivity 
dips; administrators use the feed to concentrate physical 
therapists on wings where residents are collectively flagging, 
aiming to prevent falls and preserve functional independence, 
thereby reducing downstream skilled-nursing transfers.
Still, a sophisticated analytics layer is required to sift signal 

not supplanting, the laboratory reports and hospital logs that 
have long guided American epidemiology.

4.10. Impact on health-system planning and resource 
allocation 
For a long time, American health systems have relied on 
retrospective billing data and sentinel hospital reports to forecast 
demand, a method akin to navigating a ship by observing its 
wake. AI-enhanced wearables make it possible to look through 
the bow instead. When investigators demonstrated that a 
multisensor patch combined with machine learning could 
predict 76–88 percent of heart failure admissions a median of 
six days in advance, they offered planners a short but actionable 
horizon to expand cardiology staffing, adjust bed allocations, or 
launch nurse-led outreach before the surge crested (Stehlik et al., 
2020). Follow-up economic modeling suggested that preventing 
even one in ten such admissions would offset the entire cost 
of a remote-monitoring program in under twelve months, and 
real-world evaluations of telemonitoring have already reported 
inpatient-cost reductions of roughly 40 percent in high-risk 
cohorts (Vudathaneni et al., 2024).

Figure 1. Lead-time advantage of a wearable-based anomaly 
index over CDC influenza-like-illness (ILI) counts during a 
simulated community outbreak.

wearable signal breaches its alert threshold four days before 
CDC ILI crosses the epidemic benchmark, illustrating the early-
warning window reported by Radin et al., Lancet Digital Health 
2020 (Radin et al., 2020). Synthetic values are normalized to a 
0–100 scale for visual clarity.
Pandemic experience sharpened appreciation for lead time. 
During early SARS-CoV-2 waves, county dashboards in 
California showed that resting-heart-rate anomalies from tens 
of thousands of watch and ring wearers foreshadowed hospital 
census curves by about four days; administrators used the 
signal to trigger elective-surgery slowdowns and accelerate 
personal-protective-equipment orders, moves later credited 
with avoiding ventilator shortages in two Bay Area systems 
(McKenna, 2020). Such results have accelerated investment in 
“mission-control” centers, operations suites that fuse wearable 
aggregates with emergency-department arrival feeds and 
airborne-virus forecasts so that shift supervisors can redeploy 
staff in real time instead of after the evening census is tallied 
(Classen et al., 2018).
Resource planning is not limited to acute care. Cluster analytics 
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from noise. CDC’s Data Modernization Initiative (DMI) 
explicitly funds AI pipelines that ingest heterogeneous sources, 
including wearables, into automated dashboards, but public 
health informatics units report shortages of data engineers able 
to maintain those feeds (CDC, 2025). To mitigate capacity gaps, 
the DMI promotes federated-analysis contracts in which private 
device makers run anomaly-detection models on their servers 
and deliver only risk scores to public agencies, an arrangement 
that eases data-transfer bottlenecks and halves cloud-storage 
costs for health departments. Yet, skeptics warn that “black-
box” vendor scores may obscure methodological weaknesses 
or bias. Pilot collaborations with academic data trusts—neutral 
entities that audit algorithms for drift and equity—represent 
an emerging governance model to keep vendor outputs 
transparent while preserving user privacy.
Equity concerns remain material. Modeling studies suggest that 
if current disparities in adoption persist, predictive-admission 
dashboards could underestimate the risk of heart failure in safe-
net hospitals by 15–20 percent, leading to misdirected staffing 
relief toward affluent suburbs. The All of Us activity-inequality 
analysis provides a partial remedy: it shows that even when 
penetration is unequal, internal dispersion metrics within 
the tracked subset can still forecast disease prevalence in the 
broader community, offering planners a relative indicator until 
device subsidies narrow the gap (Jeong et al., 2025). Meanwhile, 
several states now weave wearable-acquisition grants into 
opioid-settlement funds, distributing trackers to low-income 
patients with chronic disease so their data inform regional 
planning on equal footing with that of wealthier peers.
From an administrator’s vantage, the chief challenge is 
operationalizing insights without drowning staff in alerts. Large 
multi-hospital systems have turned to tiered orchestration: raw 
streams flow into cloud AI that flags high-probability events; 
nurse navigators vet the subset; only the top decile reaches 
attending physicians’ inboxes. Early adopters report a 35 percent 
fall in unfiltered alert volume alongside maintained sensitivity 
for true deterioration events, a pragmatic compromise that 
keeps clinicians engaged and frees them to act on forecasts 
rather than on hindsight.
The trajectory is therefore unmistakable: as analytics mature 
and reimbursement tightens the feedback loop, AI-enhanced 
wearables migrate from lifestyle adjuncts to operational sensors 
that tell planners when to open surge wards, where to deploy 
community paramedics, and how to stagger vaccine shipments. 
If privacy safeguards and equitable distribution keep up, the 
devices humming on American wrists and in shirt pockets may 
soon become as indispensable to resource allocation as the 
electronic health record itself.

4.11. Current implementation challenges 
However persuasive the case for wearable-driven planning 
may be, the road from pilot to practice is littered with obstacles. 
The first and most obvious is data quality and bias. Optical 
sensors still stumble on darker skin: a 2024 bench study of 11 
fingertip oximeters found error rates that widened precisely 
when oxygen saturation mattered most for Black patients, 
and the FDA has since proposed new trials that must stratify 
performance across pigment scales before clearance is granted 

(Leeb et al., 2024; Satija & Satija, 2025). Similar color-dependent 
drifts in wrist-based PPG heart-rate monitors raise the risk that 
outbreak alerts based on aggregate vitals could under-detect 
distress in communities least able to absorb missed signals.
Even when the physics is sound, coverage gaps skew 
representativeness. National Health Interview Survey data 
show only 18% of adults with diagnosed cardiovascular disease 
used a wearable in 2019–20 versus 29% of the wider public, 
with uptake falling sharply in low-income and older cohorts 
(Dhingra et al., 2023). If planners equate a silence in the data 
stream with a healthy neighborhood, resources will flow away 
from precisely the ZIP codes that lack sensors. Device subsidies 
can narrow that gap, but they will not erase it until broadband, 
smartphone access, and digital literacy rise in tandem.
Assuming the sensor signal is reliable and equitable, moving 
the bits presents a headache. Consumer vendors still 
package metrics in proprietary schemas. Health-IT groups 
experimenting with Fast Healthcare Interoperability Resources 
(FHIR) mapping tools report that cross-vendor step counts 
or sleep stages require bespoke transformers despite the 
nominal standard (Bossenko et al., 2024; Yoon et al., 2024). 
Translation layers add cost and latency; more troublingly, 
each interface expands the cyberattack surface. At least three 
high-profile fitness-tracker breaches in 2024 exposed millions 
of unencrypted records, jolting insurers into insisting on end-
to-end encryption and zero-trust architectures before data can 
touch electronic health-record (EHR) cores (Daly et al., 2024).
Privacy expectations compound the engineering lift. The CDC’s 
Data Modernization Initiative encourages states to ingest de-
identified consumer metrics, yet a recent MMWR framework 
cautions that “health data mosaicking” can re-identify 
individuals when even a handful of variables overlap with 
public datasets (Felix, 2024). Academic groups tout federated-
learning pipelines that keep raw streams on vendor servers and 
ship only model weight updates to public agencies, but most 
demonstrations run on synthetic or convenience samples rather 
than the messy, multi-jurisdiction reality of U.S. public health 
(Kumar, 2025). Draft FDA guidance on lifecycle management of 
AI devices hints that regulators will soon demand auditable logs 
of such distributed training to verify that bias is not creeping 
back through unmonitored updates (Health, 2025).
Workforce bottlenecks can cause even the best data to fail. 
A 2023 JAMA survey of hospitalists involved in remote-
patient-monitoring programs revealed that two-thirds felt 
overwhelmed by the alert volume and half doubted they were 
reimbursed for the extra review time (Pronovost et al., 2022). 
CMS’s April 2025 billing update allows auxiliary clinical staff to 
triage incoming physiologic feeds and expands codes for “time 
spent in data interpretation,” but most community clinics lack 
digital nurses or informatics pharmacists to seize that revenue 
stream (Centers for Medicare & Medicaid Services, 2025). 
Without staffing models that convert raw notifications into 
prioritized worklists, clinician trust erodes; alert fatigue today 
is less a theoretical hazard than a palpable brake on adoption.
Finally, governance and transparency remain unsettled. 
State health departments testing vendor-hosted dashboards 
complain that proprietary anomaly scores arrive with scant 
methodological detail, making it impossible to audit whether 
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rural hospitals with smaller sample sizes are disadvantaged 
in outbreak alerts. CDC guidance now urges independent 
algorithm audits akin to clinical-laboratory proficiency testing, 
yet few public agencies possess the in-house talent to rerun 
deep-learning pipelines. University “data trusts” have begun to 
fill the gap by offering third-party validation as a service, but no 
funding stream ensures sustainability once grant money ends.
In summary, a complex array of interrelated issues, such as 
biased perceptions, uneven adoption, fragile interfaces, privacy 
concerns, staffing shortages, and unclear vendor algorithms, 
impede implementation. Each knot can be untangled—FDA 
skin-tone benchmarks, device subsidies, FHIR implementation 
guides, federated analytics, CMS reimbursement tweaks, 
algorithmic audit contracts—but only if tackled in concert rather 
than piecemeal. The following section sketches an integration 
framework designed precisely for that multi-front campaign.

4.12. Data integration and analytics framework for 
population health 
Wearable streams only become public-health intelligence when 
they are braided together with clinical records, environmental 
feeds, and social determinants, passed through real-time 
analytics, and returned as actionable signals. Building that 
braid requires choices at every layer, including ingestion, 
harmonization, model training, and governance, and the United 
States is just beginning to assemble a repeatable playbook.
Work starts at the edge, where a watch or ring pushes encrypted 
packets to a phone and then to a message broker. Forward-
looking health systems already route those packets into 
Apache Kafka clusters, pairing them with Flink for windowed 
aggregations; Siemens Healthineers’ reference deployment 
reports millisecond-latency joins between imaging orders 
and wearable heart-rate telemetry, a configuration now being 
copied by several U.S. integrated-delivery networks (Waehner, 
2024a, 2024b). Edge–cloud hybrids reduce bandwidth and 
protect privacy: simple anomaly filters run on-device, and 
detailed feature extraction lands in cloud notebooks. Amazon’s 
connected-edge reference architecture, for instance, shows 
SpO₂ alarms resolved locally while weekly trend vectors slip 
into AWS Kinesis and onto SageMaker for training (Efren et 
al., 2024).
Once in the cloud, records must speak a common dialect. Fast 
Healthcare Interoperability Resources (FHIR) is the lingua 
franca, but raw vendor payloads seldom comply. Google’s 
Healthcare API now offers a “$ingest” endpoint that mutates 
proprietary JSON into FHIR Observation resources, and HL7’s 
new Subscription spec in FHIR R5 lets public-health hubs 
subscribe to “resting-heart-rate” events directly, eliminating 
nightly batch pulls (Alexander, 2024; Google Cloud, n.d.). Yet 
translation alone is not trust: pipeline architects layer validation 
rules that quarantine values outside physiologic plausibility—
say, a 220 bpm heart rate on a sleeping adult—or flag missing 
device-position flags that could misstate step counts.
Fusion follows. The CDC’s Data Modernization Initiative 
supports projects where anonymous smartwatch data is 
combined with electronic lab reports and wastewater SARS-
CoV-2 levels, all organized by standardized timestamps and 
county codes to help identify unusual patterns (CDC, 2024a, 

2024c). Upstream of that lattice, the NIH Bridge2AI program 
is seeding “high-value, ethically sourced” corpora that splice 
wearable traces to genomics and clinical narratives, all under 
a federated schema designed for AI development at scale 
(National Institutes of Health, n.d.). ScHARe, a sister project, 
hosts federated social-determinant tables so that neighborhood 
deprivation scores sit one SQL join away from heart-rate-
variability trends, enabling equity-aware modeling without 
exposing row-level identities (United States Department of 
Health and Human Services, 2025).
Model training must respect both statistical drift and privacy 
statutes. Differential-privacy wrappers can inject calibrated 
noise before county-level metrics leave the vendor enclave; 
recent benchmark experiments on wearable accelerometer data 
showed that utility lost under a privacy budget of ε = 1 was less 
than three percentage points in outbreak-detection precision, 
a trade many epidemiologists deem acceptable (Li et al., 2022). 
Where raw data must move, Trusted Research Environments 
(TREs) provide a compromise: researchers log into a firewalled 
enclave, run code against individual records, and export only 
vetted aggregates. Scotland, England, and several U.S. academic 
consortia now publish TRE blueprints that American state 
health labs are adapting to satisfy both HIPAA Safe Harbor and 
community-engagement pledges (Lifebit, 2024; Scotland, n.d.).
Analytics routines inside the lattice evolve along two tracks. 
First, near-real-time anomaly detection compares current 
county medians to seasonally adjusted baselines; if a spike in 
resting heart rate co-occurs with rising positivity in syndromic 
ED feeds, a flag rolls to the dashboard. Second, slower causal-
inference engines create synthetic cohorts: every individual 
becomes their control in a “target-trial emulation,” allowing 
planners to estimate how a new bike lane changing step counts 
by 1,000 daily might translate into avoided diabetes cases the 
next year. Early demonstrations with mental-health wearables 
underscore why multi-scale analytics matter: short-horizon 
stress spikes can trigger crisis-line staffing tonight, whereas 
month-long circadian drift informs next-quarter funding for 
community sleep clinics (Kargarandehkordi et al., 2025).
The entire stack is covered by governance. Each data pipe 
travels under a Data Use Agreement that defines purpose 
(“outbreak detection,” “chronic-disease trend monitoring”), 
retention limits, and de-identification thresholds. Model 
cards document training data composition and bias audits; 
algorithm-change protocols, mirroring FDA guidance for 
software as a medical device, specify how often retraining 
may occur and what statistical tests must pass before weights 
migrate to production (Efren et al., 2024). Oversight boards 
drawn from health departments, clinicians, technologists, and 
patient advocates convene quarterly to review drift metrics and 
approve any expansion of feature scope.
Finally, the workforce layer translates insights into action. 
In most pilots, a triage nurse or epidemiologist receives daily 
digests rather than raw streams: “Maricopa County shows a 
2.1-σ heart-rate anomaly sustained three days.” If corroborating 
signals, Google search spikes, and wastewater upticks align, 
the dashboard escalates to hospital incident-command centers. 
Feedback loops close when human decisions (open surge ward, 
deploy mobile testing) feed back into the graph; the model 



45

https://journals.stecab.com
Stecab Publishing

Journal of Medical Science, Biology, and Chemistry (JMSBC), 2(2), 37-49, 2025 Page 

learns whether its alerts led to action and adjusts sensitivity 
thresholds accordingly.
Taken together, the framework resembles a multi-tier diaphragm 
that admits high-velocity consumer data, filters noise, fuses 
context, protects identity, and surfaces only what public-health 
actors can realistically act upon. Its feasibility now rests less 
on exotic AI and more on governance charters, staff training, 
and cloud-integration budgets, mundane hurdles, perhaps, but 
the same ones every previous surveillance revolution has had 
to clear.

4.13. Strategic recommendations for implementation
The evidence assembled in this review points toward a single 
imperative: wearables will help public health only if data move 
as freely as germs while remaining as private as confessions. 
That ambition begins with plumbing. National adoption of the 
Subscription framework in FHIR R5 would let health departments 
receive “resting-heart-rate” or “activity-inequality” alerts the 
moment vendors post them, eliminating batch uploads that 
now blunt timeliness (HL7 International, 2025). The CDC’s Data 
Modernization Initiative should mandate such live interfaces as 
a grant requirement and support a reference implementation 
that state labs can replicate instead of creating from scratch 
(CDC, 2024c). Sustainable funding matters just as much as 
architecture; CMS signaled its commitment by embedding both 
Remote Physiologic and Remote Therapeutic Monitoring in 
the 2024 Physician Fee Schedule, thereby converting “nice-to-
have” dashboards into reimbursable clinical services (Centers 
for Medicare & Medicaid Services, 2023).
Yet, plumbing without governance risks eroding trust. FDA’s 
2025 draft guidance on AI-enabled device software, coupled 
with its streamlined pathway for iterative model updates, 
gives manufacturers a transparent compliance runway and 
spares hospitals from wrestling with unversioned black-box 
algorithms (Goldman, 2024; Health, 2025). Public agencies 
should mirror that clarity by publishing algorithm-change 
protocols whenever vendor scores feed surveillance alerts, just 
as clinical labs disclose reagent lot changes. Privacy safeguards 
must keep pace: the GAO’s 2024 technology assessment 
underscores how easily location-linked wearables can expose 
workers, recommending encrypted pipelines and zero-trust 
access controls, measures that should be written into every 
public-private data-use agreement (United States Government 
Accountability Office, 2024).
Equity requires a dedicated line item. Activity-inequality 
research from the All of Us program shows that even sparse 
sensor coverage can forecast obesity hotspots if the tracked 
cohort is diverse, a finding that argues for subsidizing devices 
in Medicaid and rural clinics rather than waiting for market 
forces to close the gap (Jeong et al., 2025). Grants could flow 
through the same Bridge2AI mechanism the NIH now uses 
to seed flagship data sets, ensuring that bias audits start with 
inclusive training corpora instead of bolted-on corrections 
(National Institutes of Health, n.d.).
Ultimately, the success of any other reform hinges on the 
capacity of the workforce. Recent PGHD implementation 
studies emphasize that alert traffic must land on data-literate 
nurses or informatics pharmacists, not already-overloaded 

physicians (Griffin et al., 2025). Federal funding streams should 
therefore bundle staff training stipends with infrastructure 
grants, echoing past HITECH investments that paired EHR 
subsidies with “meaningful-use” education. Taken together, 
these actions—standards, reimbursement, regulation, equity 
subsidies, and workforce upskilling, would transform a 
patchwork of wearable pilots into a durable, trusted layer of 
America’s public-health infrastructure.

4.14. Future directions 
Next-generation wearables are edging closer to full vital-sign 
parity with intensive-care telemetry: continuous, cuff-free 
blood-pressure monitors for adults have secured preliminary 
510(k) clearances, echoing the 2023 neonatal approval for 
PyrAmes’s Boppli platform and Nanowear’s hypertension 
patch and hinting that ubiquitous, non-invasive hemodynamics 
will soon inform both bedside care and population dashboards 
(Drake, 2023; Nanowear, 2024). At the silicon layer, bespoke 
edge-AI chips unveiled at Embedded World and in AONDevices’ 
new sensor modules promise milliwatt inference, bringing 
anomaly detection entirely on-device and shrinking privacy 
risk (Satyajit, 2024; Zack, 2024). Data from those chips will not 
live in isolation: smart-city pilots are already wiring wearable 
feeds into environmental and mobility grids, letting planners 
overlay particulate surges or heat domes on live physiology 
(Domaradzka et al., 2024; Hong et al., 2025).  Digital-twin 
initiatives take a step further by connecting each citizen’s 
sensor trace to a virtual avatar, which enables the testing of 
policy scenarios before investing money or lives (de Oliveira 
El-Warrak & Miceli de Farias, 2025; Elechi et al., 2025). 
Meanwhile, generative-AI health coaches, now in beta at tech 
giants and start-ups, interpret those streams in plain language, 
nudging users toward sleep or diet changes and feeding 
aggregated adherence metrics back to public health (Altman & 
Huffington, 2024; Henshall, 2023). If standards, subsidies, and 
audit frameworks mature apace, the coming decade could see 
public health officials consult a living “physiologic twin” of 
the nation as routinely as meteorologists check Doppler radar, 
anticipating, not merely recording, the next wave of need 
(Global Wellness Institute, 2025). 

5. CONCLUSION
Wearable devices began as pedometers for weekend joggers; 
they have evolved into networked biosensors capable of 
revealing how whole communities breathe, sleep, move, and 
falter in real time. The studies reviewed here show that when 
artificial intelligence transforms those raw pulses into patterns, 
public health surveillance gains precious lead time and health 
system planners acquire a dynamic map of looming demand. 
Yet promise is inseparable from peril. Sensor physics can 
magnify bias; adoption skews toward the affluent; plumbing 
is still fragile; and clinicians will disengage if data reach them 
unfiltered. These are not technical footnotes but existential 
constraints; fail to manage them and the enterprise collapses 
into noise or mistrust.
The road forward is therefore both prosaic and profound. It 
runs through standards bodies and reimbursement schedules, 
through equity grants and algorithm audits, through nurse 
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training sessions and privacy charters. If these seemingly 
insignificant components align, the result will be a remarkable 
health infrastructure that can detect the initial signs of an 
outbreak, predict ICU bed requirements, and direct preventive 
resources towards sedentary areas, and all of these activities 
without compromising individual autonomy. In that future, 
wearable data are neither a gimmick nor an afterthought; they 
are a shared public utility, as fundamental to collective well-
being as clean water or reliable weather forecasts.
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