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Drug-resistant strains of tuberculosis (TB) is caused by Mycobacterium 
tuberculosis and are making the disease a global health emergency. This calls 
for new treatments that target unidentified bacterial pathways. In order to find 
natural inhibitors of the ClpP1P2 protease that is a crucial virulence factor for 
mycobacterial survival, our study used computational techniques. We used 
molecular docking to screen 100 compounds against the ClpP1P2 structure 
(PDB: 4U0G) while giving preference to ligands with higher binding affinities 
than reference medications (ethambutol, isoniazid). To evaluate therapeutic 
potential, we subjected top hits to target fishing, toxicity prediction and 
pharmacokinetic profiling. Our top two hit compounds were neodiospyrin 
and arbutin respectively. According to physiologically-based pharmacokinetic 
modelling, neodiospyrin was the best candidate due to its remarkable 
binding energy (−13.28 kcal/mol), ligand efficiency (0.474), and intracellular 
lung accumulation. Also, Arbutin showed good safety but restricted tissue 
penetration. Through Prediction of Activity Spectra of substances (PASS) 
analysis, both compounds demonstrated complementary biological activities 
like modulation of apoptosis and anti-inflammatory effects. Target fishing 
indicated possible human off-target interactions (GPCRs for arbutin, kinases 
for neodiospyrin) but this requires further experimental validation. Our 
findings presented and demonstrated the potential of ClpP1P2 inhibition for 
tuberculosis treatment, with neodiospyrin identified as a key candidate for 
further improvement against drug-resistant strains.
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1. INTRODUCTION
Tuberculosis (TB) is caused by Mycobacterium tuberculosis and 
it persists as a formidable global health challenge. There’s an 
estimated 10.8 million new cases and 1.25 million deaths in 
2023, allowing it to reclaim its position as the leading cause of 
death from a single infectious agent, surpassing COVID-19 in 
the process (World Health Organization, 2024). Approximately 
1.7 billion individuals, or say 23% of the global population are 
estimated to harbour latent TB infection (LTBI). This serves as 
a reservoir for future active cases, especially when considering 
immunocompromised populations (Houben & Dodd, 2016). The 
disease disproportionately burdens low- and middle-income 
countries where limited access to healthcare infrastructure 
and diagnostic resources hampers effective TB control (World 
Health Organization, 2024). Socioeconomic factors like poverty 
and malnutrition, further worsen TB transmission, with 30 
high-burden countries; led by India (26%), Indonesia (10%), and 
China (6.8%), accounts for 87% of global cases (World Health 
Organization, 2024). The rise of multidrug-resistant (MDR) and 
extensively drug-resistant (XDR) TB strains has intensified 
these challenges. In 2023 alone, approximately 400,000 new 
cases of MDR or rifampicin-resistant (RR) TB were reported 
which constitutes 3.7% of all new TB cases, with resistance rates 
of 3.2% among new cases and 16% among previously treated 
cases (World Health Organization, 2024). Current treatment 
regimens for MDR and XDR TB are protracted, often exceeding 
18 months, and are associated with significant toxicity, high 
costs, and suboptimal success rates frequently below 60% 
(Zumla et al., 2013). 
By all means, the ClpP1P2 protease complex has emerged as 
a promising target for developing new anti-TB drugs due 
to its essential role in M. tuberculosis protein homeostasis. 
Unlike most bacteria, which possess a single ClpP protease, M. 
tuberculosis encodes two subunits, ClpP1 and ClpP2, that form 
a heterotetradecameric complex comprising two heptameric 
rings (Raju et al., 2012). Indeed, this complex in collaboration 
with ATP-dependent chaperones ClpX and ClpC1, degrades 
misfolded or damaged proteins and ensures bacterial survival 
under stress conditions such as host immune responses or 
antibiotic pressure (Ollinger et al., 2012). Inhibition of ClpP1P2 
disrupts this protein quality control that then leads to the 
accumulation of toxic polypeptides and subsequent bacterial 
cell death, offering a novel mechanism to combat both drug-
susceptible and drug-resistant TB strains (Raju et al., 2012). The 
structural asymmetry of the ClpP1P2 complex with distinct 
binding interfaces for ClpX and ClpC1, further distinguishes it 
from other bacterial Clp proteases and enhances its potential as 
a selective drug target (Leodolter et al., 2015).
Even more important, the critical role of ClpP1P2 in M. 
tuberculosis viability has been confirmed through genetic and 
biochemical studies, which demonstrate that depletion of either 
ClpP1 or ClpP2 results in rapid bacterial death both in vitro and 
during infection (Raju et al., 2012; Ollinger et al., 2012). Notably, 
the acyldepsipeptide (ADEP) antibiotics, which bind to ClpP1P2 
and dysregulate its activity, have shown potent anti-TB activity. 
This supports its therapeutic potential (Li et al., 2010), but that 
is not to say there are no challenges. Challenges remain in 
developing ClpP1P2 inhibitors with favorable pharmacokinetic 

profiles and minimal toxicity which necessitates advanced 
screening approaches to identify viable candidates.
Computational methods like molecular docking have 
revolutionized drug discovery by enabling the rapid screening 
of large compound libraries against specific targets. Docking 
studies facilitate the prioritization of compounds for 
experimental validation, significantly reducing the time and 
cost associated with traditional drug development by predicting 
binding affinities and molecular interactions (Meng et al., 2011). 
Recent applications of molecular docking in TB research have 
identified promising inhibitors for targets such as InhA and 
DprE1, demonstrating the power of this approach in addressing 
drug resistance (Ekins et al., 2017). Nonetheless, the application 
of docking to ClpP1P2 remains underexplored and presents an 
opportunity to identify novel inhibitors tailored to this protease.
This study employs molecular docking to screen a curated 
library of 100 compounds, including 97 literature-derived 
antitubercular agents and three controls (isoniazid, ethambutol 
and ADEP), against the ClpP1P2 protease complex (PDB 
ID: 4U0G). We aim to identify high-affinity inhibitors with 
potential anti-TB activity by evaluating binding affinities, 
ligand efficiencies, and key interactions within the catalytic 
pocket. We evaluate the pharmacokinetic and toxicological 
profiles of top candidates using ADMET analysis, predict their 
biological activity, carry out pharmacokinetic simulations and 
target fishing analyses. This study aims to identify high-affinity 
ClpP1P2 inhibitors through molecular docking, characterize 
their interactions with the ClpP1P2 catalytic pocket, and assess 
drug-likeness and stability to prioritize candidates. These 
efforts contribute to developing novel anti-TB therapeutics to 
combat MDR and XDR TB.

2. LITERATURE REVIEW
2.1. Disease of interest
Tuberculosis (TB) is driven by Mycobacterium tuberculosis 
and continues to challenge global health systems with its 
host-pathogen interactions and therapeutic hurdles. Recent 
scholarship has shifted focus toward understanding how the 
bacterium manipulates host immunity and how emerging 
strategies might counter its resilience. The ability of M. 
tuberculosis to subvert host defenses remains a cornerstone 
of its pathogenicity. Once inhaled, the bacilli exploit alveolar 
macrophages as a niche. It then employs mechanisms like 
the inhibition of autophagosome maturation to persist 
intracellularly (Ahmad et al., 2022). Recent studies talk about the 
role of the bacterial protein kinase G (PknG) in disrupting host 
autophagy by phosphorylating key regulatory proteins thus 
shielding the pathogen from degradation (Ge et al., 2022). This 
facilitates survival and even contribute to the establishment 
of latency, a state where the bacterium remains dormant yet 
viable. Latency poses a significant barrier to eradication as it 
allows M. tuberculosis to evade both immune surveillance and 
conventional drugs, with reactivation often occurring years 
later under conditions of immune stress (Chandra et al., 2022).
Therapeutic innovation offers a counterpoint to these 
challenges as recent advances show good promise against both 
active and latent TB. Host-directed therapies (HDTs) (Figure 
1), for example, aim to bolster immune clearance by targeting 
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pathways like the mTOR signaling axis which M. tuberculosis 
hijacks to suppress autophagy (Tian et al., 2025). Early clinical 
trials of rapamycin analogs as adjuncts to standard regimens 
suggest improved bacterial clearance even as scalability 
remains a concern in resource-limited settings (Tasneen et 
al., 2021). In parallel, the development of shorter regimens 
for drug-resistant TB like the BPaL combination (bedaquiline, 
pretomanid, and linezolid), has reduced treatment duration 
to six months for some patients (Putra et al., 2023). This is 
a marked improvement over the traditional 18-24 months 
but there are challenges. The regimen’s toxicity, including 

peripheral neuropathy from linezolid shows the need for safer 
alternatives (Putra & Adiwinoto, 2023).
Reflecting on these advances, it is clear that TB control hinges 
on integrating insights from host-pathogen biology with 
practical therapeutic solutions. The pathogen’s adaptability 
necessitates an approach of combining improved diagnostics 
like next-generation sequencing for rapid resistance profiling, 
with treatments that address both active and latent states. 
Even though progress is evident, the field must grapple with 
translating these innovations into equitable, real-world impact, 
especially in high-burden regions where infrastructure lags.

2.2. Life cycle of mycobacterium tuberculosismycobacterium tuberculosis in humans
Mycobacterium tuberculosis initiates its life cycle in humans 
(Figure 2) through airborne transmission. Infectious droplets 
from individuals with active pulmonary tuberculosis are inhaled 
which then deposits bacilli in the lung alveoli (Coleman et al., 
2022). Once in the lungs, alveolar macrophages phagocytose 
the bacteria but M. tuberculosis employs mechanisms to evade 
intracellular killing, notably by inhibiting phagosome-lysosome 
fusion through the action of its lipid-rich cell wall and secreted 
effectors (Pieters, 2008). This allows the pathogen to survive 
and replicate within macrophages as it establishes an early 
infection that can progress to active disease or be contained by 
the host immune response.
In most individuals, the immune system mounts a robust 
response. It recruits T cells and forms granulomas which are 
organized structures of immune cells that encase the bacteria 
to limit their spread (Rahman, 2024). This containment results 
in latent TB infection (LTBI), where the bacilli remain dormant, 
often for decades, without causing symptoms (Barry et al., 2009). 
Reactivation to active TB disease can occur if immune control 
weakens. Sabotages such as during HIV infection, diabetes, or 
immunosuppressive therapy then leads to symptomatic disease 
and potential transmission through respiratory secretions 
(Ronacher et al., 2015).

Figure 1. Main current HDTs used in tuberculosis (Tian et al., 2025).

Figure 2. Life cycle of mycobacterium tuberculosis and 
progression of TB in humans (Kumar et al., 2011).
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2.3. In SilicoIn Silico  studies in TB drug discovery
2.3.1. Molecular docking 
Put simply, molecular docking is often described using the 
“lock and key” analogy, where a ligand (the key) is thought to 
fit into a specific binding site on a protein (the lock) based on 
shape complementarity. This analogy is an oversimplification 
however, because real-world protein-ligand interactions are 
more dynamic and even involve conformational changes in 
both the protein and ligand. A more suitable definition would be 
to describe it as a pivotal computational technique in structure-
based drug design, predicting the optimal binding orientation 
of a small molecule (ligand) to a target protein (receptor) to 
form a stable complex (Meng et al., 2011) (Figure 3). Docking 
estimates binding affinities and identifies key interaction sites, 
that then offers us insights into potential drug mechanisms 
by simulating ligand-receptor interactions. The process relies 
on high-resolution protein structures that are often sourced 
from the Protein Data Bank (PDB). It employs algorithms to 
explore ligand conformations within the receptor’s binding 
pocket. Scoring functions, which assesses factors like hydrogen 
bonding, hydrophobic interactions, and shape complementarity, 
rank the resulting poses to predict binding strength (Kitchen 
et al., 2004). Despite problems like accounting for solvent 
effects or protein flexibility, docking’s ability to screen large 
compound libraries rapidly makes it important for tuberculosis 
(TB) drug discovery as novel inhibitors are urgently needed 
to combat Mycobacterium tuberculosis (Mtb) resistance (World 
Health Organization, 2024). Its integration with experimental 
validation enhances its utility in prioritizing compounds for 
further development.

dynamics simulations to account for protein flexibility, 
improving prediction accuracy for complex targets. In TB 
research, flexible and induced-fit docking are preferred due 
to the conformational variability of Mtb proteins (such as 
ClpP1P2), ensuring more reliable binding predictions (Freitas 
de Freitas et al., 2023).

Figure 3. Molecular docking flow chart (Eweas et al., 2014).

2.3.2. Types of docking
Molecular docking encompasses several approaches (Figure 4) 
that are distinguished by the degree of flexibility allowed for 
the ligand and receptor. Rigid docking treats both molecules as 
static and offers computational efficiency but limited accuracy 
for dynamic systems (Kitchen et al., 2004). Flexible docking 
permits ligand conformational changes while keeping the 
receptor rigid. This captures the adaptability of small molecules 
in binding sites better. Induced-fit docking allows flexibility 
in both ligand and receptor, reflecting the conformational 
adjustments often observed in protein-ligand interactions, 
though it demands greater computational resources (Baptista 
et al., 2021). Ensemble docking is a more advanced method that 
uses multiple receptor conformations often from molecular 

Figure 4. Different types of molecular docking approaches 
(Mohanty & Mohanty, 2023).

2.3.3. Applications of docking in TB research
Molecular docking has significantly advanced TB drug discovery 
by identifying potential inhibitors for critical Mtb targets. For 
example, Baptista et al. (2021) employed reverse docking to 
evaluate 53 anti-mycobacterial natural products against Mtb 
proteins, including ClpP1P2, InhA, and DprE1, identifying 
promising leads by comparing docking scores to known 
inhibitors. Similarly, docking studies targeting shikimate kinase 
(SK) that is an essential Mtb enzyme absent in humans, screened 
compound libraries to identify inhibitors with favorable binding 
affinities and low toxicity, validated through in vitro assays 
(Freitas de Freitas et al., 2023). Docking has also elucidated 
resistance mechanisms; Shahbaaz et al. (2022) used it to study 
how KatG mutations reduce isoniazid binding, informing 
strategies to overcome resistance. Additionally, docking has 
explored host-pathogen interactions and guided host-directed 
therapies by modeling Mtb protein interactions with human 
immune components (Abreu et al., 2020). These applications 
highlight docking’s role in accelerating the discovery of novel 
anti-TB agents, especially for drug-resistant strains.

2.4.  Gaps in the current research and unmet needs
Despite the promising validation of ClpP1P2 as a target, there 
are significant gaps in the translational path toward a clinical 
inhibitor. A primary challenge is in the structural complexity 
and asymmetry of the heterotetradecameric ClpP1P2 complex 
itself. As the crystal structure provides a foundational 
blueprint, the distinct binding interfaces for chaperones like 
ClpC1 and ClpX create dynamic binding sites that are not yet 
fully characterized for small-molecule inhibition (Schmitz et 
al., 2014; Leodolter et al., 2015). This complexity makes rational 
drug design especially challenging as effective inhibitors must 
precisely exploit these interfaces to achieve selectivity over 
human proteases.
Furthermore, although proof-of-concept molecules like 
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the acyldepsipeptides (ADEPs) demonstrate potent anti-
mycobacterial activity by dysregulating ClpP1P2 function, 
their therapeutic potential is severely limited by unfavorable 
pharmacokinetic profiles and concerns over toxicity (Li et al., 
2010; Ollinger et al., 2012). The development of lead compounds 
with improved drug-like properties like oral bioavailability, 
metabolic stability and a wider therapeutic window remains 
a critical unmet need. The field lacks a robust pipeline of 
chemically diverse scaffolds that can serve as starting points 
for medicinal chemistry optimization.
Finally, the pharmacodynamic understanding of ClpP1P2 
inhibition within the context of an intracellular infection 
is still nascent. The ability of any inhibitor to penetrate the 
complex cell envelope of M. tuberculosis and subsequently 
achieve sufficient concentration within the bacterial cytosol 
to engage the target is significant but often unaddressed. The 
absence of comprehensive data on the tissue distribution and 
intracellular pharmacokinetics of proposed inhibitors creates 
a gap between in vitro activity and in vivo efficiency (Raju et 
al., 2012). Bridging these gaps requires an integrated approach 
that combines advanced structural biology with rigorous in 
silico and pharmacokinetic profiling to identify novel, drug-
like chemotypes capable of selectively targeting this crucial 
bacterial vulnerability.

3. METHODOLOGY 
3.1. Retrieval and preparation of target protein structure
The ClpP1P2 protease complex of Mycobacterium tuberculosis 
is a critical component of the Clp proteolytic machinery 
essential for protein homeostasis and bacterial virulence 
(Schmitz et al., 2014) and was selected as the target for 
inhibitor screening. We retrieved the three-dimensional crystal 
structure of the M. tuberculosis ClpP1P2 complex from the 
Protein Data Bank (Schmitz et al., 2014) and saved it in legacy 
PDB format. Structural preparation was performed using 
Molecular Operating Environment (MOE) version 2019.0102 
(Chemical Computing Group, Montreal, QC, Canada). Non-
essential components like solvent molecules, bound ligands, 
and unwanted residues and chains were removed to isolate 
the ClpP1P2 protein in order to avoid interferences during 
the docking simulations. The structure was then processed 
using MOE’s QuickPrep module which applied Protonate3D 
to assign protonation states, corrected structural errors and 
added hydrogens. This was followed by energy minimization 
using the Amber10: EHT forcefield with a root-mean-square 
(RMS) gradient of 0.1 kcal/mol/Å², and the default parameters 
were used to optimize the protein geometry for subsequent 
molecular docking studies.

3.2.  Retrieval and preparation of ligands
The study curated a library of 100 ligands to screen for 
potential inhibitors of the Mycobacterium tuberculosis ClpP1P2 
protease. Ninety-seven ligands were phytochemicals carefully 
sourced from literature and selected based on their reported 
anti-tubercular activity against M. tuberculosis (Kumar et al., 
2014). Additionally, two standard anti-tuberculosis drugs 
namely Isoniazid and Ethambutol were included as reference 
compounds and our basis for that was due to their established 

clinical efficiency in tuberculosis treatment (D’Ambrosio et 
al., 2015). The final ligand was a modified acyldepsipeptide 
(ADEP-2B5Me) that was co-crystallized with the ClpP1P2 
structure. The 99 non-co-crystallized ligands were retrieved 
from PubChem in 3D Spatial Data File (SDF) format using their 
respective compound identifiers (CIDs). The co-crystallized 
ADEP-2B5Me was extracted directly from the ClpP1P2 crystal 
structure. All ligands were imported into a molecular database 
using Molecular Operating Environment (MOE). Ligand 
preparation involved energy minimization using the MMFF94x 
forcefield with a root-mean-square (RMS) gradient of 0.1 kcal/
mol/Å². The default dielectric conditions were employed to 
optimize molecular geometries for subsequent molecular 
docking studies.

3.3. Molecular docking and validation
Induced-fit Molecular docking was performed using the 
Molecular Operating Environment (MOE) software. Binding 
sites were identified using MOE’s Site Finder tool by adding 
dummy atoms to map potential interaction regions based on 
geometric and chemical properties of the protein surface. The 
placement method utilized was the Triangle Matcher algorithm, 
which generates poses by aligning ligand conformations to 
triplets of receptor site points. Docking results were evaluated 
using the S-score. This score estimates binding affinity between 
the ligand and the receptor. Initial scoring was performed with 
the London dG scoring function and final pose refinement was 
conducted using the GBVI/WSA dG scoring function.
Although it is necessary to note that ligands with the lowest 
binding energy were typically prioritized but we still carried 
out visual inspection of each docked pose in MOE to ensure 
realistic binding conformations. This step ensured we didn’t fall 
into the bias of selecting poses with low energy but unrealistic 
interactions like steric clashes or improbable hydrogen 
bonding geometries (Fischer et al., 2021). Validation of docking 
results was performed using the PyMOL Molecular Graphics 
System, version 3.0 (Schrödinger, LLC, New York, NY, USA). 
The selected docked complex of the modified ADEP ligand and 
target was superimposed onto the original protein structure to 
derive the root-mean-square deviation (RMSD). It is noted that 
values of RMSD less than 2 Å is considered optimal.  
Ligand efficiency (LE) and inhibition constant (Ki) were 
calculated to evaluate the binding potency and efficiency of 
the selected ligands. The calculations, statistical analysis, 
and scripting were performed using Python 3.12.7 within the 
Spyder integrated development environment. An acceptable 
threshold for drug-like molecules is typically LE ≥ 0.3 kcal/mol 
per heavy atom.
Ligand efficiency was determined using the formula (Hopkins 
et al., 2014):

						               ....(i)

where ∆G is the binding free energy (in kcal/mol), and NHA is 
the number of heavy atoms in the ligand (non-hydrogen atoms). 
The inhibition constant (Ki) was calculated using the standard 
thermodynamic relationship formula (Wu et al., 2001):

LE =
-∆G
NHA
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						              .....(2)

Where,
∆G is the binding free energy in kcal/mol, (R) is the gas constant 
(1.987 cal/mol·K), and (T) is the temperature in Kelvin (298 K 
was used). 

3.4. ADMET and drug-likeness studies
Identified top hit ligands were subjected to absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) 
evaluations along with drug-likeness assessments. These 
analyses were conducted using Swiss ADME and pkCSM 
online tools. These tools provide comprehensive predictions of 
physicochemical properties, pharmacokinetics and drug-like 
characteristics.
Drug-likeness was evaluated based on Lipinski’s Rule of 5 and 
Veber’s rules (Lipinski et al., 1997; Veber et al., 2002). These 
rules are established criteria for assessing oral bioavailability 
potential. Ligands with no violations of Lipinski’s or Veber’s 
rules were further screened for toxicity using ProTox 3.0.  ProTox 
3.0 is a web-based tool that predicts acute oral toxicity (LD50) 
and organ-specific toxicities based on structural similarity to 
known toxicants which then aids in the identification of safe 
candidates for downstream studies.

3.5. Physiologically-based pharmacokinetic (PBPK) 
modeling
PBPK simulations were performed using PK-Sim (Open 
Systems Pharmacology Suite). We selected the lungs as the 
primary target organ because Mycobacterium tuberculosis 
establishes infection in the pulmonary alveoli and primarily 
resides within alveolar macrophages (Coleman et al., 2022). 
ClpP1P2 is an intracellular protease in M. tuberculosis and the 
intracellular lung compartment was therefore selected as the 
primary compartment of interest.
A virtual healthy adult human subject (30 years, 70 kg) and a 
height of 176.00 cm (BMI 22.60 kg/m²) was used for simulations 
as this reflects the demographic with the highest tuberculosis 
burden (Suryanti & Ahmed, 2025). Key organ volumes used 
by the model for distribution calculations included liver (2.36 
L), lungs (1.21 L), and kidneys (0.44 L) (Ann, 2002). For each 
compound, new entries were created in PK-Sim manually 
using SMILES-derived physicochemical parameters (molecular 
weight, logP, pKa, solubility) and ADME inputs (fraction 
unbound in plasma (fu,p), blood-to-plasma ratio (B/P), total 
clearance, and Caco-2 permeability). Measured values were 
taken directly from pkCSM and SwissADME predictions and 
missing values were estimated in silico. 
Tissue–plasma partition coefficients (Kp) were calculated using 
the Rodgers and Rowland method embedded in PK-Sim. This 
method accounts for tissue composition, ionization state, and 
lipophilicity (Rodgers & Rowland, 2007). The calculated Kp 
values were incorporated into a whole-body PBPK model.
A single intravenous (IV) bolus dose of 70 mg was simulated 
as an initial proof-of-concept to assess systemic and lung 
distribution. Three compartments were selected for output 
namely plasma (total concentration), lung interstitial fluid 

Ki = e
∆G × 1000

RT

(ELF proxy), and lung intracellular (total concentration). 
Concentration-time profiles were generated for each 
compartment over 24 hours.  Pharmacokinetic parameters were 
derived from these profiles using custom Python scripts with 
NumPy and SciPy libraries. Specifically, Cmax was determined 
as the maximum concentration in the dataset, and Tmax as the 
corresponding time point (first occurrence of multiple maxima). 
All equations used are according to Sujjavorakul et al. (2023) 
but with modifications. The area under the concentration-time 
curve from 0 to 24 hours (AUC0 – 24) was calculated using the 
trapezoidal rule: for consecutive points (ti, ci) and (ti+1, ci+1), the 
area contribution is given by 

			   ,		                         ....(3)

summed across all intervals. The terminal elimination rate 
constant (λz) was estimated by linear regression on the natural 
logarithm of concentrations, In(c) versus time for the last 20 
data points (~last 5 hours) where λz = -slope. This was applied 
provided the fit had R2 > 0.9, the slope was negative, and 
concentrations were positive. The terminal half-life (t1/2) was 
computed as

						               ....(4)

The area under the curve extrapolated to infinity (AUC0 – ∞) was 
calculated as
			   ,			            ....(5)

assuming mono-exponential decay beyond 24 hours. These 
parameters were computed for venous blood-plasma, lung-
interstitial, and lung-intracellular compartments, though 
λz, t1/2, and AUC0 - ∞ were not estimable for the intracellular 
compartments due to increasing concentrations (no observable 
elimination phase).
Unbound tissue-to-plasma partition coefficients (Kp,uu) 
were calculated to assess unbound drug exposure in lung 
compartments relative to plasma, using the formula

						               ....(6)

Where,
AUC values were from 0–24 hours, fu,p was 0.784 for Arbutin 
and 0.013 for Neodiospyrin (from pkCSM), and fu,tissue (fraction 
unbound in lung tissue) was assumed as 1 for baseline 
calculations (a sensitivity default for hydrophilic compounds 
like Arbutin; scaled linearly for other values like 0.01 – 0.5 for 
lipophilic compounds like Neodiospyrin). Kp,uu was computed 
for lung-interstitial and lung-intracellular compartments 
providing us with insights into unbound intracellular lung 
concentrations as a proxy for potential efficiency against 
intracellular M. tuberculosis.

3.6. Biological activity prediction
The prediction of activity spectra for substances (PASS) was 
performed using the Way2Drug computational platform. This 
tool predicts potential biological activities of compounds based 

Area =
(ti+1 - ti ) × (ci + ci+1)

2

t1/2 =
In(2)

λz

AUC0 - ∞ = AUC0 - 24 +
clast

λz

Kp,uu =
AUCtissue,total × fu,tissue

AUCplasma,total × fu,p
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on their chemical structures and utilizes a robust database and 
machine learning algorithms to estimate the probability of 
various pharmacological effects and mechanisms of action for 
our identified hits.

3.7. Target fishing
Target fishing was performed on identified hits using the 
SwissTargetPrediction web server. This computational tool 
predicts potential biological targets of small molecules by 
leveraging a ligand-based approach. It employs a combination of 
2D and 3D similarity searches against a curated library of known 
protein-ligand interactions and integrates cheminformatics 
and machine learning to estimate the likelihood of the query 
compound interacting with specific protein targets across 
human and other species. This facilitates the identification of 
novel therapeutic targets.

4. RESULTS AND DISCUSSION
We present the key findings from our computational screening 
of 100 ligands against the Mycobacterium tuberculosis ClpP1P2 
protein which integrated virtual screening, pharmacokinetic 
modeling and predictive analyses to identify anti-tuberculosis 
candidates. Results follow the methodological sequence of 
docking outcomes (binding affinities, poses, validation), 
ligand efficiency and inhibition constants, ADME/drug-
likeness, ligand-receptor interactions analysis, toxicity, PBPK 
concentration-time profiles, biological activity predictions and 
target fishing.
We discuss these in the context of drug discovery and 
highlight top ligands, mechanistic insights, efficiency against 
intracellular pathogens, in silico assumptions, and literature 
comparisons. We conclude by selecting hits for experimental 
validation by emphasizing therapeutic potential and addressing 
challenges like bioavailability and toxicity, bridging predictions 
to practical applications.

4.1. Virtual screening and docking results
We conducted virtual screening of 97 natural product-derived 
ligands and three reference compounds against the prepared 
structure of Mycobacterium tuberculosis ClpP1P2 using induced-
fit docking in MOE to identify potential inhibitors with superior 
binding affinity compared to the Isoniazid standard and co-
crystallized modified ADEP analog. The Site Finder tool in 
MOE predicted multiple potential binding sites on the ClpP1P2 
protein surface but the selected site was chosen based on prior 
literature evidence indicating its role as one of the primary 
ADEP-binding pockets (Schmitz et al., 2014). The identified 
binding site included residues, that is, GLU39, ILE41, THR73, 
TYR75, GLN101, VAL103, LEU105, MET125, LEU127, LEU204 
and ARG207. These residues collectively form a hydrophobic 
cleft with polar moieties conducive to ligand accommodation and 
are critical for ClpP1P2 function, as hydrophobic interactions 
mediated by ILE41, VAL103, LEU105, MET125, LEU127, and 
LEU204 stabilize ligand binding through van der Waals forces, 
while polar residues such as GLU39, THR73, TYR75, GLN101, 
and ARG207 facilitate hydrogen bonding and electrostatic 
interactions, enhancing specificity and affinity. Important active 
residues within this binding site are illustrated in Figure 5.

Figure 5. Important binding site residues of caseinolytic 
protease enzyme (ClpP1P2) (4U0G). The demonstrated binding 
site residues are involved in catalytic binding of target receptor.

Docking poses were generated to yield the final S score. The S 
score is an empirical estimate of binding free energy where more 
negative values indicate stronger predicted affinity. Although 
lower (more negative) S scores is generally believed to correlate 
with favorable binding thermodynamics, we performed visual 
inspection of all poses in MOE to ensure scoring function bias 
such as overestimation of entropic contributions or failure to 
penalize steric clashes is reduced (Fischer et al., 2021). This 
ensures selection of biologically plausible conformations rather 
than just relying solely on numerical scores.
Of the 100 screened ligands, 25 exhibited S scores more 
negative than that of the modified ADEP reference (-6.3248 
kcal/mol), with an additional 7 displaying affinities marginally 
less favorable than ADEP but superior to the standard drug 
isoniazid (-5.7111 kcal/mol). This broader selection was made 
using discretion to enable a comprehensive downstream 
analysis and incorporate ligands with potential advantages 
in efficiency despite not strictly outperforming ADEP, while 
using isoniazid as a secondary comparison for minimal binding 
viability. These 32 top-performing ligands are summarized in 
Table 1 and ranked by ascending S score.
For contextual comparisons, standard first-line anti-tuberculosis 
drugs isoniazid (-5.7111 kcal/mol) and ethambutol (-5.0209 kcal/
mol) were included even though both demonstrated inferior 
binding affinities compared to ADEP and the screened hits. 
This is consistent with their distinct mechanisms targeting cell 
wall synthesis rather than ClpP1P2 (Vilchèze, 2020).

Table 1. Docking results for top ligands and reference compounds. 
Asterisks denote reference standards; modified ADEP lacks a 
standard PubChem CID as it is a customized analog.

Ligand Name S Score (kcal/mol) PubChem CID

Neodiospyrin -13.2824 16072922

Silymarin -12.0922 5213

Glisoflavanone -10.409 480786

Hesperidin -8.3375 10621

Rosmarinic acid -7.8811 5281792

Arbutin -7.9047 440936

Beilschmin A -7.5559 22297613

Betulinic acid -7.4479 64971



132

https://journals.stecab.com
Stecab Publishing

Journal of Medical Science, Biology, and Chemistry (JMSBC), 2(2), 125-144, 2025 Page 

Notably, Neodiospyrin emerged as the top hit with an S score of 
-13.2824 kcal/mol. This reflects substantially stronger predicted 
binding than ADEP and may be due to its naphthoquinone 
moiety that enables extensive hydrophobic and π-π stacking 
interactions with residues like LEU105 and MET125. Silymarin 
(-12.0922 kcal/mol) and Glisoflavanone (-10.409 kcal/mol) 
followed, with their polyphenolic structures likely forming 
multiple hydrogen bonds with polar residues such as THR73 
and GLN101, enhancing affinity. These results speak to the 
efficiency of our screening approach in prioritizing natural 
products with diverse structures for ClpP1P2 inhibition, 

outperforming or comparing favorably to conventional anti-TB 
agents.

4.2. Docking validation
Docking validation is an important step in ascertaining the 
accuracy of the docking protocol. The docked complex of the 
modified ADEP ligand with ClpP1P2 was superimposed onto 
the original PDB structure (4U0G) using PyMOL. Pairwise 
alignment initially involved 202 atoms and this was followed 
by three cycles of refinement. Seven atoms were rejected in the 
first cycle, four in the second, and one in the third, bringing the 
final alignment to a total of 190 atoms (Figure 6).

Patuletin -6.991 5281678

Abietane -6.962 6857485

Fisetin -6.9083 5281614

Chelerythrine -6.8353 2703

Glabridin -6.7865 124052

alpha-Cubebin -6.6773 25021463

Eupacunoxin -6.6647 5281451

Andrographolide -6.6763 5318517

Tiliacorinine -6.7416 442369

Cyanidin -6.5352 128861

Licochalcone A -6.4264 5318998

Obtusifolin -6.397 3083575

(+)-Eriodictyol -6.3984 440735

(+)-Ursolic acid -6.4506 64945

Eupatundin -6.4831 5281464

Curcumin -6.5228 969516

Hexahydrocurcumin -6.3469 5318039

Capsaicin -6.3203 1548943

Juglanin -6.3191 5318717

Dehydrozingerone -6.3097 5354238

Ferulenol -6.216 54679300

Azorellanol -6.2038 10383143

Aristolactam I -6.1987 96710

Echinatin -6.1556 643779

Isoniazid* -5.7111 3767

Ethambutol* -5.0209 14052

ADEP-2B5Me * -6.3248 -

Figure 6. Superimposition of reference and docked complexes 
of modified ADEP and ClpP1P2 (4U0G) on PyMol Molecular 
Graphics System.

The root-mean-square deviation (RMSD) executed with a value 
of 0.746 Å. It is well established that the optimal threshold of 
RMSD is typically below 2 Å (Kufareva & Abagyan, 2012). As 
such, our value of RMSD confirms high structural congruence 
and reliability of the docked poses.

4.3. Ligand efficiency and inhibition constants
Ligand efficiency (LE) and inhibition constant (Ki) are key 
metrics in drug discovery. LE normalizes binding affinity by 
molecular size (heavy atoms) and enables fair comparisons 
across diverse ligands with typically LE ≥ 0.3 kcal/mol per 
heavy atom indicating drug-like potential (Hopkins et al., 
2014). Ki estimates the ligand concentration required for half-
maximal inhibition, as lower values signify stronger binding 
affinity (classified as very strong: <0.1 μM; strong: 0.1–1 μM; 
good: 1–10 μM; moderate: 10–100 μM) (Wu et al., 2001).
LE and Ki were computed for the 32 top-performing ligands from 
docking with the standards included making 35 compounds. 
Nineteen ligands achieved LE ≥ 0.3 or closely approximating 
this threshold. These 19 including ADEP included as reference, 
are presented in Table 2 and ranked according to LE. 

Table 2. Ligand efficiency and inhibition constants for selected ligands and references (marked in asterisk).

Ligand Name S Score PubChem CID Heavy Atoms LE Ki (µM)

Isoniazid* -5.7111 3767 10 0.571 65.123

Echinatin -6.1556 643779 11 0.560 30.755

Neodiospyrin -13.2824 16072922 28 0.474 0.000
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Evaluation of LE and Ki values revealed that nearly two-thirds 
of the top-scoring ligands combined favorable size-normalized 
binding efficiency (LE ≥ 0.3) with meaningful inhibitory 
potential. This points towards their suitability for early-stage 
lead development. Low-molecular-weight ligands such as 
isoniazid and echinatin achieved the highest LE values (0.571 
and 0.560), reflecting efficient target engagement despite only 
moderate Ki. This is quite consistent with the principle that 
smaller structures often bind more efficiently but not always 
with maximal potency (Reynolds et al., 2008). In contrast, 
larger polyphenolic or terpenoid structures (silymarin, 
glisoflavanone, rosmarinic acid) exhibited strong to very strong 
binding affinities (sub-micromolar Ki) even when LE values 
were moderate (0.303–0.345). This indicates that increased 
molecular complexity can enhance potency, albeit at some cost 
to efficiency.
Neodiospyrin was a notable outlier as it combined high 
efficiency (LE = 0.474) with undetectably low Ki, suggesting 
optimal binding interactions across its heavy-atom framework. 
The clear performance gap between reference drugs and 
several of these ligands, especially ethambutol’s low affinity 
(Ki = 208.764 µM) and modified ADEP’s poor efficiency (LE 
= 0.132) highlights opportunities for hybrid design. Nine 
ligands here advanced to ADME and drug-likeness studies 
based on very strong, strong, or good binding (Ki <10 μM) and 
were supplemented by isoniazid, ethambutol, and ADEP for 
benchmarking.

4.4. Drug-Likeness and ADME Studies
The drug-likeness of the studied compounds was evaluated 
using Lipinski’s Rule of Five (Ro5) and Veber’s rules. These rules 
are widely accepted criteria for predicting oral bioavailability. 

Lipinski’s Ro5 suggests that a molecule should have a molecular 
weight (MW) ≤ 500 Da, a consensus LogP ≤ 5, no more than 5 
hydrogen bond donors (HBD), and no more than 10 hydrogen 
bond acceptors (HBA) if it is to be a drug-like molecule (Lipinski 
et al., 1997). Veber’s rules further refine these criteria by limiting 
the number of rotatable bonds to ≤ 10 and the topological polar 
surface area (TPSA) to ≤ 140 Å² (Veber et al., 2002).
Our analysis revealed that most compounds (9 out of 11) fully 
comply with Lipinski’s Ro5 (Table 3). Notable exceptions include 
Abietane that exceeds the logP threshold (6.14), and ADEP that 
violates both the MW (676.75 > 500) and HBA (10, at the upper 
limit) criteria. Interestingly, ADEP also exhibits an excessive 
number of rotatable bonds (16) that further diminishes its 
drug-likeness. These violations suggest that Abietane may face 
solubility challenges due to its high lipophilicity, while modified 
ADEP’s large size and flexibility likely hinder oral absorption.
In terms of Veber’s rules, Silymarin, Rosmarinic acid, and 
Patuletin exceed the TPSA threshold (>140 Å²). This indicates 
potential difficulties in membrane permeability. ADEP, in 
addition to its Lipinski violations, also fails Veber’s criteria 
due to its high TPSA (182.45 Å²) and excessive rotatable bonds. 
These findings point to the fact that these compounds may 
possess bioactive potential but their pharmacokinetic profiles 
could limit their development as oral drugs.
The standard drugs, Isoniazid and Ethambutol fully comply 
with all drug-likeness rules and this aligns with their 
established clinical use and oral bioavailability. Smaller 
molecules like Fisetin and Arbutin also exhibit optimal drug-
likeness. This makes them promising candidates for further 
study. Conversely, compounds with high TPSA or logP 
values may require structural modifications to improve their 
pharmacokinetic properties.

Dehydrozingerone -6.3097 5354238 14 0.451 23.711

Arbutin -7.9047 440936 19 0.416 1.606

Ethambutol* -5.0209 14052 14 0.359 208.764

Abietane -6.962 6857485 20 0.348 7.885

Silymarin -12.0922 5213 35 0.345 0.001

Glisoflavanone -10.409 480786 31 0.336 0.023

Fisetin -6.9083 5281614 21 0.329 8.633

Cyanidin -6.5352 128861 21 0.311 16.206

(+)-Eriodictyol -6.3984 440735 21 0.305 20.415

Obtusifolin -6.397 3083575 21 0.305 20.463

Rosmarinic acid -7.8811 5281792 26 0.303 1.671

Patuletin -6.991 5281678 24 0.291 7.509

Capsaicin -6.3203 1548943 22 0.287 23.291

Glabridin -6.7865 124052 24 0.283 10.604

Aristolactam I -6.1987 96710 22 0.282 28.597

ADEP-2B5Me * -6.3248 - 48 0.132 23.115

Whereas LE represents Ligand Efficiency & Ki represents Inhibition Constant.
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The ADME (Absorption, Distribution, Metabolism, and 
Excretion) analysis provided us key information about the 
pharmacokinetic behavior of the evaluated compounds with 

Table 3. Drug-likeness parameters of the evaluated compounds including violations of Lipinski’s and Veber’s rules. Reference 
compounds are shown in asterisk.

Compound MW LogP HBD HBA nROT TPSA (Å²) LV VV

Neodiospyrin 374.34 2.84 2 6 1 108.74 0 0

Silymarin 482.44 1.59 5 10 4 155.14 0 1 

Glisoflavanone 424.49 4.42 4 6 5 107.22 0 0

Arbutin 272.25 -0.77 5 7 3 119.61 0 0

Abietane 276.50 6.14 0 0 1 0.00 1 0

Fisetin 286.24 1.55 4 6 1 111.13 0 0

Rosmarinic acid 360.31 1.58 5 8 7 144.52 0 1 

Patuletin 332.26 1.38 5 8 2 140.59 0 1 

Isoniazid* 137.14 -0.35 2 3 2 68.01 0 0

Ethambutol* 204.31 0.60 4 4 9 64.52 0 0

ADEP-2B5Me* 676.75 0.90 4 10 16 182.45 2 2 

Whereas MW represents Molecular Weight; LogP represents Octanol-Water Partition Coefficient; HBD represents Number of Hydrogen 
Bond Donor; HBA represents Number of Hydrogen Bond Acceptor; nROT represents Number of Rotatable Bonds; TPSA represents 
Topological Polar Surface Area; LV represents Lipinski’s Violations & VV represents Veber’s Violations.

focus on four key parameters that determine their therapeutic 
potential (Table 4).

Table 4. Predicted ADME properties of the compounds. Reference compounds are shown in asterisk.

Compound GI Absorption BBB Permeant Pgp Substrate Bioavailability Score

Neodiospyrin High No No 0.55

Silymarin Low No No 0.55

Glisoflavanone High No No 0.55

Arbutin High No No 0.55

Abietane Low No No 0.55

Fisetin High No No 0.55

Rosmarinic acid Low No No 0.56

Patuletin Low No No 0.55

Isoniazid* High No No 0.55

Ethambutol* High No No 0.55

ADEP-2B5Me* Low No No 0.17

Gastrointestinal (GI) Absorption predicts how well a compound 
is absorbed through the intestinal lining into systemic 
circulation, a critical factor for oral bioavailability. High 
absorption (>30% absorbed) is preferred for orally administered 
drugs (Zhang et al., 2002). GI Absorption varied significantly 
among the compounds. Neodiospyrin, Glisoflavanone, Arbutin, 
Fisetin, Isoniazid, and Ethambutol were predicted to have high 
GI absorption, consistent with their favorable drug-likeness 
profiles. In contrast, Silymarin, Abietane, Rosmarinic acid, 
Patuletin, and modified ADEP exhibited low absorption. For 
Silymarin, Rosmarinic acid, and Patuletin, this is likely due to 
their high TPSA values as this reduces membrane permeability. 

Abietane’s poor absorption can be attributed to its extreme 
lipophilicity (LogP = 6.14), while modified ADEP’s large size 
and structural complexity further limit its bioavailability.
None of the compounds were predicted to permeate the BBB, 
which minimizes the risk of central nervous system (CNS)-
related side effects. Blood-Brain Barrier (BBB) Permeation 
is a good indication of whether a compound can cross into 
the central nervous system (Banks, 2009). Even though it 
is desirable for CNS-targeting drugs, BBB permeation is 
typically unwanted for other therapeutics to avoid potential 
neurotoxicity. Additionally, none of the compounds were 
identified as Pgp substrates. This suggests that they are 
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unlikely to be effluxed by this transporter that is a common 
mechanism of drug resistance. Bioavailability Score provides 
a quantitative estimate (0-1) of the fraction of an orally 
administered dose that reaches systemic circulation intact and 
integrate absorption and also first-pass metabolism effects 
(Aungst, 2017). Scores that are less than 0.5 generally indicate 
good oral bioavailability potential. Most compounds scored 
0.55 indicating moderate bioavailability. Modified ADEP 
scored significantly lower (0.17). This reinforces and even 
confirms its poor suitability for oral delivery. The standard 
drugs, Isoniazid and Ethambutol, both scored 0.55, which goes 
well with their known pharmacokinetic profiles and clinical 
efficiency.

4.5. Receptor ligand interaction analysis
After applying Lipinski’s and Veber’s rules, six compounds 
were selected for interaction analysis with the ClpP1P2 
protease. This step was essential since these filters are widely 
used to identify molecules with acceptable oral bioavailability 
and pharmacokinetic behavior (Lipinski et al., 1997; Veber et al., 
2002). The selected compounds included four natural molecules 
namely neodiospyrin, glisoflavanone, arbutin, and fisetin, then 
the reference drugs, isoniazid and ethambutol. Their binding 
interactions were analyzed in two dimensions on Molecular 
Operating Environment (MOE) and in three dimensions on 
PyMOL Molecular Graphics System. The results are consistent 
with their docking scores.
Neodiospyrin demonstrated the strongest binding to ClpP1P2. 
With a docking score of –13.28 kcal/mol, the ligand engaged in 
four hydrogen-bond interactions with Gly122 at a distance of 
3.06 Å with each contributing binding energies of –2.6 kcal/mol 
(Figure 7). Also, hydrophobic interactions were observed with 
Met125 at 3.12–3.46 Å but with lower energy contributions 
(–0.2 kcal/mol). These multiple stable hydrogen bonds likely 
explain its superior docking performance. This agrees with 
earlier reports showing that neodiospyrin exhibits potent 
antimycobacterial activity by targeting bacterial enzymes 
involved in redox and proteolytic regulation (Van der Kooy 
et al., 2006). Its ability to form repeated hydrogen bonds with 
Gly122 spotlights its strong potential to disrupt ClpP1P2 
activity. This is especially important for protein degradation 
and mycobacterial survival (Raju et al., 2012).
Glisoflavanone also showed a strong docking score of –10.41 
kcal/mol. It interacted with Gln101 at distance of 4.13 Å 
and Ala214 through repeated hydrogen bonds at distances 
of 3.96 Å (Figure 8). This was supported by an additional 

acceptor interaction with Leu204. And although each bond 
was individually weak (-0.1 kcal/mol), their combined effect 
stabilized the ligand within the binding pocket. Similar 
behavior has been observed for flavonoids in docking studies, 
where multiple moderate interactions were sufficient to secure 
strong overall binding to mycobacterial proteins (Baptista et al., 
2021). The visualization confirmed that the flavanone core was 
well accommodated within the receptor cavity.
Arbutin displayed a docking score of –7.90 kcal/mol and a 
particularly strong hydrogen bond with Glu39 at distance 
of 3.04 Å and binding energy of –4.0 kcal/mol. It displayed 
additional acceptor interactions with Tyr75 and Arg207 and a 
donor contact to Met125 at distances within the range of 3.13–
3.29 Å and moderate binding energy of –0.3 kcal/mol (Figure 9). 
Previous studies have reported that glycosylated phenolics like 
arbutin often interact strongly with charged residues which 
possibly enhance their binding specificity (Qiu et al., 2025). 
These results suggest that despite arbutin’s moderate docking 
score, it could still be an effective modulator of ClpP1P2 activity 
due to the strength and diversity of its interactions.
Fisetin had a lower docking score of –6.91 kcal/mol. This 
reflects a less extensive interaction network. It mainly formed 
hydrogen-bond acceptor contacts with Gln101 at distances of 
3.38 Å and 3.34 Å, alongside a pi–hydrogen interaction involving 
its aromatic ring at distance of 4.18 Å (Figure 10). Although this 
is modest compared to the top ligands, such interactions are 
common for polyphenols and contribute to moderate stability 
in the binding site (Baptista et al., 2021).
The two reference drugs showed the weakest docking scores. 
This is consistent with the fact that ClpP1P2 is not their 
primary target. Isoniazid with docking score of –5.71 kcal/mol 
made only two pi–hydrogen contacts with Tyr75 and Thr73 at 
distances of 4.39 Å and 4.11 Å respectively (Figure 11), while 
ethambutol with a docking score of –5.02 kcal/mol interacted 
with Met125 through two weak hydrogen bonds at distances of 
3.61 Å and 3.76 Å with energy of –0.4 kcal/mol apiece (Figure 
12). Their limited interaction networks confirm their lower 
affinity for ClpP1P2 as this aligns with previous reports that 
their mechanism of action in tuberculosis involves enzymes 
other than the protease complex (Famulla et al., 2016).
These results are consistent with earlier structural studies 
demonstrating that ClpP1P2 can be effectively targeted by 
small molecules forming multiple hydrogen bonds and polar 
contacts (Schmitz et al., 2014; Famulla et al., 2016). Overall, our 
findings support the potential of these natural compounds as 
promising candidates for further optimization.
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Figure 8. Interaction profile of Glisoflavanone with the potential binding site of ClpP1P2. The left side represents a 2D schematic 
representation of interactions by MOE, the central figure represents a 3D complex of protein and its respective ligand, and the 
right side represents interacting residues of protein with its respective ligand by PyMol.

Figure 9. Interaction profile of Arbutin with the potential binding site of ClpP1P2. The left side represents a 2D schematic 
representation of interactions by MOE, the central figure represents a 3D complex of protein and its respective ligand, and the 
right side represents interacting residues of protein with its respective ligand by PyMol.

Figure 7. Interaction profile of Neodiospyrin with the potential binding site of ClpP1P2. The left side represents a 2D schematic 
representation of interactions by MOE, the central figure represents a 3D complex of protein and its respective ligand, and the 
right side represents interacting residues of protein with its respective ligand by PyMol
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Figure 10. Interaction profile of Fisetin with the potential binding site of ClpP1P2. The left side represents a 2D schematic 
representation of interactions by MOE, the central figure represents a 3D complex of protein and its respective ligand, and the 
right side represents interacting residues of protein with its respective ligand by PyMol.

Figure 11. Interaction profile of Isoniazid with the potential binding site of ClpP1P2. The left side represents a 2D schematic 
representation of interactions by MOE, the central figure represents a 3D complex of protein and its respective ligand, and the 
right side represents interacting residues of protein with its respective ligand by PyMol.

Figure 12. Interaction profile of Ethambutol with the potential binding site of ClpP1P2. The left side represents a 2D schematic 
representation of interactions by MOE, the central figure represents a 3D complex of protein and its respective ligand, and the 
right side represents interacting residues of protein with its respective ligand by PyMol.
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4.6. Toxicity
Toxicity assessment is an essential stage in drug discovery 
since promising compounds can fail in late development due 
to adverse effects. The ProTox-III server was used to predict 
toxicity across six biologically relevant endpoints (Table 5) 
for the six selected ligands that passed drug likeness studies. 
These endpoints provide information about organ damage, 
genotoxicity, metabolic perturbations, and molecular initiating 
events (MOE).
Hepatotoxicity reflects the likelihood of liver injury which 
is a major cause of drug attrition since the liver is central to 
xenobiotic metabolism (Chen et al., 2013). Neurotoxicity assesses 
risks to the nervous system as it is often linked with off-target 
effects on neurotransmission or mitochondrial function (Lein et 
al., 2007). Mutagenicity indicates the potential of compounds 
to cause genetic mutations. These are often precursors to 
carcinogenicity (Eastmond et al., 2009). In addition, nutritional 
toxicity models disruptions in nutrient metabolism. It can impair 
growth or metabolic health (Prentki et al., 2020). At the cellular 
stress level, the Heat Shock Factor response element (HSE) is 
linked to protein damage and stress adaptation (Akerfelt et 
al., 2010), while Pregnane X Receptor (PXR) activation reflects 
altered xenobiotic metabolism that may lead to drug–drug 
interactions and metabolic imbalances (Kliewer et al., 2002).
From the predictions, arbutin emerged as the safest candidate 
(Class 5, LD₅₀ = 2500 mg/kg) with no predicted activity 
across any endpoint. This goes well with its known use in 
dermatological and nutraceutical products, where it is generally 
regarded as safe at therapeutic doses (Maeda & Fukuda, 1991). 

Fisetin was placed in Class 3 (LD₅₀ = 159 mg/kg) and flagged 
for nutritional toxicity. Although fisetin is a flavonoid with 
reported antioxidant and anticancer activities, its high doses 
have been associated with metabolic disturbances in some 
experimental models (Khan et al., 2013).
Neodiospyrin (Class 4, LD₅₀ = 1000 mg/kg) was largely inactive 
across endpoints but showed PXR activation. This suggests 
potential risks for drug–drug interactions via cytochrome P450 
induction. Despite the fact that glisoflavanone showed potent 
docking scores, it still demonstrated significant limitations with 
a very low LD₅₀ (10 mg/kg, Class 2) and predicted nutritional 
toxicity alongside PXR activation. This profile suggests a narrow 
therapeutic window and a higher risk of systemic toxicity.
The reference antituberculars showed expected toxicity 
profiles. Isoniazid (Class 3, LD₅₀ = 133 mg/kg) was predicted to 
be hepatotoxic and neurotoxic in addition to nutritional toxicity. 
This is consistent with clinical observations of hepatotoxicity, 
peripheral neuropathy, and pyridoxine depletion in long-term 
therapy (Saukkonen et al., 2006). Ethambutol (Class 4, LD₅₀ 
≈ 998 mg/kg) was flagged for hepatotoxicity but otherwise 
appeared less risky. This goes along with its established safety 
profile aside from dose-related optic neuritis (Leibold, 1966).
Taken together, it is worthy of note that these classes of toxicity 
do not tell the whole story. They are majorly predictive and 
serve as early flags but do not immediately condemn a potential 
drug based on toxicity predictions. These insights highlight the 
importance of integrating computational toxicity prediction 
with experimental validation in guiding lead optimization and 
preclinical prioritization.

Table 5. ProTox-III toxicity prediction across six endpoints for selected ligands. Standard drugs are indicated with asterisk.

Compound LD₅₀ (mg/kg) TC HT NC MT NT HSE PR

Neodiospyrin 1000 4 – – – – – +

Glisoflavanone 10 2 – – – + – +

Arbutin 2500 5 – – – – – –

Fisetin 159 3 – – – + – –

Isoniazid* 133 3 + + – + – –

Ethambutol* 998 4 + – – – – –

Whereas LD50 represents Acute Toxicity; TC represents Toxicity Class; HT represents Hepatotoxicity; NC represents Neurotoxicity; 
MT represents Mutagenicity; NT represents Nutritional Toxicity; HSE represents Heat Shock Factor Response Element, PXR represents 
Pregnane X Receptor, + represents active & - represents inactive.

4.7. Physiologically-based Pharmacokinetic (PBPK) 
Modeling
Arbutin and neodiospyrin were promising candidates from the 
initial toxicity screening of the six ligands. These compounds 
were advanced to physiologically based pharmacokinetic 
(PBPK) modeling to evaluate their distribution into the lungs. 
This is the primary site of infection where the pathogen resides 
intracellularly within alveolar macrophages
For arbutin, the concentration-time profiles (Figure 13) 
revealed rapid distribution and minimal decline in plasma as 
peak concentrations (Cmax) were achieved almost immediately 
post-dose. Plasma concentrations decreased minimally in 

micromolar range, indicative of efficient clearance. Lung 
interstitial levels were similar to this but at lower magnitudes. 
Intracellular lung concentrations remained minimal and 
increased gradually over time. This suggests limited 
penetration into the target compartment. This is reflected 
in the pharmacokinetic parameters (Table 6), where plasma 
AUC0 – 24 was substantially higher than in lung tissues. The 
unbound tissue-to-plasma partition coefficients (Kp,uu) were 
low (0.48 for interstitial, 0.01 for intracellular). This implies 
suboptimal unbound exposure at the site of action. The long 
terminal half-life (~228 hours) pointed to slow elimination, but 
without an observable decline in intracellular concentrations, 
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extrapolation to infinity was really not feasible for that 
compartment. Altogether, arbutin’s poor intracellular 
accumulation may limit its efficiency against intracellular 
pathogens, despite favorable systemic kinetics.
In contrast, neodiospyrin that is a more lipophilic molecule 
exhibited distinct behavior (Figure 14). Plasma profiles 
showed quick peaking followed by a very slow decline. This 
is consistent with its extended half-life (>2500 hours) as 
this is likely due to high tissue binding and low clearance. 
Lung interstitial concentrations were comparable to plasma 
initially but stabilized, while intracellular levels rose 
progressively by surpassing interstitial by 24 hours. This 
suggests preferential accumulation in the intracellular space 
is necessary for targeting M. tuberculosis. Table 6 summarizes 
the endpoints and highlights higher Kp,uu values (28.47 
interstitial, 11.05 intracellular) which indicates superior 
unbound penetration relative to plasma. The extensive 
AUC0 - ∞in plasma confirms prolonged exposure, although 
the increasing intracellular trend precludes terminal phase 
estimation there.
To compare, neodiospyrin demonstrated better lung tissue 
distribution and intracellular partitioning than arbutin. This 
could translate to greater potential against intracellular 
bacteria but its low unbound plasma fraction is concerning for 
bioavailability in oral formulations. Even though arbutin was 
safer in toxicity screens, it may require structural modifications 
for improved targeting. These analyses guide further 
optimization and emphasize the need for intracellular exposure 
in anti-TB drug design.

Figure 13. Simulated concentration-time profile of Arbutin in 
plasma, lung intracellular, and lung interstitial compartments.

Figure 14. Simulated concentration-time profile of 
Neodiospyrin in plasma, lung intracellular, and lung interstitial 
compartments.

Table 6. Pharmacokinetic parameters for arbutin and neodiospyrin.

Compound Compartment Cmax 
(µmol/L) Tmax (h) AUC0-24 

(µmol·h/L) λz (h⁻¹) T1/2 (h) AUC0-∞ 
(µmol·h/L)

Kp,uu (fu, tissue 
= 1)

Arbutin

Venous Blood-Plasma 42.09 0.05 819.98 0.00304 228.21 11603.31 -

Lung-Interstitial 15.91 0.05 307.21 0.00304 228.20 4347.07 0.48

Lung-Intracellular 0.39 24 4.75 N/A N/A N/A 0.01

Neodiospyrin

Venous Blood-Plasma 28.42 0.05 441.07 0.00027 2537.38 65855.09 -

Lung-Interstitial 10.61 0.05 163.24 0.00027 2538.05 24377.86 28.47

Lung-Intracellular 3.07 24 63.35 N/A N/A N/A 11.05

4.8. Biological activity predictions
The Prediction of Activity Spectra for Substances (PASS) tool is 
accessible via the Way2Drug computational platform and was 
employed to forecast the potential biological activities of arbutin 
and neodiospyrin. PASS uses structure-activity relationship 
(SAR) analysis derived from a vast training set of over 60,000 
known compounds. This includes drugs and bioactive molecules 
to estimate the probability of a substance exhibiting specific 
pharmacological or toxicological effects (Filimonov et al., 2014). 
For each predicted activity, PASS provides two metrics. Pa is the 
probability of activity (ranging from 0 to 1, where higher values 
indicate greater likelihood of activity), and Pi is the probability 
of inactivity (also 0 to 1, with lower values supporting potential 
activity). This in silico approach enables rapid screening of 

compounds for diverse therapeutic potentials which further 
guides experimental validation.
From the comprehensive PASS outputs for arbutin and 
neodiospyrin, 21 common activities were selected based on 
their Pa scores. Activities that are relevant to anti-tuberculosis 
drug development like anti-inflammatory, antineoplastic, and 
apoptosis-modulating effects were focused on (Figure 15). In 
total, both compounds displayed promising profiles, with 
average Pa values exceeding 0.5 for most activities. Arbutin 
exhibited higher Pa scores in several key areas. This include 
anticarcinogenic (Pa = 0.829), vasoprotector (Pa = 0.934), and 
membrane permeability inhibitor (Pa = 0.946), going well with 
its known hydrophilic nature and reported protective effects on 
cellular integrity (Bhalla et al., 2022). In contrast, neodiospyrin 
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showed stronger predictions for CYP2C12 substrate activity (Pa 
= 0.896) and HIF1A expression inhibition (Pa = 0.769), indicative 
of its lipophilic structure potentially enhancing metabolic 
interactions and hypoxic stress modulation in infected tissues 
(Van der Kooy et al., 2006).
Notably, both ligands scored highly in antineoplastic (average 
Pa = 0.785) and caspase-3 stimulant activities (average Pa = 
0.7895). These are important for targeting Mycobacterium 
tuberculosis by inducing programmed cell death in infected 
macrophages. Arbutin’s superior anti-inflammatory prediction 
(Pa = 0.673 as against 0.473 for neodiospyrin) is in line with 
experimental evidence of its efficiency in reducing pro-
inflammatory cytokines as demonstrated in UVB-induced skin 
damage models (Shu et al., 2024). Meanwhile, neodiospyrin’s 
antimutagenic and antiseptic potentials that is inferred from 
related naphthoquinones like diospyrin, support its broader 
antimicrobial spectrum as this includes activity against Gram-
positive bacteria (Adeniyi et al., 2000). These predictions 
confirm to us that neodiospyrin has edge in apoptosis agonist 
activity (Pa = 0.707). This potentially agrees with its PBPK-
modeled intracellular accumulation for enhanced efficiency 
against intracellular pathogens.
Although PASS offers valuable insights, there are discrepancies 
between predictions and in vivo outcomes. This has necessitated 
the need for empirical testing. Nonetheless, the shared high 
Pa for TP53 expression enhancement (average Pa = 0.7965) 
and NAD(P)+- arginine ADP-ribosyltransferase inhibition 
(average Pa = 0.859) position both compounds as candidates 
for adjunctive TB therapy. It won’t be farfetched to say this 
warrants further investigation into their ClpP1P2-specific 
interactions.

Figure 15. Predicted Biological Activity Spectra of Arbutin and 
Neodiospyrin, Highlighting Top 21 Shared Activities for Anti-
Tuberculosis Drug Development.

Figure 16. Computational target fishing results for (a) Arbutin 
and (b) Neodiospyrin using SwissTargetPrediction. Probabilities 
(0–1 scale) indicate predicted engagement likelihood with 
human target classes.

4.9. Target fishing analysis
We used computational target fishing to identify potential 
human protein targets for Arbutin and Neodiospyrin, our 
selected hit compounds of interest. This approach is powered 
by SwissTargetPrediction and it compares compound structures 

against databases of known drug-target interactions to assign 
probability scores (0-1) for human target engagement. As 
Gfeller et al. (2014) note, such analysis is important for early 
pharmacodynamic profiling especially for anti-infectives like 
these targeting Mtb’s ClpP1P2 protease. Critically, we sought 
to map both therapeutic and adverse interaction risks upfront, 
as human off-target effects directly impact drug safety and 
efficiency which potentially alters disease pathways or even 
introduce toxicity during treatment.
In the case of Arbutin, three human target classes showed 
26.7% probability. These are Enzymes, Hydrolases, and Family 
A GPCRs (Figure 16a). Although hydrolase engagement might 
support desirable anti-protease effects against Mtb ClpP1P2, 
the GPCR signal raises concerning red flags. Human GPCR 
interactions commonly trigger side effects like cardiovascular 
or metabolic disturbances so it demands careful scrutiny. 
Lower-probability hits (Lyase at 6.7%) suggest minimal risk but 
warrant monitoring.
Neodiospyrin presented a broader but weaker profile, with 
human Protease as its top prediction (13.3%) (Figure 16b). Even 
though this is potentially advantageous for ClpP1P2 inhibition, 
the scattered low-probability hits (Kinase, Nuclear Receptor at 
6.7% each) imply wider off-target risks. Such promiscuity could 
really undermine therapeutic utility. Kinase interference might 
disrupt immune responses to Mtb, while nuclear receptor 
binding could cause endocrine toxicity.
Ultimately it is worthy to note that these probabilities 
aren’t confirmatory but highlight key human-specific risks 
and opportunities. As Yuan et al. (2021) emphasize, such 
computational insights must guide targeted experimental 
validation especially for Mtb drugs where human off-target 
effects could compromise treatment safety without careful 
pharmacodynamic optimization.

5. CONCLUSION
Our study computationally identified Neodiospyrin and 
Arbutin as promising anti-tubercular candidates targeting the 
Mycobacterium tuberculosis ClpP1P2 protease from a set of 97 
literature derived compounds. Neodiospyrin demonstrated 
exceptional binding affinity (-13.28 kcal/mol), efficient ligand 
efficiency (0.474), and also favorable intracellular accumulation 
in lung macrophages that are key for eradicating the pathogen. 
Arbutin was less potent but exhibited superior safety profiles 
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and compliance with drug-likeness rules. Both compounds 
showed complementary biological activities, including anti-
inflammatory and apoptosis-modulating effects. Though 
these findings are inherently limited by their in silico nature. 
Neodiospyrin’s predicted hepatotoxicity risk and Arbutin’s 
poor intracellular penetration require experimental validation. 
The target fishing analysis also flagged potential human off-
target interactions that could impact clinical safety. Our work 
confirms the value of computational approaches in accelerating 
TB drug discovery. We recommend prioritizing Neodiospyrin for 
lead optimization to reduce toxicity while using its exceptional 
target engagement, and also looking at Arbutin in combination 
therapies to enhance its intracellular delivery. Advancing these 
candidates to in vitro and in vivo studies is essential to confirm 
their potential as next-generation therapeutics against drug-
resistant TB.
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