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The rapid rise of wind and solar capacity has transformed power generation 
but introduced severe forecasting uncertainty. Variable renewable production 
can swing from minutes to days, creating operational and economic risks 
for grids built around predictable dispatch. This narrative review surveys 
stochastic modeling techniques for wind and solar power forecasting 
published between 2015 and 2025, covering time‑series, spatial–temporal, 
hybrid, and deep learning approaches. Comparative evidence shows that 
autoregressive and Kalman‑filter models provide interpretable benchmarks 
yet struggle with non‑linearities; copula and vine‑copula schemes better 
capture spatial dependence; hybrid schemes that fuse numerical weather 
prediction with machine learning significantly reduce forecast errors; and 
emerging non‑stationary Gaussian processes and generative models further 
improve probabilistic accuracy. Persistent gaps include limited cross‑regional 
validation, short training periods, and inconsistent evaluation metrics. The 
review suggests that risk‑aware scheduling can leverage these probabilistic 
forecasts for chance‑constrained reserves and conditional‑value‑at‑risk unit 
commitment, enabling more reliable and economical integration of wind and 
solar power.
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1. INTRODUCTION 
Wind and solar generation now dominate the global renewable 
mix. Renewables contributed around 30 % of global electricity in 
2023, with solar and wind alone rising from 0.2 % of electricity 
in 2000 to 13.4 % in 2023 (Ember, 2024). This expansion 
continues to outpace all other sources, driven by falling costs 
and climate policy. Yet meteorological dependence means 
output can change dramatically within hours; a passing cloud 
or wind lull may curtail gigawatts of capacity. Compared with 
load forecasts that typically have 1–3 % mean‑absolute error, 
day‑ahead wind forecasts routinely yield 15–20 % error (Lew & 
Milligan, 2011), forcing operators to procure more reserves and 
sometimes dispatch peaking units at high cost.
Forecast errors translate directly into operational, economic, 
and regulatory risks. Overforecasting unnecessarily commits 
conventional generation, resulting in curtailment or fuel waste, 
while underforecasting leaves insufficient capacity and triggers 
reserve shortfalls (Lew & Milligan, 2011). Large deviations 
jeopardize voltage and frequency stability, and regulated markets 
may penalize imbalance. Point forecasts alone are inadequate 
because they ignore uncertainty; probabilistic information is 
essential for robust scheduling and trading. For example, the 
rapid growth and correlation of wind speeds across regions can 
cause voltage fluctuations; modelling joint distributions rather 
than simple correlation coefficients is therefore vital (Chen et 
al., 2019). The introduction of vine‑copula functions, originally 
developed in finance and later adopted in power systems, has 
enabled flexible high‑dimensional dependence modelling and 
has been applied to probabilistic power flow and risk assessment 
(Chen et al., 2019).
Deterministic wind and solar forecasts provide a single expected 
value and are useful for long‑term planning but cannot quantify 
uncertainty (Hatalis et al., 2017; Xie et al., 2022). Early statistical 
models such as autoregressive moving‑average (ARMA) or 
ARIMA, offered point predictions and reduced error compared 
with persistence models, yet they require high orders and 
remain linear (Tyass et al., 2022). Neural‑network predictors 
capture non‑linearity but still yield a single output and often 
ignore temporal causality. Probabilistic methods, by contrast, 
deliver predictive distributions or intervals (Hatalis et al., 2017; 
Xie et al., 2022). They combine calibration and sharpness, 
enabling decisions based on risk tolerance rather than expected 
value. Recent probabilistic studies emphasize that point 
forecasts are inadequate when weather volatility dominates; 
probabilistic outputs support secure, cost‑effective operation 
and allow dynamic reserve sizing and market bidding (Henze et 
al., 2020). Proper scoring rules, such as the continuous ranked 
probability score (CRPS), help assess both calibration and 
sharpness (Arnold et al., 2023), providing a more reliable basis 
for model comparison.
This review traces the evolution of stochastic wind–solar 
forecasting models from early time‑series techniques to 
modern deep generative networks. Its objective is to synthesize 
and critically evaluate the evolution of stochastic forecasting 
models for wind and solar power in grid-connected systems 
and to translate these technical advances into actionable 
implications for grid stakeholders. First, methods for data 
selection and synthesis are summarized. Next, the review 

outlines key findings about data characteristics, forecast 
horizons, and performance metrics. The main discussion 
compares six classes of models: time series, spatial‑temporal 
and copula, hybrid and ensemble, uncertainty quantification 
and verification, risk‑informed decision models, and emerging 
trends, highlighting merits and limitations. Finally, the review 
translates insights into implications for operators, market 
participants, and regulators; proposes research directions; 
critiques limitations; and concludes with forward‑looking 
reflections.

Figure 1. Conceptual pipeline: meteorological inputs → 
stochastic model layers → probabilistic forecast → risk‑based 
dispatch.

2. LITERATURE REVIEW
Early stage (pre‑2010): During the early years of wind‑solar 
forecasting, deterministic point estimates dominated. 
Time‑series models such as autoregressive (AR), ARMA, 
and ARIMA were popular owing to their simplicity and the 
limited availability of numerical weather prediction (NWP) 
data (Tyass et al., 2022). These models reduced forecast errors 
compared with persistence yet assumed stationarity and linear 
relationships, which limited their accuracy under rapid weather 
changes. Seminal studies also applied Kalman filters to update 
forecasts in real time, but they remained largely linear and 
site‑specific.
During the transitional period from 2010 to 2015, the 
literature shifted its focus toward probabilistic forecasting and 
dependence modeling. The introduction of copula methods 
allowed joint modelling of wind speeds or photovoltaic 
outputs across geographically dispersed sites, addressing 
spatial correlation. Gaussian random fields, regime‑switching 
models, and vine‑copula decompositions emerged to capture 
high‑dimensional dependence (Chen et al., 2019). Computational 
advances and open data led to the first probabilistic wind power 
forecasts using non‑parametric approaches, although sample 
sizes remained limited. Researchers also began to combine 
NWP predictors with statistical models, bridging physical and 
data‑driven paradigms.
Acceleration (2016–2025): The past decade saw rapid 
acceleration in modeling sophistication. Hybrid approaches 
integrated deep neural networks with NWP features, enabling 
non‑linear capture of weather dynamics. Spatial–temporal 
models matured with vine‑copula and Gaussian random 
field methods. Non‑stationary Gaussian processes using 
spectral mixture kernels provided heteroscedastic uncertainty 
(Ladopoulou et al., 2025), and generative adversarial networks 
(GANs) produced realistic power scenarios (Yuan et al., 
2021). Bayesian and physics‑informed neural networks added 
interpretability and physically consistent constraints (Gijón 
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et al., 2023). Risk‑aware optimization frameworks based on 
chance constraints and conditional value‑at‑risk (CVaR) were 
incorporated into dispatch and unit commitment models (Zhang 
& Giannakis, 2013). Viewed through this historical prism, 
present-day practice now centers on probabilistic models that 
integrate weather physics, machine learning, and risk metrics.

The introduction of copula and spatio‑temporal models, 
the entry of deep learning, the rise of hybrid and ensemble 
strategies, the emergence of generative adversarial models 
and CVaR‑based risk methods, non‑stationary Gaussian 
processes and quantile deep learning, and recent diffusion and 
physics‑informed models.

3. METHODOLOGY
This narrative review synthesizes peer-reviewed evidence 
without applying systematic review or meta-analytic 
procedures. Searches covered Scopus, Web of Science, and 
IEEE Xplore on 27 August 2025 (Africa/Lagos). Keyword 
families included wind/solar/photovoltaic power; probabilistic/
stochastic/uncertainty/quantile; forecast/prediction/scenario; 
copula/spatio-temporal/ensemble; and grid/power-system/
unit-commitment/economic-dispatch/optimal-power-flow. The 
recency-first window targeted 2019–2025 (≥60% of citations), 
with reach-back to 2000–2018 for foundational or longitudinal 
context (≤30%) and pre-2000 only if strictly seminal (≤10%). 
Inclusion required (i) grid-connected wind and/or solar 
forecasting or scenario generation; (ii) explicit stochastic/
probabilistic outputs (quantiles, intervals, densities, or 
ensembles); (iii) empirical validation using proper metrics 
(CRPS, pinball, reliability) and/or decision-linked evaluation; 
and (iv) English, peer-reviewed journals or archival conference 
papers with full methods. 
Exclusions: deterministic-only studies; synthetic-data results 
without real-world validation; non-electricity contexts; 
editorials, letters, and abstract-only records. Screening 
proceeded by title/abstract, then full text; duplicates were 
removed. Manual snowballs from reference lists captured 
additional studies. Quality emphasis favored multi-site or 
portfolio datasets, out-of-sample and cross-season validation, 
explicit calibration checks, and transparent code/data when 
available; low-information case reports and single-metric 
evaluations were deprioritized. Data fields extracted included 
data sources, forecast horizon, spatial scale, modeling class, 
verification metrics, and decision-use context. Findings were 

Figure 2. Timeline 1995–2025, highlighting milestones: 
adoption of ARIMA/ARMA.

synthesized narratively by horizon and model family; no 
statistical pooling was undertaken.

4. RESULTS AND DISCUSSION
4.1. Data characteristics
High‑quality probabilistic forecasts rely on datasets with 
appropriate temporal resolution, spatial coverage, and climate 
representation. Studies use resolutions from minutes to hours; 
high‑frequency data capture intra‑hour variability but suffer 
from sensor noise, whereas hourly or 15‑minute data balance 
noise and computational cost. Spatial correlation of wind speeds 
or irradiance must be modeled: the correlation of wind across 
regions causes voltage fluctuations and cannot be represented 
by simple correlation coefficients (Chen et al., 2019). Vine‑copula 
and Gaussian random field approaches construct multivariate 
distributions by decomposing high‑dimensional dependence 
into pair copulas (Chen et al., 2019), enabling accurate joint 
forecasting across multiple turbines or solar sites. Climate 
regimes also influence model performance; models trained on 
temperate data may not generalize to tropical climates. Many 
studies still rely on short datasets (often less than five years), 
limiting the ability to capture extreme events or climate‑driven 
non‑stationarity.

4.2. Forecast horizons
Forecast horizons range from seconds to weeks, each with 
distinct challenges. Very‑short‑term (seconds to minutes) 
forecasts leverage autoregressive filters, persistence, and 
machine vision of cloud movement; these are vital for inverter 
control and frequency regulation. Short‑term (minutes to hours) 
forecasts rely on NWP ensembles augmented by machine 
learning to correct systematic biases; models such as Kalman 
filters and vector autoregression (VAR) update predictions in real 
time (Wang, 2023). Day‑ahead to week‑ahead forecasts depend 
heavily on NWP; hybrid models and non‑stationary Gaussian 
processes improve uncertainty quantification (Ladopoulou et 
al., 2025). Performance deteriorates with horizon length, and the 
ensemble spread often underestimates uncertainty. Benchmark 
studies indicate that sparse VAR models exploiting turbine 
layout and wind direction outperform simple AR models for 
multi‑site prediction (Ahmed et al., 2024). Across horizons, the 
challenge remains to balance sharpness and calibration while 
avoiding overconfidence.

4.3. Performance metrics
Probabilistic forecasts are assessed by proper scoring rules 
that reward calibration and sharpness. The continuous ranked 
probability score (CRPS) integrates the squared difference 
between the predictive and empirical cumulative distributions; 
lower values indicate better accuracy and sharpness (Leutbecher, 
2023). Decomposition of the CRPS reveals components related 
to reliability, resolution, and uncertainty (Arnold et al., 2023). 
Pinball loss evaluates quantile forecasts by penalizing deviations 
above and below the predicted quantiles; it is robust to noise and 
heavy‑tailed data (Deng et al., 2024). The Winkler score measures 
prediction interval quality by combining interval width and 
coverage (Deng et al., 2024). Reliability diagrams graphically 
compare forecast quantiles with observed frequencies; points 
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on the diagonal indicate perfect calibration (Ait Mouloud et 
al., 2025). Combining CRPS with reliability diagrams provides 
a comprehensive assessment of calibration and sharpness and 

has been applied to seasonal solar forecasts (Ait Mouloud et al., 
2025). However, many studies use non‑standardized metrics, 
complicating cross‑paper comparison.

Table 1. Mini‑comparative table of metrics

Uncertainty metric Reserve sizing Intraday trading Outage planning

Continuous ranked probability 
score (CRPS) – integrates squared 
difference between forecast and 
empirical CDF, evaluates calibration 
and sharpness (Leutbecher, 2023)

Suitable for reserve sizing 
because it penalises large 
deviations, ensuring adequate 
but not excessive reserves.

Useful for intraday trading 
to compare competing 
probabilistic models under 
high uncertainty.

Less commonly 
used; can inform 
maintenance 
scheduling by assessing 
distribution tails.

Pinball loss – quantile‑based loss 
function that penalises under‑ and 
over‑estimates, robust to noise (Deng 
et al., 2024).

Allows tuning of reserve levels 
through choice of quantiles; 
provides asymmetric penalties 
reflecting operator risk 
preferences.

Widely used for intraday 
price and volume forecasts 
where quantiles matter for 
bids.

Helps plan outages 
by predicting extreme 
low‑production periods.

Reliability diagram – graphical tool 
comparing forecast probabilities with 
observed frequencies; points on the 
diagonal imply perfect calibration 
(Ait Mouloud et al., 2025).

Assists operators in verifying 
that reserve policies align with 
forecast reliability.

Supports trading strategies 
by revealing systematic 
bias or overconfidence.

Applicable when 
scheduling outages 
during periods of high 
reliability.

4.4. Discussion
4.4.1. Time‑series stochastic models
How can classical time‑series models represent wind and solar 
uncertainty? Autoregressive (AR), ARMA, and ARIMA models 
remain common benchmarks. They model linear correlations 
in wind speed or irradiance time series and are computationally 
inexpensive. Early studies found that ARMA models reduce 
forecast error relative to persistence and that ARIMA models 
offer better sensitivity to wind speed adjustment (Tyass et 
al., 2022). However, they require high model orders when 
capturing complex dynamics and assume stationarity, which 
may not hold under changing weather regimes. The Kalman 
filter extends these models by updating forecasts recursively 
as new observations arrive. In nonlinear settings, sigma‑point 
Kalman filters approximate state distributions via deterministic 
samples but are sensitive to model mismatch (Wang, 2023). 
Extreme‑learning Kalman filters combine neural networks with 
sigma‑point filtering to improve nonlinear modeling (Wang, 
2023). Vector autoregression (VAR) generalizes autoregression 
to multivariate time series, capturing cross-correlations among 
multiple turbines or solar sites. Sparse VAR models, which 
utilize turbine layout and wind direction, improve day-ahead 
accuracy (Ahmed et al., 2024). Regime-switching and Markov 
models further account for weather-driven state transitions 
and can capture sudden changes. Despite interpretability, 
time‑series models struggle with long lead times and often 
underestimate extreme events, prompting the shift toward 
more flexible methods.

4.4.2. Spatial–temporal and copula methods
How can spatial dependence and non‑Gaussian joint 
distributions be captured? Wind and solar power outputs exhibit 
strong spatial correlations due to mesoscale weather systems. 

Traditional two‑dimensional copulas capture dependence 
between pairs but cannot scale to multiple locations; vine‑copula 
decompositions assemble high‑dimensional distributions from 
bivariate copulas, overcoming the “curse of dimensionality” 
(Chen et al., 2019). Vine‑copula models originated in finance 
and have been applied to power systems for probabilistic 
power flow and risk assessment  (Chen et al., 2019). Gaussian 
random fields treat the wind or irradiance field as a continuous 
stochastic process defined by a covariance function; asymmetry 
due to prevailing wind direction can be incorporated via convex 
combinations of symmetric and asymmetric kernels (Ezzat et 
al., 2019). Spatial–temporal Kalman filters track evolving wind 
fields using state‑space models, while spatio‑temporal copulas 
model joint distributions across time and space. These methods 
allow simulation of power scenarios for multiple sites, enabling 
regional reserve pooling and risk assessment. Limitations 
include computational complexity for large networks and the 
need for careful kernel selection or copula family choice.

4.4.3. Hybrid and ensemble strategies
How can physical and data‑driven methods be synthesized? 
Hybrid models combine NWP outputs with statistical or 
machine‑learning models to exploit physical knowledge while 
correcting systematic errors. For short‑term horizons, NWP 
features (wind speed, irradiance, temperature) feed into deep 
neural networks such as convolutional–gated recurrent units 
(CNN‑GRU) or extreme learning machines, extracting spatial–
temporal patterns (Zhu et al., 2022). Quantile regression (QR) 
models relate inputs to conditional quantiles; combining QR 
with kernel density estimation yields full distributions, though 
traditional QR is linear and struggles with non‑linearity (Zhu 
et al., 2022). Neural‑network QR models, quantile regression 
forests, and gradient boosting overcome this challenge by 
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learning non‑linear quantile functions. Ensemble methods, 
including Bayesian model averaging and stacking, aggregate 
multiple forecasts to improve robustness. For instance, 
probabilistic wind prediction based on Bayesian neural 
networks yields both point estimates and uncertainty by 
sampling from posterior distributions (Deng et al., 2024). Hybrid 
decomposition approaches use empirical mode decomposition or 
variational mode decomposition to separate signal components 
before modeling; these decomposition-hybrid models often 
outperform monolithic deep networks. Challenges remain in 
choosing decomposition levels, preventing over‑fitting and 
managing computational costs.

4.4.4. Uncertainty quantification and verification
Which methods quantify forecast uncertainty and verify 
probabilistic outputs? Prediction intervals can be constructed 
using bootstrapping, quantile regression, or quantile regression 
forests. Winkler scores evaluate interval forecasts, balancing 
interval width against coverage (Deng et al., 2024). Reliability 
calibration techniques adjust predictive distributions to ensure 
that nominal coverage matches empirical coverage. Reliability 
diagrams plot predicted quantiles against observed frequencies; 
points near the diagonal indicate well‑calibrated forecasts (Ait 
Mouloud et al., 2025). CRPS, as described earlier, is widely 
used because it rewards both calibration and sharpness and 
can be decomposed to assess resolution (Arnold et al., 2023). 
Pinball loss evaluates quantile forecasts; by choosing quantiles 
reflecting operator risk tolerance, one can tailor the penalty 
for under- or over-prediction (Deng et al., 2024). The selection 
of metrics affects how models are ranked; it is therefore 
recommended to report multiple metrics. Sample sizes must be 
sufficient to produce reliable reliability diagrams; consistency 
bars are used to account for serial correlation (Ait Mouloud et 
al., 2025). Cross‑validation across seasons and climates is also 
crucial, as model performance can vary by season (Ait Mouloud 
et al., 2025).

4.4.5. Risk‑informed operational decisions
How can probabilistic forecasts inform grid operation and 
market participation? Chance‑constrained optimization 
introduces probabilistic constraints that ensure violations 
occur with low probability. A chance‑constrained economic 
dispatch problem for renewable‑rich portfolios was proposed 
by Sandia researchers; it ensures that the scheduled wind 
energy meets portfolio requirements with high probability 
and uses sample average approximation to handle uncertainty 
(Cheng et al., 2018). Weighted chance constraints generalize 
this concept by using a weight function to penalize larger 
violations more heavily, preserving convexity and enabling 
tractable optimal power flow (OPF) formulations (Roald et al., 
2016). Conditional value‑at‑risk (CVaR)–based formulations 
regularise objective functions with a risk term reflecting the 
expected shortfall beyond a specified value‑at‑risk; this yields 
convex optimization problems and allows distribution‑free 
sample average approximations (Zhang & Giannakis, 2013). 
CVaR is preferred over value‑at‑risk because it is subadditive 
and easier to optimize. CVaR‑based unit commitment and 
robust OPF frameworks have The system demonstrated 

improved performance on test networks, including the IEEE 
30-bus network. In practice, operators should choose risk levels 
consistent with reliability criteria; overly conservative settings 
inflate costs, whereas lax settings risk violations. Integrated 
energy-storage dispatch can further mitigate uncertainty by 
providing flexible reserves.

4.4.6. Emerging trends
What frontiers are shaping the next generation of stochastic 
forecasting? Non‑stationary Gaussian processes using spectral 
mixture kernels accommodate time‑varying periodicities 
and heteroscedastic noise, outperforming stationary kernels 
on short‑term wind power data (Ladopoulou et al., 2025). 
Generative adversarial networks (GANs) and progressive 
growing techniques generate realistic wind power scenarios 
that capture temporal dynamics and reduce scheduling costs 
(Yuan et al., 2021). Physics‑informed neural networks enforce 
physical laws (e.g., conservation of mass or turbine power 
curves) during training and provide uncertainty estimates via 
evidential learning (Gijón et al., 2023). Diffusion models and 
diffusion probabilistic models are being explored for scenario 
generation, offering advantages in modelling multi‑modal 
distributions. Emerging hybrid deep learning frameworks 
incorporate graph neural networks to model grid topology 
and meteorological relationships. On the operational side, 
integrated risk models that combine CVaR, weighted chance 
constraints, and stochastic ramping costs are being tested for 
real‑time energy markets. Open testbeds that emulate realistic 
grid dynamics under high renewable penetration have been 
proposed to benchmark new models, emphasizing that they 
require reproducibility and standardized datasets.

4.5. Implications
Stochastic forecasting influences a range of stakeholders. 
Grid operators should adopt reserve procurement strategies 
that account for risk and are informed by probabilistic 
forecasts: chance‑constrained dispatch and CVA‑based OPF 
can ensure reliability while minimizing costs (Bienstock et 
al., 2014). Operators could also use probabilistic ramp‑rate 
smoothing strategies to coordinate battery storage and 
demand response, reducing wear on conventional units 
(Olivares et al., 2014). Market participants, including traders, 
aggregators, and plant owners, can design bidding strategies 
using quantile forecasts, hedging instruments, and scenario 
generation to manage price risk (Nowotarski & Weron, 2018). 
Probabilistic forecasts enable dynamic portfolio rebalancing 
and encourage investment in flexible assets (Idema et al., 
2013). Regulators should encourage disclosure of forecast 
accuracy and uncertainty using proper scoring metrics such 
as CRPS and pinball loss, which have been widely validated 
in probabilistic energy forecasting literature (Gneiting 
& Raftery, 2007). They could set minimum reliability 
requirements for forecast providers and incentivize adoption 
of probabilistic bids. Introducing standardized probabilistic 
benchmarks and leaderboards would allow fair comparison 
and spur innovation (Hong et al., 2014). Regulators may 
also need to adapt market rules to accommodate stochastic 
bids and risk‑priced reserves. Overall, the integration of 
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probabilistic forecasts into dispatch, trading, and regulation 
could enhance security of supply, lower balancing costs, and 
accelerate renewable penetration.

5. CONCLUSION
Renewable forecasting has matured from single values to 
probabilistic signals that inform risk. The path forward is to 
turn those signals into routine, verifiable practice. To make 
“open testbeds” concrete rather than aspirational, a risk-aware 
forecasting testbed should include: (1) Data layer: multi-site 
wind/solar, NWP ensembles, satellite/sky-cam feeds, and 
metadata (turbine/panel specs, curtailments), with rolling 
windows for at least three climate regimes; (2) Horizon × scale 
grid: standardized tasks spanning 5-minute nowcasts to week-
ahead forecasts at site, portfolio, and control-area levels; (3) 
Benchmark suite: strong baselines (persistence, climatology, 
ARIMA), physics-only, ML-only, and hybrid references with 
frozen versions; (4) Verification & risk metrics: CRPS and 
pinball for sharpness, reliability diagrams for calibration, plus 
tail-focused VaR/CVaR and outage-probability checks; (5) 
Decision-in-the-loop simulators: stochastic unit-commitment, 
probabilistic reserve sizing, and trading backtests that turn 
forecast skill into cost, reliability, and emissions deltas; (6) 
Extreme-event protocol: stress tests for ramps, widespread 
cloud fronts, calm spells, and sensor dropouts, with red-team 
adversarial scenarios; (7) Reproducibility & audit: public code, 
fixed seeds, dataset cards, versioned APIs, and submission 
checklists (data splits, rolling-origin evaluation, cross-season 
tests); (8) User-facing artifacts: fan charts, probability-of-
exceedance curves, and succinct risk dashboards with plain-
language summaries.
Such a testbed converts model progress into operational value, 
anchors comparisons across sites and horizons, and makes 
risk communication as standard as the forecast itself—toward 
steadier, smarter grids.

RECOMMENDATIONS
Climate-scale inputs. Researchers should couple sub‑seasonal 
and seasonal climate outlooks with intra‑day models to capture 
large‑scale patterns such as El Niño–Southern Oscillation 
that modulate wind and solar availability (Springenberg et al., 
2025). Multi‑resolution models could propagate uncertainty 
from climate to operational timescales, yielding more robust 
forecasts (Liu et al., 2025).
Verification standardization. A common set of benchmark 
datasets and proper scoring rules is needed. A CRPS‑based 
leaderboard similar to Kaggle competitions would allow 
transparent comparison of models across horizons and climates 
(Gneiting & Raftery, 2007; Hong et al., 2014). Reliability 
diagrams and pinball loss should accompany CRPS to reveal 
calibration and tail behavior.
Testbeds. Open‑access testbeds, perhaps named “Grid‑Lab,” 
should be developed to stress‑test stochastic models 
under synthetic yet realistic scenarios (Pacific Northwest 
National Laboratory, n.d.). These platforms could simulate 
grid physics, market rules, and weather events, enabling 
researchers to assess performance under extreme ramp 
events, curtailments, and storage constraints. Collaboration 

between academia, industry, and system operators would 
promote adoption and ensure that models address practical 
challenges.

LIMITATIONS
This review synthesizes narrative rather than systematic 
evidence, so selection bias may persist. The heterogeneity 
of modeling approaches and performance metrics hampers 
direct comparisons and may overstate improvements. Many 
cited studies focus on single regions or short data sets, 
limiting generalizability across climates or longer temporal 
scales. Emerging methods such as diffusion models remain 
speculative with few validation studies. The review emphasizes 
technical literature and may underrepresent market or policy 
perspectives. Future meta-analyses with standardized datasets 
would provide more rigorous comparisons.
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