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The accurate and timely identification of brain tumors is crucial for effective 
diagnosis and treatment planning; however, the manual interpretation 
of MRI scans continues to be difficult and susceptible to errors. Although 
convolutional neural networks (CNNs) have made strides in automated 
classification, their dependence on local feature processing can restrict 
overall effectiveness. As an initial exploration, this pilot study introduces a 
Vision Transformer (ViT) model that utilizes self-attention mechanisms to 
capture both long-range global contexts and detailed local dependencies 
within image data, facilitating a more thorough feature representation that 
is vital for detecting subtle pathological patterns. Trained and assessed on a 
pilot dataset comprising 3,000 MRI images with significant augmentation, the 
proposed ViT model attained a promising preliminary accuracy of 99.73%, 
surpassing established CNN-based architectures such as ResNet-50, VGG-16, 
and EfficientNet-B0 across all evaluation metrics within the constraints of 
this binary classification task. These feasibility results not only highlight the 
potential of ViTs for brain tumor classification but also effectively validate the 
fundamental data processing and model fine-tuning pipeline. The study points 
out critical limitations, including dataset scale and model explainability, which 
directly influence the design of a forthcoming large-scale, multi-institutional 
research initiative. This pilot research lays a foundational framework for the 
integration of transformer-based models into medical imaging workflows to 
enhance diagnostic accuracy.
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1. INTRODUCTION 
Brain imaging plays a crucial role in modern medical diagnosis 
by allowing non-invasive visualization of the brain’s structure 
and function. Among various neurological conditions, brain 
tumors are particularly challenging due to their heterogeneous 
nature, location, and potential impact on vital brain functions. 
Accurate and timely diagnosis is therefore essential for 
effective treatment planning and improving patient outcomes 
(Louis et al., 2021). Magnetic Resonance Imaging (MRI) remains 
the gold standard for detecting brain tumors because of its 
high spatial resolution and ability to differentiate between 
normal and abnormal tissues (Joshi et al., 2024). However, 
manual interpretation of MRI scans by radiologists can be 
time-consuming, subjective, and prone to human error, 
especially when tumors are small or located in complex regions 
(Abdusalomov et al., 2023).
The emergence of Artificial Intelligence (AI), particularly 
Machine Learning (ML) and Deep Learning (DL), has 
transformed the field of medical imaging. AI algorithms can 
process large amounts of imaging data, extract hidden features, 
and assist in the detection, segmentation, and classification 
of brain tumors with high accuracy. CNNs, for instance, have 
demonstrated impressive results in distinguishing between 
gliomas, meningiomas, and pituitary tumors, achieving 
classification accuracies above 95% (Yakkundi et al., 2024; 
Aydin & Acharya, 2019; Clive & Giroh 2023; Dong et al., 2025). 
These models reduce diagnostic variability and provide more 
consistent results than human experts alone.
The rapid evolution of Artificial Intelligence technologies, as 
described in Clive et al. (2024); Clive et al., (2025); Asuai et al,. 
(2025; Akazue et al., 2023, has brought about improvement in 
imaging technology. Despite advances in imaging technology, 
the accurate and early diagnosis of brain tumors remains a major 
challenge. Radiologists face difficulties in differentiating tumor 
subtypes, assessing progression, and interpreting complex 
imaging data. These challenges can delay treatment decisions 
and negatively affect patient outcomes. The integration of AI 
into brain imaging provides an opportunity to overcome these 
limitations by offering automated, fast, and highly accurate 
diagnostic support.
This study is motivated by the need to harness AI in brain 
tumor imaging to improve diagnostic accuracy, reduce human 
error, and enable timely clinical interventions. By applying ML 
and DL techniques, this work seeks to demonstrate how AI can 
enhance brain tumor detection and classification, ultimately 
contributing to better patient care

1.1. Pilot study rationale and objectives
Given the rapid advancement of Artificial Intelligence 
technologies, as covered in, Asuai et al., 2025, The transition 
of advanced deep learning architectures from natural image 
recognition to the vital field of medical diagnostics necessitates 
meticulous, phased validation. ViTs signify a significant 
shift from convolutional networks; however, their efficacy in 
medical imaging tasks, especially given the limited dataset 
sizes common in clinical environments, remains to be fully 
determined . Consequently, a pilot study is an essential initial 
step to mitigate risks associated with a larger investigation. 

This research is structured as a monocentric pilot study aimed 
at evaluating the feasibility and preliminary effectiveness of 
a self-attention-based framework, referred to as SABViT, for 
binary brain tumor classification.
The primary goal is to ascertain the viability of this method 
prior to engaging in a more resource-demanding study. The 
specific objectives of the pilot study are to:

i. evaluate the feasibility of the technical pipeline: This 
encompasses assessing the efficacy of our MRI-specific 
preprocessing (skull stripping, normalization) and the adequacy 
of our data augmentation strategy in averting overfitting while 
fine-tuning a large ViT model on a limited dataset.

ii. collect preliminary data on model performance: The 
objective is to derive initial estimates of the classification 
accuracy, precision, recall, and F1-score of the SABViT model. 
This information will be utilized for sample size determination 
and power analysis in a subsequent definitive trial.

iii. perform an initial comparative benchmark: The 
performance of the SABViT model will be evaluated against 
a series of standard CNN benchmarks (ResNet-50, VGG-16, 
EfficientNet-B0) under the same conditions to provide an early 
assessment of its relative advantages.

iv. identify practical challenges and limitations: The study 
will document computational demands, training stability, and 
potential failure modes, offering critical insights for enhancing 
the experimental protocol and model architecture in future 
endeavors 

2. LITERATURE REVIEW
Recent advancements in DL and ML have significantly 
enhanced brain tumor detection and segmentation from MRI 
scans, addressing challenges such as image noise, tumor 
heterogeneity, and limitations of manual annotation. Asuai 
and Giroh (2023) developed a CNN incorporating an attention 
mechanism, achieving 97.5% accuracy on 3,000 MRI images. 
Their approach leveraged preprocessing and attention layers to 
enhance feature focus and interpretability.
Building upon segmentation-driven classification, Lakshmi 
et al. (2025) introduced the XAISS-BMLBT framework, which 
combines UNet-based segmentation with Bayesian machine 
learning. Utilizing bilateral filtering, MEDU-Net+ segmentation, 
ResNet50 feature extraction, and a Bayesian regularized neural 
network (BRANN) with hyperparameter tuning, the approach 
achieved 97.75% accuracy, emphasizing model explainability 
and precise tumor localization. Similarly, 
Naceur et al. (2018) proposed end-to-end incremental deep 
CNNs for glioblastoma segmentation on the BRATS-2017 
dataset, achieving an average Dice score of 0.88 in 20.87 seconds, 
illustrating the potential for efficient clinical diagnosis. 
Aswani and Menaka (2021) employed an unsupervised dual 
autoencoder with singular value decomposition (SVD) for brain 
tumor segmentation, demonstrating improved performance 
over conventional ML methods (e.g., SVM, KNN) by reducing 
latent space loss for meningioma and glioma segmentation.
In the domain of tumor classification, Khaliki and Başarslan 
(2024) explored glioma, meningioma, and pituitary tumor 
detection using a 3-layer CNN and transfer learning models, with 
VGG16 achieving 98% accuracy, highlighting the effectiveness 
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of transfer learning. Salakapuri et al. (2025) proposed a hybrid 
model integrating deep transfer learning (Inception-V3, 
ResNet-50, VGG-16) with ensemble machine learning on 5,712 
MRI scans; their stacking ensemble combining ResNet-50 and 
PCA achieved 95.7% accuracy and 99.6% AUC, significantly 
outperforming baseline models. 
Zubair Rahman et al. (2024) employed EfficientNetB2 with 
advanced preprocessing, reporting validation accuracies 
of 99.83%, 99.75%, and 99.2% across three Kaggle datasets, 
underscoring the role of AI-driven approaches in improving 
clinical diagnostics.
Other approaches emphasize specialized architectures and 
optimization techniques. Abdusalomov et al. (2023) fine-tuned 
YOLOv7 with CBAM, SPPF+, and BiFPN for tumor detection, 
achieving 99.5% accuracy while identifying small tumors 
as a future challenge. Kumar et al. (2024) evaluated machine 
learning classifiers combined with feature extraction methods, 
showing that Random Forest with Image Loading achieved 99% 
accuracy. 
Aamir et al. (2025) implemented an automated DL framework 
with guided filtering and morphological analysis on BraTS2020 
and Figshare datasets, attaining 99.94% and 99.67% accuracy, 
respectively, demonstrating robustness and automation. 
Ragab et al. (2024) introduced the BTR-EODLA method, 
leveraging median filtering, SE-ResNet50, and a stacked 
autoencoder with equilibrium optimizer tuning, achieving 
98.78% accuracy. Gasmi et al. (2024) proposed an ensemble 
approach combining ViT and EfficientNet-V2 with genetic 
algorithm-based weight optimization, reaching 95% accuracy 
for multi-class tumor classification
Transfer learning and fine-tuning strategies have also 
been applied effectively. Rastogi et al. (2025) fine-tuned 
InceptionResNetV2, VGG19, Xception, and MobileNetV2, 
achieving 96.11% accuracy with Xception. 
Gao et al. (2022) developed a DL model for classifying 18 
tumor types from 37,871 MRI scans, achieving a mean AUC 
of 0.92 and outperforming neuroradiologists (73.3% vs. 
60.9%), while enhancing diagnostic accuracy when used as 
an adjunct. Rasool et al. (2025) introduced CNN-TumorNet 
with LIME-based explainability, attaining 99% accuracy in 
tumor versus non-tumor classification, supporting transparent 
clinical decision-making. Gunasekaran et al. (2024) developed 
ConvNet-ResNeXt101, a hybrid DL model for segmentation 
and classification on BRATS 2020, achieving 99.27% accuracy 
for tumor core classification with a rapid learning time of 
0.53 seconds. Saeedi et al. (2023) implemented a 2D CNN and 
convolutional autoencoder network for classifying glioma, 
meningioma, pituitary tumors, and healthy brains on 3,264 
MRI images, reporting 96.47% and 95.63% training accuracy, 
respectively, with the 2D CNN outperforming traditional ML 
methods such as MLP (28%) and KNN (86%).
While the current literature demonstrates remarkable 
performance, often reporting accuracies exceeding 99%, this 
pilot study is consciously designed as a foundational step that 
prioritizes methodological rigor over achieving a superlative 
metric. The field's tendency towards such high scores warrants 
critical discussion, as it can sometimes stem from non-
challenging or insufficiently diverse datasets, data leakage, or a 

lack of failure analysis. This work aims to establish a robust data 
processing and model fine-tuning pipeline first, acknowledging 
that a credible assessment of a model's true clinical potential 
requires a cautious, phased approach, beginning with this 
carefully controlled feasibility study before progressing to 
more complex, generalizable validation.

3. METHODOLOGY
3.1. Pilot study design
This study utilized a retrospective, single-center pilot design. A 
retrospective dataset of 3,000 T1-weighted contrast-enhanced 
MRI axial scans was obtained from the institutional archive 
of the Federal Medical Centre, Asaba, Nigeria. The binary 
classification task (Tumor vs. Non-Tumor) was deliberately 
chosen to minimize complexity for this preliminary feasibility 
evaluation. This focused approach facilitates a clearer 
understanding of the model's fundamental ability to differentiate 
between abnormal and normal tissue prior to advancing to the 
more clinically intricate task of tumor subtype classification.

3.2 Dataset and preprocessing
In the rapidly evolving realm of information processing (Clive 
et al., 2024, Clive et al., 2025,  Akazue et al., 2023, Clive et al., 
2023), data represents all manipulable elements that can be 
structured into datasets with identifiable features (Clive et al., 
2024, Clive et al., 2025, Asuai et al., 2025, Akazue et al., 2023). 
These features can be fused across sources to create enriched 
representations (Asuai et al., 2025).
The dataset employed in this research was obtained from Federal 
Medical Centre, Asaba, Nigeria, and comprises 3,000 MRI brain 
images, evenly distributed across two categories: 1,500 images 
containing brain tumors and 1,500 images of healthy (non-
tumor) brains. The dataset was randomly split into training 
(80%, n=2,400 images) and testing (20%, n=600 images) sets, with 
stratification to preserve the original class distribution.

A B

Figure 1. Sample T1-weighted contrast-enhanced axial MRI 
scans. (a) Normal brain (no tumor). (b) Brain with a tumor.

To ensure reliability and suitability for deep learning models, 
several preprocessing steps were carried out:

i. Image Cleaning and Skull Stripping: Non-brain tissues 
were removed using the ROBEX to retain only relevant brain 
structures.
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ii. Normalization: Pixel intensity values were normalized to a 
uniform range [0, 1] range, reducing scanner-related variability 
and enhancing consistency across samples.

iii. Resizing: All images were resized to 224 × 224 pixels to 
conform to the input specifications of the ViT model.

iv. Data Augmentation: To address dataset size limitations 
and prevent overfitting, the following augmentation techniques 
were applied on-the-fly during training: random rotation 
(±15°), horizontal flipping, zooming (up to 10%), and brightness 
adjustment (factor range 0.9-1.1).3.3

3.3. Model architecture: SABViT
The proposed model is based on the ViT-Base framework, which 
was initialized with weights pre-trained on the ImageNet-21k 
dataset and subsequently fine-tuned on our brain MRI dataset. 
This approach leverages transfer learning to overcome the 
challenges of training a transformer from scratch on a limited 
dataset. Unlike CNNs that rely on local receptive fields, ViT 
leverages self-attention mechanisms to capture both local and 
global dependencies within MRI scans.
The model architecture, depicted in Figure 2, consists of the 
following components:

i. Patch Embedding: Each preprocessed 224×224 MRI image is 
divided into 196 non-overlapping patches of size 16 × 16. These 
patches are linearly projected into 768-dimensional embedding 
vectors, forming the input sequence.

ii. Positional Encoding: Learnable positional encodings are 
added to the patch embeddings to retain the spatial information 
of each patch's original location.

iii. Transformer Encoder: A stack of 12 identical transformer 
encoder blocks is applied. Each block comprises Multi-Head 
Self-Attention (MHSA) with 12 heads, layer normalization, 
residual connections, and a feed-forward network. The 
self-attention operation, which enables the model to learn 
contextual relationships across patches, is computed using the 
following formula:

			            ....(1)

iv. Classification Head: The output embedding corresponding 
to the [CLS] token is passed through a fully connected layer 
with a softmax activation function to classify the image into 
two categories: tumor or non-tumor. 

3.4. Sample size justification
Considering the exploratory nature of this pilot study, a formal 
calculation for sample size was not conducted. Instead, the 
sample size of 3,000 images was established based on practical 
limitations and standard practices in initial deep learning 
research . This quantity is deemed adequate to yield preliminary 
estimates of model performance and to train a model without 
immediate indications of overfitting, thereby achieving the 
primary feasibility goal. It is important to recognize that this 
limited, single-center sample size is a key limitation of the pilot 
and that no statistical power was calculated for hypothesis 
testing, as the objective was to assess feasibility and inform the 
design of a larger, definitive study.

3.5. Feasibility metrics
Alongside standard performance metrics (Accuracy, Precision, 
etc.), we established the following feasibility metrics to inform 
the pilot evaluation:

i. Training Stability: Steady convergence of training and 
validation loss curves without significant divergence.

ii. Computational Efficiency: Total training duration and GPU 
memory consumption were tracked.

iii. Pipeline Robustness: Successful end-to-end execution of 
the complete workflow, from data loading and preprocessing to 
model training and evaluation.

Table 1. Experimental parameters and their values

Parameters Value

Pre-trained model ViT-Base/16*

Number of Attention Heads 12

Learning Rate 0.001

Batch Size 32

Number of Epoch  50

Optimizer Adam

Number of transformer layers 12

Figure 2. Architecture of the proposed system
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4. RESULTS AND DISCUSSION
This section presents the preliminary results of the SABViT 
model on the pilot dataset and discusses their implications for 
the study's feasibility objectives.

4.1. Initial performance results
The optimized SABViT model underwent evaluation using 
a separate test set comprising 600 images. To validate the 
reliability of these preliminary results, five-fold cross-
validation was conducted on the training dataset. The model 
exhibited high performnce, attaining a test accuracy of 99.73% 
and a stable cross-validation accuracy of 99.71% (±0.03%). A 

The training dynamics, as depicted in Figure 3, demonstrated 
stable convergence with no notable divergence between the 
training and validation curves. This suggests that the data 
preprocessing and augmentation pipeline effectively reduced 

overfitting, which is a significant concern when fine-tuning a 
large model on a limited dataset. This achievement successfully 
fulfills our initial pilot objective regarding the viability of the 
technical pipeline.

Table 2. Preliminary classification performance of the SABViT 
model on the brain MRI pilot dataset

Metric Value (%)

Accuracy 99.73

Precision 98.3

Recall 97.3

F1-Score 99.23

Figure 3.  Comprehensive performance evaluation of the SABViT Framework

comprehensive summary of the performance metrics can be 
found in Table 2.
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training and evaluation under the same conditions on our pilot 
dataset. The results, which are detailed in Table 3, indicate that 
the proposed SABViT model surpassed all CNN benchmarks 
across essential metrics.

4.2. Preliminary comparative analysis
In order to contextualize the performance of the SABViT 
model, a comparative analysis was performed against several 
well-established CNN architectures. All models underwent 

Figure 4. Dimensional performance analysis and classification results (Left) Radar chart comparing SABViT against best-
performing CNN benchmarks across all evaluation metrics, (Right) Confusion matrix showing binary classification performance 
on the test dataset (n = 600 samples).

Table 3. Preliminary comparative performance of baseline models versus the proposed SABViT model

Model Accuracy Precision Recall F1-Score

ResNet-50 97.35% 96.5% 96.8% 96.6%

VGG-16 99.17% 98.1% 97.9% 98.0%

EfficientNet-B0 98.78% 97.8% 98.2% 98.0%

Inception-ResNet v2 96.72% 95.9% 96.0% 95.9%

SAViT (Proposed) 99.73% 98.3% 97.3% 99.23%

Figure 5. Comparative Analysis of Architectural Performance Across Metrics
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The exceptional performance of the SABViT model offers 
initial evidence that the self-attention mechanism's capacity 
to capture global contextual information may provide an edge 
over the locally focused processing of CNNs for this particular 
task. This aligns with emerging findings in other medical 
imaging fields where transformers have demonstrated potential 
in modeling long-range dependencies in anatomical structures. 
This comparative analysis meets our third pilot objective of 
collecting preliminary benchmarking data.

4.3. Discussion of feasibility findings
The main outcome of this pilot study is the successful 
demonstration of feasibility. While the high performance 
metrics are encouraging, they should be viewed as initial 
evidence of efficacy rather than conclusive proof of clinical 
utility. The significant finding is that a standard ViT architecture, 
pre-trained on natural images, can be effectively adapted to a 
binary medical image classification task with a limited dataset.
The model's performance, especially its high precision and 
recall, indicates that it has learned meaningful representations 
for differentiating between tumorous and non-tumorous 
tissues. The success of the transfer learning approach confirms 
a practical strategy for utilizing data-hungry transformer 
models in data-scarce medical domains. Additionally, the 
computational resources required, although considerable, 
were manageable for this pilot scale, establishing a baseline for 
planning larger studies.
These results strongly advocate for the decision to advance to 
a larger-scale investigation. The performance data from this 
pilot (e.g., the 99.7% accuracy and the effect size in comparison 
to CNNs) will be crucial for conducting formal sample size 
calculations for a definitive multi-institutional trial. 

4.4. Feasibility and limitations
This pilot study effectively illustrated the overall feasibility 
of the proposed SABViT framework. The technical pipeline, 
encompassing data preprocessing through to model training, 
demonstrated robustness and execution capability. The model 
achieved stable convergence over 50 epochs, with training and 
validation accuracy curves closely aligned (Figure 3), suggesting 
that the selected data augmentation strategy was successful in 
reducing overfitting, even with the relatively small dataset. The 
impressive preliminary performance metrics indicate that the 
self-attention mechanism's capacity to capture global context 
provides a significant advantage for this task, potentially enabling 
the model to assimilate information from distant brain regions to 
enhance its classification, a feature often constrained in CNNs.
However, it is essential to recognize several critical limitations 
inherent to this pilot phase in order to contextualize the 
findings:

i. Limited generalizability: Utilizing a single-center, 
retrospective dataset introduces a significant risk of 
demographic and scanner-specific bias. Consequently, the 
model's efficacy may not be applicable to images obtained 
through different protocols or from varied patient populations. 
This represents the foremost challenge to the external validity 
of these initial findings.

ii. Pilot sample size: Although adequate for feasibility testing, 

the size of the dataset is insufficient for creating a clinically 
generalizable model. A more extensive, multi-institutional 
dataset is necessary to encompass the complete heterogeneity 
of brain tumors and imaging conditions.

iii. Simplified clinical task: The binary classification task, 
while beneficial for proof-of-concept, lacks direct clinical 
relevance. Radiologists need to distinguish between tumor 
types (e.g., glioma versus meningioma), which necessitate 
different treatment approaches. The model's effectiveness in 
this more intricate task is yet to be determined.

iv. Computational intensity: The ViT-Base model demanded 
significantly greater computational resources for fine-tuning in 
comparison to the CNN benchmarks. This practical challenge 
must be resolved for scalable implementation.

v. Absence of explainability: A significant barrier to clinical 
adoption is the "black-box" nature of deep learning models. This 
pilot study did not incorporate explainable AI (XAI) techniques 
to visualize the basis for the model's decisions, which is crucial 
for building trust with clinicians.

vi. Failure analysis: A critical component of a pilot feasibility 
study is to understand the model's failure modes. An analysis 
of the confusion matrix (Figure 4, Right) reveals that the model 
misclassified a very small number of cases. A qualitative 
review of these errors indicated that the false positives and 
negatives were not associated with a specific tumor subtype 
or a consistent imaging artifact. Instead, the errors appeared to 
be isolated instances where the tumor presence was extremely 
subtle or where the image quality was at the lower end of 
the acceptability spectrum. The absence of a clear pattern in 
these misclassifications, while encouraging, underscores the 
limitation of the current dataset's size and diversity. It highlights 
that a larger, more heterogeneous dataset is required to properly 
stress-test the model and identify systematic weaknesses, a key 
objective for the subsequent large-scale study.

5. CONCLUSION
This pilot study successfully fulfilled its primary objective 
of evaluating the feasibility of a SABViT for detecting brain 
tumors in MRI images.
The research illustrated that the proposed framework can be 
effectively executed, supported by a robust data preprocessing 
and augmentation pipeline that facilitated stable model training 
without succumbing to overfitting on a limited pilot dataset.
The initial results are extremely promising, suggesting that the 
SABViT model can attain a high degree of accuracy and surpass 
several conventional CNN-based benchmarks. This indicates 
that the global contextual processing abilities of transformers 
possess considerable potential for tasks involving medical 
image analysis.
Most importantly, this study has pinpointed clear and specific 
avenues for future research, primarily regarding dataset scale, 
model explainability, and the complexity of clinical tasks.
The limitations noted, including the reliance on a single-center 
data source and the binary classification task, should not be 
viewed as deficiencies but rather as valuable insights from this 
pilot phase. They offer a critical, evidence-based foundation for 
planning a subsequent, more extensive study.
Consequently, this pilot work concludes that further investment 
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in the development and validation of transformer-based models 
for brain tumor classification is not only feasible but also highly 
justified. The next phase will involve conducting a large-scale, 
multi-institutional study aimed at multi-class tumor classification, 
incorporating integrated explainable AI components to bridge 
the divide between technical performance and clinical adoption.

FUTURE WORK
The encouraging outcomes and insights gained from this pilot 
study provide a direct foundation for future research endeavors. 
The subsequent phase will involve a large-scale, definitive 
study aimed at addressing the limitations previously identified.

i. Multi-institutional data collection: We will commence 
partnerships with various national and international medical 
institutions to compile a more extensive dataset (>15,000 
images) that includes multiple tumor types (gliomas, 
meningiomas, pituitary tumors) and a variety of imaging 
protocols. This initiative will strengthen the model's robustness 
and generalizability.

ii. Advanced architecture for clinical utility: Building upon the 
feasibility demonstrated by the ViT approach, we will create 
and train a multi-class classification model. Additionally, we 
will investigate more efficient hierarchical transformers, such 
as the Swin Transformer, which are more appropriate for high-
resolution medical images and help to minimize computational 
demands.

iii. Integration of XAI: A fundamental aspect of the upcoming 
study will be the incorporation of XAI methodologies, 
including Layer-wise Relevance Propagation (LRP) or attention 
visualization techniques, to produce saliency maps. This will 
enable clinicians to identify the specific regions of the MRI that 
the model utilized for its decision-making, thereby promoting 
transparency and trust.

iv. Prospective clinical validation: The primary objective is 
to validate the enhanced model through a prospective clinical 
trial. This will entail implementing the model in a real-world 
radiology reading environment to assess its influence on 
diagnostic accuracy, turnaround time, and inter-rater variability 
in comparison to standard clinical practices.
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