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diagnosis and treatment planning; however, the manual interpretation
of MRI scans continues to be difficult and susceptible to errors. Although
convolutional neural networks (CNNs) have made strides in automated
classification, their dependence on local feature processing can restrict
overall effectiveness. As an initial exploration, this pilot study introduces a
Vision Transformer (ViT) model that utilizes self-attention mechanisms to
capture both long-range global contexts and detailed local dependencies
within image data, facilitating a more thorough feature representation that
is vital for detecting subtle pathological patterns. Trained and assessed on a
pilot dataset comprising 3,000 MRI images with significant augmentation, the
proposed ViT model attained a promising preliminary accuracy of 99.73%,
surpassing established CNN-based architectures such as ResNet-50, VGG-16,
and EfficientNet-B0 across all evaluation metrics within the constraints of
this binary classification task. These feasibility results not only highlight the
potential of ViTs for brain tumor classification but also effectively validate the
fundamental data processing and model fine-tuning pipeline. The study points
out critical limitations, including dataset scale and model explainability, which
directly influence the design of a forthcoming large-scale, multi-institutional
research initiative. This pilot research lays a foundational framework for the
integration of transformer-based models into medical imaging workflows to
enhance diagnostic accuracy.
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1. INTRODUCTION

Brain imaging plays a crucial role in modern medical diagnosis
by allowing non-invasive visualization of the brain’s structure
and function. Among various neurological conditions, brain
tumors are particularly challenging due to their heterogeneous
nature, location, and potential impact on vital brain functions.
Accurate and timely diagnosis is therefore essential for
effective treatment planning and improving patient outcomes
(Louis et al, 2021). Magnetic Resonance Imaging (MRI) remains
the gold standard for detecting brain tumors because of its
high spatial resolution and ability to differentiate between
normal and abnormal tissues (Joshi et al, 2024). However,
manual interpretation of MRI scans by radiologists can be
time-consuming, subjective, and prone to human error,
especially when tumors are small or located in complex regions
(Abdusalomov et al., 2023).

The emergence of Artificial Intelligence (Al), particularly
Machine Learning (ML) and Deep Learning (DL), has
transformed the field of medical imaging. Al algorithms can
process large amounts of imaging data, extract hidden features,
and assist in the detection, segmentation, and classification
of brain tumors with high accuracy. CNNs, for instance, have
demonstrated impressive results in distinguishing between
gliomas, meningiomas, and pituitary tumors, achieving
classification accuracies above 95% (Yakkundi et al, 2024;
Aydin & Acharya, 2019; Clive & Giroh 2023; Dong et al., 2025).
These models reduce diagnostic variability and provide more
consistent results than human experts alone.

The rapid evolution of Artificial Intelligence technologies, as
described in Clive et al. (2024); Clive et al., (2025); Asuai et al,.
(2025; Akazue et al, 2023, has brought about improvement in
imaging technology. Despite advances in imaging technology,
the accurate and early diagnosis of brain tumors remains a major
challenge. Radiologists face difficulties in differentiating tumor
subtypes, assessing progression, and interpreting complex
imaging data. These challenges can delay treatment decisions
and negatively affect patient outcomes. The integration of Al
into brain imaging provides an opportunity to overcome these
limitations by offering automated, fast, and highly accurate
diagnostic support.

This study is motivated by the need to harness Al in brain
tumor imaging to improve diagnostic accuracy, reduce human
error, and enable timely clinical interventions. By applying ML
and DL techniques, this work seeks to demonstrate how Al can
enhance brain tumor detection and classification, ultimately
contributing to better patient care

1.1. Pilot study rationale and objectives

Given the rapid advancement of Artificial Intelligence
technologies, as covered in, Asuai et al., 2025, The transition
of advanced deep learning architectures from natural image
recognition to the vital field of medical diagnostics necessitates
meticulous, phased validation. ViTs signify a significant
shift from convolutional networks; however, their efficacy in
medical imaging tasks, especially given the limited dataset
sizes common in clinical environments, remains to be fully
determined . Consequently, a pilot study is an essential initial
step to mitigate risks associated with a larger investigation.

This research is structured as a monocentric pilot study aimed
at evaluating the feasibility and preliminary effectiveness of
a self-attention-based framework, referred to as SABViT, for
binary brain tumor classification.

The primary goal is to ascertain the viability of this method
prior to engaging in a more resource-demanding study. The
specific objectives of the pilot study are to:

i. evaluate the feasibility of the technical pipeline: This
encompasses assessing the efficacy of our MRI-specific
preprocessing (skull stripping, normalization) and the adequacy
of our data augmentation strategy in averting overfitting while
fine-tuning a large ViT model on a limited dataset.

ii. collect preliminary data on model performance: The
objective is to derive initial estimates of the classification
accuracy, precision, recall, and F1-score of the SABViT model.
This information will be utilized for sample size determination
and power analysis in a subsequent definitive trial.

iii. perform an initial comparative benchmark: The
performance of the SABVIT model will be evaluated against
a series of standard CNN benchmarks (ResNet-50, VGG-16,
EfficientNet-B0) under the same conditions to provide an early
assessment of its relative advantages.

iv. identify practical challenges and limitations: The study
will document computational demands, training stability, and
potential failure modes, offering critical insights for enhancing
the experimental protocol and model architecture in future
endeavors

2. LITERATURE REVIEW

Recent advancements in DL and ML have significantly
enhanced brain tumor detection and segmentation from MRI
scans, addressing challenges such as image noise, tumor
heterogeneity, and limitations of manual annotation. Asuai
and Giroh (2023) developed a CNN incorporating an attention
mechanism, achieving 97.5% accuracy on 3,000 MRI images.
Their approach leveraged preprocessing and attention layers to
enhance feature focus and interpretability.

Building upon segmentation-driven classification, Lakshmi
et al. (2025) introduced the XAISS-BMLBT framework, which
combines UNet-based segmentation with Bayesian machine
learning. Utilizing bilateral filtering, MEDU-Net+ segmentation,
ResNet50 feature extraction, and a Bayesian regularized neural
network (BRANN) with hyperparameter tuning, the approach
achieved 97.75% accuracy, emphasizing model explainability
and precise tumor localization. Similarly,

Naceur et al. (2018) proposed end-to-end incremental deep
CNNs for glioblastoma segmentation on the BRATS-2017
dataset, achieving an average Dice score of 0.88 in 20.87 seconds,
illustrating the potential for efficient clinical diagnosis.

Aswani and Menaka (2021) employed an unsupervised dual
autoencoder with singular value decomposition (SVD) for brain
tumor segmentation, demonstrating improved performance
over conventional ML methods (e.g., SVM, KNN) by reducing
latent space loss for meningioma and glioma segmentation.

In the domain of tumor classification, Khaliki and Basarslan
(2024) explored glioma, meningioma, and pituitary tumor
detection using a 3-layer CNN and transfer learning models, with
VGG16 achieving 98% accuracy, highlighting the effectiveness
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of transfer learning. Salakapuri et al. (2025) proposed a hybrid
model integrating deep transfer learning (Inception-V3,
ResNet-50, VGG-16) with ensemble machine learning on 5,712
MRI scans; their stacking ensemble combining ResNet-50 and
PCA achieved 95.7% accuracy and 99.6% AUC, significantly
outperforming baseline models.

Zubair Rahman et al. (2024) employed EfficientNetB2 with
advanced preprocessing, reporting validation accuracies
of 99.83%, 99.75%, and 99.2% across three Kaggle datasets,
underscoring the role of Al-driven approaches in improving
clinical diagnostics.

Other approaches emphasize specialized architectures and
optimization techniques. Abdusalomov et al. (2023) fine-tuned
YOLOv7 with CBAM, SPPF+, and BiFPN for tumor detection,
achieving 99.5% accuracy while identifying small tumors
as a future challenge. Kumar et al. (2024) evaluated machine
learning classifiers combined with feature extraction methods,
showing that Random Forest with Image Loading achieved 99%
accuracy.

Aamir et al. (2025) implemented an automated DL framework
with guided filtering and morphological analysis on BraTS2020
and Figshare datasets, attaining 99.94% and 99.67% accuracy,
respectively, demonstrating robustness and automation.

Ragab et al (2024) introduced the BTR-EODLA method,
leveraging median filtering, SE-ResNet50, and a stacked
autoencoder with equilibrium optimizer tuning, achieving
98.78% accuracy. Gasmi et al. (2024) proposed an ensemble
approach combining ViT and EfficientNet-V2 with genetic
algorithm-based weight optimization, reaching 95% accuracy
for multi-class tumor classification

Transfer learning and fine-tuning strategies have also
been applied effectively. Rastogi et al. (2025) fine-tuned
InceptionResNetV2, VGG19, Xception, and MobileNetV2,
achieving 96.11% accuracy with Xception.

Gao et al. (2022) developed a DL model for classifying 18
tumor types from 37,871 MRI scans, achieving a mean AUC
of 0.92 and outperforming neuroradiologists (73.3% vs.
60.9%), while enhancing diagnostic accuracy when used as
an adjunct. Rasool et al. (2025) introduced CNN-TumorNet
with LIME-based explainability, attaining 99% accuracy in
tumor versus non-tumor classification, supporting transparent
clinical decision-making. Gunasekaran et al. (2024) developed
ConvNet-ResNeXt101, a hybrid DL model for segmentation
and classification on BRATS 2020, achieving 99.27% accuracy
for tumor core classification with a rapid learning time of
0.53 seconds. Saeedi et al. (2023) implemented a 2D CNN and
convolutional autoencoder network for classifying glioma,
meningioma, pituitary tumors, and healthy brains on 3,264
MRI images, reporting 96.47% and 95.63% training accuracy,
respectively, with the 2D CNN outperforming traditional ML
methods such as MLP (28%) and KNN (86%).

While the current literature demonstrates remarkable
performance, often reporting accuracies exceeding 99%, this
pilot study is consciously designed as a foundational step that
prioritizes methodological rigor over achieving a superlative
metric. The field's tendency towards such high scores warrants
critical discussion, as it can sometimes stem from non-
challenging or insufficiently diverse datasets, data leakage, or a

lack of failure analysis. This work aims to establish a robust data
processing and model fine-tuning pipeline first, acknowledging
that a credible assessment of a model's true clinical potential
requires a cautious, phased approach, beginning with this
carefully controlled feasibility study before progressing to
more complex, generalizable validation.

3. METHODOLOGY

3.1. Pilot study design

This study utilized a retrospective, single-center pilot design. A
retrospective dataset of 3,000 T1-weighted contrast-enhanced
MRI axial scans was obtained from the institutional archive
of the Federal Medical Centre, Asaba, Nigeria. The binary
classification task (Tumor vs. Non-Tumor) was deliberately
chosen to minimize complexity for this preliminary feasibility
evaluation. This focused approach facilitates a clearer
understanding of the model's fundamental ability to differentiate
between abnormal and normal tissue prior to advancing to the
more clinically intricate task of tumor subtype classification.

3.2 Dataset and preprocessing

In the rapidly evolving realm of information processing (Clive
et al., 2024, Clive et al., 2025, Akazue et al., 2023, Clive et al.,
2023), data represents all manipulable elements that can be
structured into datasets with identifiable features (Clive et al.,
2024, Clive et al.,, 2025, Asuai et al, 2025, Akazue et al., 2023).
These features can be fused across sources to create enriched
representations (Asuai et al., 2025).

The dataset employed in this research was obtained from Federal
Medical Centre, Asaba, Nigeria, and comprises 3,000 MRI brain
images, evenly distributed across two categories: 1,500 images
containing brain tumors and 1,500 images of healthy (non-
tumor) brains. The dataset was randomly split into training
(80%, n=2,400 images) and testing (20%, n=600 images) sets, with
stratification to preserve the original class distribution.

A B

Figure 1. Sample T1-weighted contrast-enhanced axial MRI
scans. (a) Normal brain (no tumor). (b) Brain with a tumor.

To ensure reliability and suitability for deep learning models,
several preprocessing steps were carried out:

i. Image Cleaning and Skull Stripping: Non-brain tissues
were removed using the ROBEX to retain only relevant brain
structures.
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ii. Normalization: Pixel intensity values were normalized to a
uniform range [0, 1] range, reducing scanner-related variability
and enhancing consistency across samples.

iii. Resizing: All images were resized to 224 x 224 pixels to
conform to the input specifications of the ViT model.

iv. Data Augmentation: To address dataset size limitations
and prevent overfitting, the following augmentation techniques
were applied on-the-fly during training: random rotation
(£15°), horizontal flipping, zooming (up to 10%), and brightness
adjustment (factor range 0.9-1.1).3.3

3.3. Model architecture: SABViT

The proposed model is based on the ViT-Base framework, which
was initialized with weights pre-trained on the ImageNet-21k
dataset and subsequently fine-tuned on our brain MRI dataset.
This approach leverages transfer learning to overcome the
challenges of training a transformer from scratch on a limited
dataset. Unlike CNNs that rely on local receptive fields, ViT
leverages self-attention mechanisms to capture both local and
global dependencies within MRI scans.

The model architecture, depicted in Figure 2, consists of the
following components:

i. Patch Embedding: Each preprocessed 224x224 MRI image is
divided into 196 non-overlapping patches of size 16 x 16. These
patches are linearly projected into 768-dimensional embedding
vectors, forming the input sequence.

ii. Positional Encoding: Learnable positional encodings are
added to the patch embeddings to retain the spatial information
of each patch's original location.

iii. Transformer Encoder: A stack of 12 identical transformer
encoder blocks is applied. Each block comprises Multi-Head
Self-Attention (MHSA) with 12 heads, layer normalization,
residual connections, and a feed-forward network. The
self-attention operation, which enables the model to learn
contextual relationships across patches, is computed using the
following formula:

(1)

iv. Classification Head: The output embedding corresponding
to the [CLS] token is passed through a fully connected layer
with a softmax activation function to classify the image into
two categories: tumor or non-tumor.

Table 1. Experimental parameters and their values

Figure 2. Architecture of the proposed system

3.4. Sample size justification

Considering the exploratory nature of this pilot study, a formal
calculation for sample size was not conducted. Instead, the
sample size of 3,000 images was established based on practical
limitations and standard practices in initial deep learning
research . This quantity is deemed adequate to yield preliminary
estimates of model performance and to train a model without
immediate indications of overfitting, thereby achieving the
primary feasibility goal. It is important to recognize that this
limited, single-center sample size is a key limitation of the pilot
and that no statistical power was calculated for hypothesis
testing, as the objective was to assess feasibility and inform the
design of a larger, definitive study.

3.5. Feasibility metrics
Alongside standard performance metrics (Accuracy, Precision,
etc.), we established the following feasibility metrics to inform
the pilot evaluation:

i. Training Stability: Steady convergence of training and
validation loss curves without significant divergence.

ii. Computational Efficiency: Total training duration and GPU
memory consumption were tracked.

iii. Pipeline Robustness: Successful end-to-end execution of
the complete workflow, from data loading and preprocessing to
model training and evaluation.

Parameters Value
Pre-trained model ViT-Base/16*
Number of Attention Heads 12
Learning Rate 0.001
Batch Size 32
Number of Epoch 50
Optimizer Adam
Number of transformer layers 12
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4. RESULTS AND DISCUSSION

This section presents the preliminary results of the SABViT
model on the pilot dataset and discusses their implications for
the study's feasibility objectives.

4.1. Initial performance results

The optimized SABVIiT model underwent evaluation using
a separate test set comprising 600 images. To validate the
reliability of these preliminary results, five-fold cross-
validation was conducted on the training dataset. The model
exhibited high performnce, attaining a test accuracy of 99.73%
and a stable cross-validation accuracy of 99.71% (£0.03%). A

comprehensive summary of the performance metrics can be
found in Table 2.

Table 2. Preliminary classification performance of the SABViIT
model on the brain MRI pilot dataset

Metric Value (%)
Accuracy 99.73
Precision 98.3
Recall 97.3
F1-Score 99.23

Figure 3. Comprehensive performance evaluation of the SABViIT Framework

The training dynamics, as depicted in Figure 3, demonstrated
stable convergence with no notable divergence between the
training and validation curves. This suggests that the data
preprocessing and augmentation pipeline effectively reduced

overfitting, which is a significant concern when fine-tuning a
large model on a limited dataset. This achievement successfully
fulfills our initial pilot objective regarding the viability of the
technical pipeline.
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Figure 4. Dimensional performance analysis and classification results (Left) Radar chart comparing SABViT against best-
performing CNN benchmarks across all evaluation metrics, (Right) Confusion matrix showing binary classification performance
on the test dataset (n = 600 samples).

4.2. Preliminary comparative analysis training and evaluation under the same conditions on our pilot
In order to contextualize the performance of the SABVIT dataset. The results, which are detailed in Table 3, indicate that
model, a comparative analysis was performed against several the proposed SABVIT model surpassed all CNN benchmarks
well-established CNN architectures. All models underwent across essential metrics.

Table 3. Preliminary comparative performance of baseline models versus the proposed SABViT model

Model Accuracy Precision Recall F1-Score
ResNet-50 97.35% 96.5% 96.8% 96.6%
VGG-16 99.17% 98.1% 97.9% 98.0%
EfficientNet-B0 98.78% 97.8% 98.2% 98.0%
Inception-ResNet v2 96.72% 95.9% 96.0% 95.9%
SAVIT (Proposed) 99.73% 98.3% 97.3% 99.23%

Figure 5. Comparative Analysis of Architectural Performance Across Metrics
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The exceptional performance of the SABVIiT model offers
initial evidence that the self-attention mechanism's capacity
to capture global contextual information may provide an edge
over the locally focused processing of CNNs for this particular
task. This aligns with emerging findings in other medical
imaging fields where transformers have demonstrated potential
in modeling long-range dependencies in anatomical structures.
This comparative analysis meets our third pilot objective of
collecting preliminary benchmarking data.

4.3. Discussion of feasibility findings

The main outcome of this pilot study is the successful
demonstration of feasibility. While the high performance
metrics are encouraging, they should be viewed as initial
evidence of efficacy rather than conclusive proof of clinical
utility. The significant finding is that a standard ViT architecture,
pre-trained on natural images, can be effectively adapted to a
binary medical image classification task with a limited dataset.
The model's performance, especially its high precision and
recall, indicates that it has learned meaningful representations
for differentiating between tumorous and non-tumorous
tissues. The success of the transfer learning approach confirms
a practical strategy for utilizing data-hungry transformer
models in data-scarce medical domains. Additionally, the
computational resources required, although considerable,
were manageable for this pilot scale, establishing a baseline for
planning larger studies.

These results strongly advocate for the decision to advance to
a larger-scale investigation. The performance data from this
pilot (e.g., the 99.7% accuracy and the effect size in comparison
to CNNs) will be crucial for conducting formal sample size
calculations for a definitive multi-institutional trial.

4.4. Feasibility and limitations

This pilot study effectively illustrated the overall feasibility
of the proposed SABVIiT framework. The technical pipeline,
encompassing data preprocessing through to model training,
demonstrated robustness and execution capability. The model
achieved stable convergence over 50 epochs, with training and
validation accuracy curves closely aligned (Figure 3), suggesting
that the selected data augmentation strategy was successful in
reducing overfitting, even with the relatively small dataset. The
impressive preliminary performance metrics indicate that the
self-attention mechanism's capacity to capture global context
provides a significant advantage for this task, potentially enabling
the model to assimilate information from distant brain regions to
enhance its classification, a feature often constrained in CNNs.
However, it is essential to recognize several critical limitations
inherent to this pilot phase in order to contextualize the
findings:

i. Limited generalizability: Utilizing a single-center,
retrospective dataset introduces a significant risk of
demographic and scanner-specific bias. Consequently, the
model's efficacy may not be applicable to images obtained
through different protocols or from varied patient populations.
This represents the foremost challenge to the external validity
of these initial findings.

ii. Pilot sample size: Although adequate for feasibility testing,

the size of the dataset is insufficient for creating a clinically
generalizable model. A more extensive, multi-institutional
dataset is necessary to encompass the complete heterogeneity
of brain tumors and imaging conditions.

iii. Simplified clinical task: The binary classification task,
while beneficial for proof-of-concept, lacks direct clinical
relevance. Radiologists need to distinguish between tumor
types (e.g., glioma versus meningioma), which necessitate
different treatment approaches. The model's effectiveness in
this more intricate task is yet to be determined.

iv. Computational intensity: The ViT-Base model demanded
significantly greater computational resources for fine-tuning in
comparison to the CNN benchmarks. This practical challenge
must be resolved for scalable implementation.

v. Absence of explainability: A significant barrier to clinical
adoption is the "black-box" nature of deep learning models. This
pilot study did not incorporate explainable AI (XAI) techniques
to visualize the basis for the model's decisions, which is crucial
for building trust with clinicians.

vi. Failure analysis: A critical component of a pilot feasibility
study is to understand the model's failure modes. An analysis
of the confusion matrix (Figure 4, Right) reveals that the model
misclassified a very small number of cases. A qualitative
review of these errors indicated that the false positives and
negatives were not associated with a specific tumor subtype
or a consistent imaging artifact. Instead, the errors appeared to
be isolated instances where the tumor presence was extremely
subtle or where the image quality was at the lower end of
the acceptability spectrum. The absence of a clear pattern in
these misclassifications, while encouraging, underscores the
limitation of the current dataset's size and diversity. It highlights
that a larger, more heterogeneous dataset is required to properly
stress-test the model and identify systematic weaknesses, a key
objective for the subsequent large-scale study.

5. CONCLUSION

This pilot study successfully fulfilled its primary objective
of evaluating the feasibility of a SABVIT for detecting brain
tumors in MRI images.

The research illustrated that the proposed framework can be
effectively executed, supported by a robust data preprocessing
and augmentation pipeline that facilitated stable model training
without succumbing to overfitting on a limited pilot dataset.
The initial results are extremely promising, suggesting that the
SABViT model can attain a high degree of accuracy and surpass
several conventional CNN-based benchmarks. This indicates
that the global contextual processing abilities of transformers
possess considerable potential for tasks involving medical
image analysis.

Most importantly, this study has pinpointed clear and specific
avenues for future research, primarily regarding dataset scale,
model explainability, and the complexity of clinical tasks.

The limitations noted, including the reliance on a single-center
data source and the binary classification task, should not be
viewed as deficiencies but rather as valuable insights from this
pilot phase. They offer a critical, evidence-based foundation for
planning a subsequent, more extensive study.

Consequently, this pilot work concludes that further investment
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in the development and validation of transformer-based models
for brain tumor classification is not only feasible but also highly
justified. The next phase will involve conducting a large-scale,
multi-institutional study aimed at multi-class tumor classification,
incorporating integrated explainable AI components to bridge
the divide between technical performance and clinical adoption.

FUTURE WORK

The encouraging outcomes and insights gained from this pilot
study provide a direct foundation for future research endeavors.
The subsequent phase will involve a large-scale, definitive
study aimed at addressing the limitations previously identified.

i. Multi-institutional data collection: We will commence
partnerships with various national and international medical
institutions to compile a more extensive dataset (>15,000
images) that includes multiple tumor types (gliomas,
meningiomas, pituitary tumors) and a variety of imaging
protocols. This initiative will strengthen the model's robustness
and generalizability.

ii. Advanced architecture for clinical utility: Building upon the
feasibility demonstrated by the ViT approach, we will create
and train a multi-class classification model. Additionally, we
will investigate more efficient hierarchical transformers, such
as the Swin Transformer, which are more appropriate for high-
resolution medical images and help to minimize computational
demands.

iii. Integration of XAI: A fundamental aspect of the upcoming
study will be the incorporation of XAI methodologies,
including Layer-wise Relevance Propagation (LRP) or attention
visualization techniques, to produce saliency maps. This will
enable clinicians to identify the specific regions of the MRI that
the model utilized for its decision-making, thereby promoting
transparency and trust.

iv. Prospective clinical validation: The primary objective is
to validate the enhanced model through a prospective clinical
trial. This will entail implementing the model in a real-world
radiology reading environment to assess its influence on
diagnostic accuracy, turnaround time, and inter-rater variability
in comparison to standard clinical practices.
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