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1. INTRODUCTION 
Many physical problems in natural sciences, engineering, and 
technology are modeled using oscillatory differential equations 
(Blanka, 2019; Kusano et al., 1997; Agarwal et al., 2003). These 
equations serve as fundamental tools for describing dynamic 
phenomena, including mass-spring systems, simple harmonic 
motion, and transportation dynamics (Bainov & Mishev, 
1991; Agarwal et al., 2013). Despite their occurrence, many 
such problems remain insufficiently addressed, necessitating 
advanced computational techniques for accurate simulation.
This study concentrate on second-order oscillatory differential 
equations, which are critical in modeling multi-variable 
systems (Agarwal et al., 2003). Numerical analysts continue to 
improve an efficient methods to solve these equations, given 
their complete applicability across scientific and engineering 
disciplines. These areas of study are represented with oscillatory 
differential equations in the slated format.

						                ....(1)

Several researchers, including Awoyemi and Kayode (2005) and 
Kayode (2011), developed a multiderivative Linear Multistep 
Method (LMM) implemented in predictor-corrector mode. 
This approach utilized Taylor series expansions to generate 
initial values, demonstrating reasonable solution accuracy. 
However, the methodology presents several computational 
disadvantages. First, the implementation requires substantial 
computational resources, making it inefficient for large-scale 
problems. Second, the development of necessary subroutines 
proves particularly demanding due to the rigorous initialization 
procedures, significantly increasing implementation complexity 
and manual intervention (Olabode, 2009; Jator, 2007). Most 
critically, the method's fundamental architecture depends 
on lower-order predictors for scheme execution (Kayode & 
Adeyeye, 2013), inherently limiting its computational efficiency 
and potentially affecting solution accuracy.

2. LITERATURE REVIEW
To address these challenges, the block method was developed 
(Fatunla, 1991), enabling the computation of discrete solutions 
at multiple grid points simultaneously. According to Olabode 
(2009), Olanegan et al. (2018), Ismail et al. (2009), the block 
method was firstly proposed by Milne (1953) who advocated the 
use of block as a means of getting a starting value for predictor-
corrector algorithm and later adopted as a full method (Skwame 
et al., 2017; Sabo et al., 2019).
Researchers such as Sabo et al. (2020, 2021, 2022) stated that 
numerical solutions on block method are produced with less 
computational efforts when compared with non-block method. 
This efficiency is due to the simultaneous evaluation of solutions 
at multiple points.
Basically, there are two types of block methods, namely one-
step and multistep block methods. In one-step block method, the 
value of the new block  is derived According to the information 
at Yn, when the outcomes of the earlier blocks are utilized to 
determine the subsequent block, it is referred to as a multistep 
block (Omar 2004). In this context. work, block method of the 
form.

		
						               ....(2)

is adopted to generate the numerical solution at all the selected 
grid points. In equation (2), d is the order of differential equation,   
and   are both squared matrices,

Aforementioned methods for solving oscillatory differential 
equations, such as multiderivative predictor-corrector schemes 
(Awoyemi & Kayode, 2005; Kayode, 2011), suffer from high 
computational costs due to their reliance on lower-order 
predictors and complex initialization procedures (Olabode, 2009; 
Jator, 2007). While block methods (Fatunla, 1991; Milne, 1953) 
developed efficiency by computing solutions simultaneously, 
earlier implementations still struggled with stability and 
accuracy in stiff systems (Ismail et al., 2009). This study advances 
the field by introducing an implicit second-order block method 
that eliminates predictor dependencies, reduces computational 
overhead, and enhances stability for oscillatory problems. 
Numerical results establish superior accuracy and efficiency 
compared to existing linear multistep and block methods (Sabo 
et al., 2020–2022), present a more robust and practical solution 
for long-term simulations.

3. METHODOLOGY
In this section, the method with eight partition shall be derived 
for solving (1) according to (Adewale & Sabo 2023).

3.1. Derivation of the Method
The new method takes the form,

						               ....(3)

Where,

Α(0) = (ρ-1)×(ρ-1) is an identity matrix,   is the order of differential 
equation, (i) is the power of derivative of the method and h 
is the step-size calculated as h = τn+1 - τn, n = 0,1,2,⋯, N. Now 
solving the second order oscillatory problem (1) over the non-
overlapping blocks N.
Consider equation (2), at j = 0, the (ρ-1)×(ρ-1) matrices 
e0, e1, d0 and b0 are evaluated and at i = 1 (the first derivative), 
the (ρ-1)×(ρ-1) matrices are e1, d1 and b1 evaluated. 
Let the approximated power series polynomial

				             ....(4)

be the computed solution of the oscillatory problem (1). Where 
ν is the points of interpolation and ς is the points of collocation, 
the conditions ν + ς is then imposed on equation (4), which 
gives the polynomials of degree q = ν + ς - 1 as follow
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						              ....(5)

						               ...(6)

						               ....(7)

Where μ = 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 1/8, 1.  This leads to 
a system of equations of degree at most q which is written 
compactly in matrix form as
DX = U						              ....(8)
Where,
X =[(x0 x1 ⋯ x10)], U =

Equation (8) is solved using the Gaussian elimination method, 
where ϑi's  represents the parameters to be determined. These 
parameters are inputted into equation (4) to give the continuous 
hybrid method

 ....(9)

	       ....(10)

Evaluating (10) at τ = 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 to 
produces discrete hybrid scheme of the form (3).
Where,

						    

A(0) is an 8×8 identity matrix given by

Therefore, the proposed hybrid method is given by
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3.2. Basic properties of the method
The analysis of the basic properties of the new method (11) and 
(12) shall be analyzed in this section.

3.2.1. Order and error constant of the method 
Preposition 1. Adewale & Sabo (2023)
Let the linear operator 
l[y(xn); h]					            ....(13)
compared with the scheme (11) and (12), with the truncation 
error C09h

09y09 (xn) + 0(h10).
Proof: We compared the linear difference operators (13) with 
the new method (11) and (12) as

3.2.2. Preposition 2. Adewale & Sabo (2023)
To find the error associated with local truncation we assume, 
y(x) to have adequate differentiation and to be expanding y(xn 
+ qh) and y(xn + jh) about xn using Taylor series. Collect the 
like terms (the coefficient ofh) to obtain the expressions for the 
local truncation error of (14) as

Thus, Based on the preceding results, the order of the new 
method is 9, and the error constants is

3.3. Consistency
Definition 1: Adewale and Sabo (2023) The new method is said 
to be consistent if it is of orderp≥1.
Therefore, the new method is consistent because it is of order 9. 

3.4. Convergent
Theorem 1: According to the Dahlquist theorem (Adewale & 
Sabo, 2023), consistency and zero-stability are necessary and 
sufficient conditions for a method to be convergent. Therefore, 
the newly derived scheme is convergent as it satisfies both 
consistency and zero-stability.

3.5. Zero - stability of the Method
Definition 2. Adewale & Sabo (2023) If no root of the 
characteristic polynomial has a modulus greater than one and 
every root with modulus one is simple, then such a method is 
called zero-stable. 
The zero-stability of a method controls the propagation of 
errors as the integration progresses.

3.6. Linear Stability
Definition 3. Adewale and Sabo (2023): The region of absolute 
stability of a numerical method is the set of complex values λh 
for which all solutions of the test problem y'' = -λ2 ywill remain 
bounded as n→∞.
The concept of A-stability according to (Lydia et al., 2021) is 
discussed by applying the test equation
y(k) = λ(k) y					            ....(15)
To yield 
Ym = μ(z) Ym-1, z = λh				           ....(16)
Where,
μ(z) is the amplification matrix of the form
μ(z) = (ξ0 - zη(0) -z2 η(0))-1 (ξ1 - zη(1) - z2 η(1))		         ....(17)
The matrix μ(z) has Eigen values (0, 0, ⋯, ξk )  where ξk is called 
the stability function.
Thus, the stability function for of the method is given by

3.7. Mathematical illustration
The newly proposed methods (11) and (12) are applied to 
simulate certain second-order problems, including the Betiss 
and Stiefel oscillatory differential equation as well as highly 
stiff oscillatory differential equations. The following notations 
will be used in the tables.
ES: Exact solution;
CS: Computed Solution;
NM: New method;
ENM: Error in new method;
E (Lydia et al., 2021): Absolute error in (Lydia et al., 2021);
E (Olabode & Momoh 2016): Absolute error in (Olabode & 
Momoh 2016);
E (Mohammad & Zurni 2017): Absolute error in (Mohammad 
& Zurni 2017);
E (Alkasassbeh & Omar 2017): Absolute error in (Alkasassbeh 
& Omar 2017);
Example 1: Consider the Betiss linear oscillatory differential 
equation
(d2u)/(dv2) + (du/dv) = 0.001 cos(v), u(0) = 1, du/dv = 0      ....(18)
With the exact solution of (18) as:
u(v) = cos(v) + 0.0005v sin(v)			          ....(19)
Source: Lydia et al., (2021), Olabode & Momoh (2016)
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Example 2: Consider the Stiefel linear oscillatory differential 
equation
(d2u)/(dv2) + (du2)/dv = 0.001 sin(v), u(0) = 0, du/dv = 0.9995 ....(20)
With exact solution of (20) as
u(v) = sin(v) - 0.0005v cos(v)			           ....(21)
Source: (Adewale & Sabo (2023), Kwari et al., 2023)
Example 3: Consider a highly stiff oscillatory differential 
equation	
(d2u)/(dv2) + 1001(du/dv) +1000u = 0, u(0) = 0, du/dv = -1   ....(22)
With exact solutions of (22) as
u(v) = exp(v)					            ....(23)
Source: Mohammad & Zurni (2017), Alkasassbeh & Omar (2017).

4. RESULTS & DISCUSSION
The numerical results validate the superior performance of our 
new method (NM) compared to existing approaches. For the 
Betiss equation (Example 1), NM achieves machine-precision 

Table 1. Computation of NM with (Lydia et al., 2021, Olabode & Momoh 2016) when solving (18)

V ES CS ENM E (Lydia et al., 
2021)

E (Olabode & 
Momoh 2016)

0.1 0.09978366643856425 0.09978366643856425 0.0000000 1.2567(-12) 1.0170(-12)

0.2 0.19857132413727709 0.19857132413727709 0.0000000 2.1140(-12) 1.4285(-11)

0.3 0.29537690618797073 0.29537690618797073 0.0000000 2.3764(-12) 4.9557(-11)

0.4 0.38923413010984991 0.38923413010984991 0.0000000 3.4242(-12) 1.0161(-10)

0.5 0.47920614296373041 0.47920614296373041 0.0000000 3.3944(-12) 1.7416(-10)

0.6 0.56439487271056245 0.56439487271056245 0.0000000 3.3436(-12) 2.6425(-10)

0.7 0.64394999247214148 0.64394999247214148 0.0000000 4.2949(-12) 3.7579(-10)

0.8 0.71707740821578381 0.71707740821578381 0.0000000 4.2574(-12) 5.0602(-10)

0.9 0.78304718514176159 0.78304718514176159 0.0000000 5.2344(-12) 6.5904(-10)

1.0 0.84120083365496244 0.84120083365496244 0.0000000 6.2265(-12) 8.3225(-10)

Lydia et al., (2021), Olabode & Momoh (2016).

Table 2. Computation of NM with (Lydia et al., 2021, Olabode & Momoh 2016) when solving (20)

V ES CS ENM E (Lydia et al., 
2021)

E (Olabode & 
Momoh 2016)

0.1 0.99500915694885811 0.99500915694885811 0.0000(00) 2.8269(-12) 1.0169(-11)

0.2 0.98008644477432114 0.98008644477432114 0.0000(00) 5.8994(-12) 2.0390(-11)

0.3 0.95538081715660522 0.95538081715660522 0.0000(00) 6.8309(-12) 1.5451(-13)

0.4 0.92113887767134681 0.92113887767134681 0.0000(00) 1.4991(-12) 8.1063(-11)

0.5 0.87770241827502376 0.87770241827502377 0.0000(00) 1.8395(-12) 2.5377(-10)

0.6 0.82550500765169681 0.82550500765169681 0.0000(00) 1.6559(-11) 5.4848(-10)

0.7 0.76506766347502162 0.76506766347502162 0.0000(00) 1.2970(-11) 9.9571(-10)

0.8 0.69699365178352523 0.69699365178352523 0.0000(00) 8.4312(-11) 1.6260(-10)

0.9 0.62196246537999682 0.62196246537999682 0.0000(00) 5.3240(-11) 2.4697(-10)

1.0 0.54072304136054367 0.54072304136054367 0.0000(00) 3.2126(-11) 3.5575(-10)

Lydia et al., (2021), Olabode & Momoh (2016).

Figure 1. The curve of example 1
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accuracy (0.0000000 error) across all evaluation points, while 
Lydia et al. (2021) and Olabode & Momoh (2016) exhibit errors 
ranging from 10⁻¹² to 10⁻¹⁰. Similarly, for the Stiefel equation 
(Example 2), NM maintains perfect accuracy (0.0000(00)), 
whereas comparative methods show errors up to 10⁻¹⁰. In the 
highly stiff system (Example 3), NM attains near-exact solutions 
with errors as low as 10⁻²⁰, perform better than Mohammad & 
Zurni (2017) (10⁻¹⁴) and Alkasassbeh & Omar (2017) (10⁻¹¹). The 
error growth in competing methods becomes pronounced at 
larger step sizes (e.g., 0.6 ≤ V ≤ 1.0), while NM remains stable. 
The accompanying figures confirm NM's precise tracking of 
oscillatory behavior without phase drift or amplitude decay, 
validating its robustness for stiff and oscillatory systems. These 
results collectively establish NM as a more accurate and reliable 
solver for second-order oscillatory differential equations.

5. CONCLUSION
This study introduces a novel implicit second-order block 
method derived via power series approximation for solving 

highly stiff oscillatory differential equations, particularly the 
Betiss and Stiefel type. The method establishes superior accuracy 
and computational efficiency compared to existing approaches 
(Lydia et al., 2021; Olabode & Momoh, 2016), while maintaining 
consistency, zero-stability, and convergence - crucial for 
reliable long-term simulations. Its practical applications span 
mechanical vibrations, celestial mechanics, electrical circuits, 
and biomechanical systems, where high-frequency oscillations 
and stiffness are prevalent. The method's robustness makes it 
particularly valuable for engineering simulations and scientific 
computing, offering a more efficient alternative to conventional 
predictor-corrector and linear multistep methods in modeling 
complex oscillatory phenomena.
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