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The limited understanding of key input parameters and material machinability 
has hindered the industry's full utilization of machining processes. These 
limitations make it challenging to meet machining response requirements 
and address various related issues. This study employs Response Surface 
Methodology (RSM) to explore the interaction between input parameters 
and responses during the wet turning of aluminum alloy eggshell reinforced 
composite (AAERC). Numerical optimization was used to determine the 
optimal combinations of process parameters, achieving the best results in terms 
of Material Removal Rate (MRR) and Surface Roughness (Ra). The AAERCs 
consisted of 85% aluminum alloy and 15% eggshell. To enhance wettability, 
2% of equal-sized crushed magnesium powder was added to the molten metal. 
Improved wettability decreases surface tension, increases surface energy, 
and reduces the energy at the matrix-reinforcement interface. The developed 
regression equation model can predict Ra and MRR when input variables such 
as cutting speed (VC), feed rate (Fr), and depth of cut (DC) are known. The 
fit statistics for MRR and Ra indicate that the R² and adjusted R² values are 
0.9461 and 0.8490 for Ra, and 0.9745 and 0.9286 for MRR, respectively. These 
values demonstrate that the models provide a strong fit for both responses. 
The parameters VC, Fr and DC, with P-values of 0.0003, 0.0017, and 0.0008 
respectively, significantly influence MRR. Similarly, VC and Fr, with P-values 
of 0.0006 and 0.0583 respectively, significantly impact Ra. The optimization 
process results indicate that the optimal values for Ra and MRR are 1.0689µm 
and 1793.93mm³/min, respectively. These results are achieved when turning 
operations on AAERC are conducted using the input variables VC, DC, and Fr 

at 369.822rpm, 0.333554mm/min, and 0.235944mm, respectively.
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1. INTRODUCTION 
The manufacturing industry aims to produce a variety of items 
in small batches at low costs while increasing production 
volumes in today's competitive market (Edh Mirzaei et al., 2021). 
Machining involves removing excess material or metal from a 
workpiece using a cutting tool (Mba et al., 2024). This subtractive 
manufacturing method shapes the desired end product by 
precisely removing unwanted material, optimizing tool life, and 
achieving a smooth surface finish (Nwoziri et al., 2024).
Machining is the most effective method for creating components 
with precise tolerances (Subbiah, 2014). Turning is a metal-
cutting process used to shape cylindrical objects by rotating 
a workpiece on a lathe while a cutting tool removes material. 
This method provides shorter lead times and smoother surface 
finishes (Krajčoviech et al., 2021; Guleria et al., 2023; Karmiris-
Obratanski et al., 2024). It is the most widely used machining 
process globally, with increasing adoption due to continuous 
technological advancements in lathe systems (Joshi & Kumar, 
2021; Kaniapan et al., 2022). Efficient and economical machining 
aims for quick material removal, low power consumption, ideal 
dimensional accuracy and quality, reduced tool costs, and 
minimal idle time (Lv et al., 2021; Sun et al., 2021). However, 
inadequate parameters can hinder even the most intricate 
and comprehensive machining procedures from yielding 
meaningful results (Maurya & Niranjan, 2024; Mohanta et 
al., 2024). Therefore, it is crucial to control the many input 
parameters that affect the output's reactions (Jain et al., 2023; 
Jiang et al., 2018).
The material produced during machining is significantly 
influenced by the cutting parameters used (Abellán-Nebot 
et al., 2024). Optimizing these parameters can yield the best 
results while minimizing resource waste and costs (Udaya 
Prakash et al., 2022). Higher material removal rates, longer 
tool life, and better surface finishes are essential throughout 
the machining process (Seenath & Sarhan, 2024). The goal in 
selecting control variables is to mitigate the impact of disruptive 
elements (Pawanr & Gupta, 2024). Key factors determining the 
effectiveness and quality of lathe turning operations include 
depth of cut, feed rate, cutting speed, rake angle, workpiece 
size, tool geometry, material type, tool vibration, and lubricant 
type (Jia et al., 2021). High cutting speeds, feed rates, and 
depths of cut are necessary for greater material removal rates; 
however, these combinations generate significant heat at the 
cutting zone, negatively affecting surface quality, dimensional 
accuracy, and tool life (Li et al., 2024; Tefera et al., 2023; Thanh 
et al., 2024). Material Removal Rate (MRR) is a crucial metric in 
machining processes, indicating how much material is removed 
over a specific time period (Deresse et al., 2020). It is vital for 
assessing the effectiveness of processes like drilling, grooving, 
milling, and turning (Kumar et al., 2023).
Eggshell powder can significantly influence Material Removal 
Rate (MRR) and surface roughness in machining processes. 
Adding eggshell powder to composite materials or using it as a 
reinforcement in machining can improve mechanical properties 
and enhance surface finish (Li et al., 2021). For instance, eggshell 
powder can act as a natural abrasive, improving the MRR by 
facilitating more efficient material removal. Additionally, its 
fine particles can help achieve a smoother surface finish by 

reducing surface irregularities during the machining process (Li 
et al., 2021). Overall, the use of eggshell powder in machining 
applications can lead to better performance, higher efficiency, 
and improved surface quality.
The surface roughness profile of a product is influenced 
by friction, wear rate, and lubricant type. Developing and 
validating a mathematical model is essential to predict responses 
considering all machining input variables (Wang et al., 2024; 
Yan et al., 2023). Surface texture control and dimensional 
precision have become crucial in modern engineering processes 
and products (Soni et al., 2024). Surface roughness significantly 
impacts the performance of machined goods. Achieving a 
completely smooth surface is impossible, regardless of the 
manufacturing process used (Abellán-Nebot et al., 2024). Surface 
roughness refers to the imperfections on machined material 
surfaces, characterized by a unidirectional and evenly spaced 
pattern from machining processes. Key factors affecting surface 
roughness include vibrations, workpiece material, machining 
type, system rigidity, cutting tool type, and cutting parameters 
(Zheng et al., 2020).
Aluminum, magnesium, and titanium alloys serve as matrix 
materials in Metal Matrix Composites (MMC) (Raja & Gupta 
2021). Reinforcement components in MMCs include oxides, 
carbides, and borides, which can be in the form of long or short 
fibers (whiskers) (Wong & Seetharaman, 2021). Aluminum 
alloys and composites are favored in the automotive and 
aerospace industries due to their low weight, easy availability, 
corrosion resistance, and high strength-to-weight ratios (Khan 
et al., 2024). However, improper execution of Aluminum Metal 
Matrix Composite (AMMC) machining operations can lead 
to defects such as dimetral variation, poor Material Removal 
Rate (MRR), and negative surface roughness (Kotteda et al., 
2022). The presence of reinforcement significantly affects the 
machinability of composites, with the volume percentage and 
size of the reinforcement playing crucial roles in determining 
how easily composite materials can be machined (Chen et al., 
2020; Gasha et al., 2024).
The machining process is intricate and influenced by numerous 
factors, making it challenging for operators to achieve optimal 
performance (Jiang et al., 2024). To mathematically describe and 
optimize the process, it is crucial to link process outputs with input 
parameters and use the appropriate optimization techniques. This 
paper focuses on optimizing the performance of wet turning of 
aluminum alloy 6351 reinforced with eggshell composite using 
response surface methodology. The primary aim of this study 
is to identify the optimal cutting parameters for wet turning of 
aluminum alloy 6351 reinforced with eggshell composite.

2. LITERATURE REVIEW
Aluminum metal matrix composites (AMMCs) are produced to 
almost net shape and often need to be machined to improve 
performance and productivity (Kumar et al., 2024; Tiwari 
& Yadav, 2024). Machining properties are influenced by the 
volume proportion of the reinforcement and matrix, the kind 
of reinforcement (particle or whisker), the distribution of 
reinforcement in the matrix, and the reinforcement material. 
AMMC machining yields different results than metal machining 
because of the strong and brittle reinforcing (Jain et al., 2014). 
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Conversely, the cutting tool comes into contact with matrix 
and reinforcing materials, each of which reacts completely 
differently to machining. High tool wear and surface 
roughness are issues with AMMC machining that either 
render the procedure unworkable or result in an unprofitable 
manufacturing process (Bhardwaj et al., 2020). Therefore, the 
geometry and wear resistance of the cutting tools, as well 
as the choice of ideal process settings, are subject to unique 
requirements when machining composite materials (Prakash & 
Krishnaraj, 2021; Zlámal et al., 2018). 
The ability of the fluid to lower the temperature produced by 
the frictional action between the cutting tool and the workpiece 
is the main benefit of wet machining (Zhou et al. 2015). As the 
temperature rises, the surface structure is impacted, increasing 
the workpiece's surface roughness (Pang et al. 2023). Thus, 
the fluid's impact will result in a decrease in the workpieces' 
surface roughness as well as a decrease in tool wear, extending 
the tool's lifespan (Tian et al. 2024; Kuram et al. 2024). 
Eggshell composites' bioceramic qualities, sustainability, and 
capacity to improve mechanical performance have drawn a lot 
of interest in material science and machining (Admase et al., 
2025). Eggshell reinforcement shows promise in a variety of 
composite applications, particularly in machining operations 
where material hardness, wear resistance, and temperature 
stability are critical factors (Cunha et al., 2019).
Eggshell-reinforced composites significantly increase 
tribological properties, compressive strength, and hardness in 
several investigations that looked at the mechanical behavior. 
Fillers made from eggshells increase thermal stability and flame 
retardancy, making them appropriate for applications requiring 
heat resistance (Cunha et al., 2019; Hassen et al., 2015). The 
effects of eggshell reinforcement on chip formation, built-up 
edge reduction, and material removal rate (MRR) in machining 

applications are demonstrated in conjunction with fly ash and 
carbonized eggshell matrix composites (Ononiwu et al., 2021). 
The performance of eggshell-reinforced aluminum alloys 
has been improved in large part by optimizing machining 
parameters like depth of cut, feed rate, and cutting speed.
The innovation of Performance Optimization of Wet Turning 
of Aluminum Alloy 6351 Eggshell Reinforced Composite 
Using Response Surface Methodology (RSM) builds upon these 
findings by systematically analyzing the interaction between 
machining parameters and composite behavior. By employing 
RSM, researchers can refine machining conditions to achieve 
optimal surface roughness and material removal rates, ensuring 
efficient and sustainable machining practices.

3. METHODOLOGY
3.1. Materials
Figures 1 and 2 display the eggshells and eggshell powder 
respectively. The study employed various tools and materials, 
including a veneer caliper, measuring tape, aluminum alloy 
6351, eggshell waste, surface tester (Mitutoyo SJ-210), and a 
CNC lathe machine (250 PCD Boxford CNC lathe machine) 
to achieve its objectives. Table 1 presents the chemical 
composition of the Al-6351 alloy, while Table 2 outlines its 
mechanical properties.

Figure 1. Egg shells Figure 2. Egg shell powder

Table 1. Composition of the A6351 alloy

Al Si Fe Cu Mn Mg Zn Ti V

Bal 7.0 0.1 0.002 0.006 0.4 0 0.13 0.02

Table 2. Mechanical properties of Al-6351 alloy 

Sample Specimen Toughness (Joules) Hardness (BHN)

1 Al-6351 6.638 60

3.2. Methods 
3.2.1. Aluminum alloy 6351 eggshell re-enforced 
composite preparation
The egg shells samples were gathered in large quantity, cleaned 
to get rid of dust and other debris, and then completely cleansed 
with water before being left to dry for an hour in an oven set 
to 1000°C (Nwoziri et al., 2024). The dried egg shells were 
pulverized and crushed until they reached room temperature 
in order to get the finest crushed particle possible (Mba et al., 
2024; Nwoziri et al., 2024). The extracted powder was passed 
through the proper size sieves (>106 to <850 microns) to 
produce particles with a consistent size distribution (Nwobi-
Okoye & Uzochukwu 2020). The AAERCs consisted of 15% egg 
shell reinforcement and 85% aluminum alloy (Nwoziri et al., 

2024; Nwobi-Okoye et al., 2019). The weights of the egg shell 
powder reinforcements were measured using an electronic 
compact scale (Mba et al., 2024). A weighing balance was used 
to ascertain the weight of the aluminum that was supplied for 
the creation of AAERCs (Mba et al., 2024). Wooden templates 
were utilized, and the sand mold was constructed using natural 
sand. The required amount of pulverized egg shell was kept 
warm in a furnace in order to improve wettability (Nwoziri 
et al., 2024; Nwobi-Okoye et al., 2019). The aluminum was 
firmly fastened using a temperature probe to ensure complete 
melting, which was necessary to create optimal strengthening 
when mixed with the pulverized dried egg shell (Nwoziri et 
al., 2024). An electric-powered crucible furnace running on 
diesel was used to melt the aluminum alloy at a temperature 
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of 700°C ± 50°C (Nwoziri et al., 2024). Aluminum was carefully 
placed within the furnace to cool and solidify into a semi-
solid condition (Pola et al., 2018). Magnesium powder (2%) was 
added to the molten metal in order to further boost the metal's 
wettability (Mba et al., 2024; Nwoziri et al., 2024). Reducing 
surface tension, increasing surface energy, and reducing matrix 
reinforcement interface energy are all achieved by obtaining the 
metals wettability (Ren et al., 2024). The dried eggshell particles 
were added to the semi-solid melt at different temperatures and 
stirring intervals. After the mixture was superheated to 750°C 
± 50°C, it was stirred using an automatic mechanical stirrer 
(Mishra & Tulasi 2020; Singh et al., 2022). The fluid was then 

poured into a prepared sand mold and allowed to harden to 
make sound casts.

3.2.2. Design of experiment
The experimental design aimed to select machining settings 
in various combinations for 15 runs, incorporating three 
components and three levels. The goal was to identify the 
optimal input factors for the best response. Using the Box-
Behnken design (BBD), the experiment included 15 runs with 
three components and three levels. Table 3 details the design 
levels and independent process variables. 

Table 3. Independent process variable and design levels

Variables Units Low (-1) Medium (0) High (+1)

VC Rpm 180 450 720

Fr mm/rev 0.2 0.3 0.4

DC Mm 0.2 0.4 0.6

3.2.3. Experimental set up
Orthogonal turning experiments were conducted using the 
versatile 250 PCD Boxford CNC lathe. The lathe's tool spindle 
moves linearly along the X, Y, and Z axes, making it ideal 
for this process. A cylindrical workpiece, approximately 220 
mm in diameter and made of AAERC, was secured between 
the universal chuck's three jaws. The study focused on three 
main control variables: VC, Fr and DC. Experimental trials were 
performed with various combinations of these input variables. 
MRR and Ra values were meticulously recorded for each 
trial. Accurate input parameter entry is crucial to ensure the 
precision of the turning process model.

3.2.4. Cutting operation procedures

The AAERC was initially machined on a CNC lathe to achieve 
the required 22 mm diameter for each sample needed for the 
experimental inquiry following the DOE. The chuck was 
secured, and the workpiece was centered. The tool holder 
was equipped with an HSS cutting insert, and necessary 
adjustments were made before starting the machining process. 
Turning operations were initiated by combining the selected 
process control parameters using DOE. To determine the 
appropriate output values, turning was performed on AAERC 
using the input parameters specified by the DOE. A Mitutoyo 
SJ-210 surface roughness tester was used to measure Ra. 
Figures 3 and 4 depict the experimental CNC lathe setup and 
the machined sample of aluminum A6351 reinforced with 
eggshell, respectively.

Figure 3. Experimental setup (CNC lathe) Figure 4. Al. A6351 Egg-shell machined sample

3.2.5. Surface roughness (SR) evaluation
Surface roughness, often referred to simply as roughness, is a key 
aspect of surface texture. It quantitatively measures the direction 
of the normal vector relative to the actual surface (Yu et al., 
2024). Surfaces with significant roughness variations are termed 
rough, while those with minimal variations are considered 

smooth. Understanding the frequency and amplitude of these 
fluctuations is essential to ensure the surface meets the intended 
application requirements. In this study, surface roughness for 
each experimental run was measured using a Mitutoyo surface 
measurement device. Figure 5 illustrates the Mitutoyo surface 
measuring instrument used for these measurements.
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3.2.7. Cutting fluid evaluation
Applying high-pressure cutting fluid improves its penetration 
at the contact points between the tool and workpiece (Yan et 
al., 2016). This technique enhances machining efficiency by 
reducing friction and dissipating heat from the cutting zone 
(Ashmawy et al., 2023). High-pressure application significantly 
shortens contact length, minimizes tool wear, and improves 
surface smoothness (Wang et al., 2022; Zhou et al. 2022). Filtering 
the cutting fluid is crucial to prevent microscopic particles from 
entering the high-pressure jet and affecting the workpiece's 
surface finish. High-pressure jet assistance (HPJA) effectively 
delivers cutting fluid, reducing cutting temperatures, pressures, 
and chip breakability while minimizing thermal stress buildup in 
both the tool and workpiece (Cica & Kramar 2019). In this study, 
Lubcon oil was used as the coolant for the machining process.

4. RESULTS AND DISCUSSION
The regulated parameters (VC, Fr and DC) and observed outcomes 
(MRR and Ra) for AAERC were optimized during the wet 
turning process using Response Surface Methodology (RSM). 
The optimization aimed to determine the best combination of 
input factors for optimal results. The ideal turning combination 
for AAERC and the desired response were identified using the 
numerical method in RSM. The regression model equation 
was derived by applying Equation 2, with the selected model 
based on the interaction of VC, Fr and DC. The input variables, 
in relation to each other, determine the individual response in 
terms of coded and actual variables as described in Equation 1.
y = f(x1,x2,x3…xk) 				        ....................... (1)
y = β0 + β1x1 + β2x2 + β3x3 + β123x1x2x3 + ε	      ........................(2) 
Where; 

x1= VC, x2= Fr, and x3= DC

y = Required output response (MRR and Ra).
f = Response function
ɛ = Random error (measurement error on response and 

background noise)
k is the number of independent variables.
β0 is the intercept value of the variables
β1,β2,β3,β123 are coefficients associated with each variable and 

interaction of
x1,x2,x3,x1 x2 x3 respectively. 

Table 4 presents the final design table after conducting the 
experiment by machining AAERC according to the DOE. The 
turning process utilized the necessary process variables to 
determine the required response values.

Figure 5. Mutotuyo surface measuring instrument

3.2.6. Metal removal rate (MRR) evaluation
Material Removal Rate (MRR) refers to the amount of material 
removed during machining over a specific period. It is calculated 
by dividing the weight of the workpiece by the machining time. 
The MRR equation was used to determine the material removal 
rate for each experimental run. Weighing machines were 
employed to measure the weight difference of the workpiece.

MRR (mm3/min) = 
 

Wbm = Workpiece weight before machining
Wam = Workpiece weight after machining
Mt = Total machining time for each trial (mins)

Material Removal Rate (MRR) significantly impacts CNC 
machining operations. Key effects include reduced lead times, 
faster material removal, shorter machining times, and increased 
productivity, all crucial for meeting production targets (Lu et 
al., 2018). Lower MRR often results in smoother surface finishes, 
while higher MRR can cause increased vibrations and cutting 
forces, potentially leading to rougher surfaces (Azarhoushang & 
Kitzig-Frank 2022; Lin et al., 2020). Higher MRR also generates 
more cutting forces, affecting the overall performance of the 
machining process, machine stability, and tool rigidity (O’Toole 
et al., 2021). Additionally, higher MRR produces more heat at 
the cutting zone, necessitating effective heat management 
to prevent tool damage and workpiece distortion (Kumar & 
Singh 2020; Bijanzad et al., 2022). Thicker chips are produced 
with higher MRR, requiring proper evacuation to avoid chip 
blockage and tool damage.

Wbm - Wam

Mt

Table 4. Final data table of the actual design after experiment.

Runs VC Fr DC Ra MRR

(rpm) (mm/min) (mm) (µm) (mm3/min)

1 450 0.3 0.4 1.28 1457.84

2 180 0.4 0.4 1.82 1386.1

3 450 0.2 0.6 1.22 2393.07

4 450 0.4 0.6 1.28 2091.48

5 180 0.3 0.6 2.61 2507.11
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6 180 0.2 0.4 1.38 2639.45

7 720 0.3 0.2 0.61 518.31

8 180 0.3 0.2 1.32 1311.04

9 720 0.2 0.4 0.5 337.07 

10 720 0.4 0.4 2.52 1322.35

11 450 0.4 0.2 1.82 726.58

12 720 0.3 0.6 0.14 869.35

13 450 0.2 0.2 0.62 1770.22

14 450 0.3 0.4 1.14 1396.84

15 450 0.3 0.2 1.02 722.89

4.1. Quantitative assessment of MRR using ANOVA

Table 5. ANOVA table of MRR

Source Sum of Squares df Mean Square F-value p-value

Model 7.356E+06 9 8.173E+05 21.22 0.0018

significant

VC 3.121E+06 1 3.121E+06 81.04 0.0003

Fr 1.431E+06 1 1.431E+06 37.17 0.0017

DC 1.981E+06 1 1.981E+06 51.44 0.0008

VC × Fr 54772.38 1 54772.38 1.42 0.2865

VC × DC 1.785E+05 1 1.785E+05 4.64 0.0839

Fr × DC 1.377E+05 1 1.377E+05 3.57 0.1173

VC
2 1.382E+05 1 1.382E+05 3.59 0.1167

Fr
2 2.073E+05 1 2.073E+05 5.38 0.0681

DC
2 37159.38 1 37159.38 0.9649 0.3711

Residual 1.926E+05 5 38510.96

not significantLack of Fit 1.907E+05 4 47673.58 25.62 0.1470

Pure Error 1860.50 1 1860.50

Cor Total 7.548E+06 14

Table 5 presents the MRR ANOVA table, which evaluates the 
impact of the variables and their interactions on the response 
variable. The model is significant, as indicated by a p-value of 
0.0018, meaning the variables in the model significantly affect 

MRR. A p-value of 0.1470 for the lack of fit suggests that the 
model fits the data well. The variables V_C, F_r and D_C have 
p-values of 0.0003, 0.0017, and 0.0008, respectively, indicating a 
significant effect on MRR.

Table 6. Fit statistics of MRR

Std. Dev. 196.24 R² 0.9745

Mean 1416.65 Adjusted R² 0.9286

C.V. % 13.85 Predicted R² 0.7765

Adeq Precision 13.7309

Table 6 presents the fit statistics for MRR. The high R² value 
of 0.9745 and adjusted R² of 0.9286 indicate that the model fits 
the data very well. The adequate precision ratio of 13.7309, 
which exceeds the benchmark of 4, signifies the model's 

effectiveness in navigating the design space. The difference 
between the adjusted R² of 0.9286 and the predicted R² of 0.7765 
is less than 0.2, indicating satisfactory agreement. The standard 
deviation of 196.24 and coefficient of variation of 13.85 suggest 
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a moderate level of variability around the model's predictions. 
The model's significant ability to explain the variation in the 

dependent variable (MRR) and its sufficient precision enhance 
its predictability.

Table 7. Coefficients in terms of coded factors of MRR

Factor Coefficient Estimate df Standard Error 95% CI Low 95% CI High VIF

Intercept 1360.09 1 132.59 1019.25 1700.93

Vc -624.58 1 69.38 -802.93 -446.23 1.0000

Fr -422.98 1 69.38 -601.33 -244.63 1.0000

DC 475.48 1 66.30 305.06 645.90 1.02

VC×Fr 117.02 1 98.12 -135.21 369.25 1.0000

VC×DC -211.26 1 98.12 -463.49 40.97 1.0000

Fr×DC 185.51 1 98.12 -66.72 437.74 1.0000

VC
2 -199.55 1 105.32 -470.29 71.19 1.08

Fr
2 244.33 1 105.32 -26.41 515.07 1.08

DC
2 107.29 1 109.22 -173.48 388.06 1.12

Table 7 provides a detailed statistical summary of a regression 
model where the dependent variable is MRR (Material Removal 
Rate). A positive coefficient for DC and the interaction between 
Fr×DC indicates that as these factors increase, MRR also increases. 
Conversely, a negative coefficient for VC, DC, VC

2 and VC×DC 
suggests that an increase in these factors leads to a decrease 
in MRR. The intercept, with a coefficient of 1360.09, represents 
the expected MRR in coded form when all factors are zero. The 
model appears to be free of significant multicollinearity, as 
indicated by the low VIF values of 1, ensuring the reliability of 
the coefficient estimates.

4.2. Coded equation
MRR=+1360.9-624.58 VC-422.98 Fr+475.48 DC+(117.02 VC×Fr)-
(211.26VC×DC)+(185.51 Fr×DC)-199.55VC

2+244.33 Fr
2+107.29 DC

2 
The equation demonstrates how MRR is influenced by VC, Fr 
and DC. The exponents and coefficients indicate the sensitivity 
of MRR to changes in these parameters. Negative coefficients 
suggest that increasing these parameters individually decreases 
MRR, while the interaction term shows a positive effect, 
meaning the combined influence of these parameters increases 
MRR. The coded equation for MRR can be predicted by inputting 
the values for VC, Fr and DC. This equation simplifies the process 
of comparing and determining the relative importance of the 
component factors (VC, Fr and DC). Additionally, the scales and 
units for VC, Fr and DC can be easily adjusted using the coded 
equation, providing a consistent method for comparing the 
factors.

4.3. Actual equation
MRR=+5786.84499+0.415038VC-24550.31014Fr-790.60942 
DC+(4.33398VC×Fr)-(3.91218VC×DC)+(9275.625Fr×DC)-0.002737 
VC

2+24433.23913 Fr
2+2682.27174 DC

2 

The actual parameters measured during the turning process 
include VC, Fr and DC. The actual equation can be used to forecast 
the MRR once the real input values of VC, Fr and DC are known. 
This equation helps predict how different parameters affect the 

efficiency of MRR in CNC wet turning of AAERC, allowing 
for process optimization. The formula aids in optimizing the 
machining process by predicting MRR based on the input 
parameters. It shows how various parameters, such as VC, Fr and 
DC, impact MRR. A regression equation with a positive coefficient, 
quadratic effect, and interaction effect indicates that increasing 
the process parameters raises MRR, while a negative coefficient, 
quadratic effect, and interaction effect suggest that increasing the 
process parameters lowers MRR. The actual equation can be used 
to identify necessary adjustments when the response differs from 
the intended outcome. It quantifies the response sensitivity to 
input variables, guiding robust process designs.

Figure 6. Graph of predicted values and actual values of MRR.

Figure 6 shows the graph of predicted versus actual MRR values. 
The predictive model is significant, as most data points are close 
to the diagonal line, indicating a strong correlation between 
predicted and actual MRR values. The proximity of each data 
point to the diagonal line underscores the model's significance. 
This model's importance enhances the optimization of process 
parameters for the best possible response.
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Table 8 presents the ANOVA table for Ra, showing that the 
model has a p-value of 0.0110, indicating high significance and 
that the input variables significantly impact Ra. VC and Fr are 
significant with p-values of 0.0006 and 0.0583, respectively. The 
non-significant lack of fit suggests an excellent fit between the 
model and the data. Table 9 displays the fit statistics for Ra, 
illustrating the model's strong fit with an R² value of 0.9271. 
The model's ability to explain the data is supported by the high 
R-squared value. The difference between the R² of 0.9461 and 

the adjusted R² of 0.8490 is less than 0.2, indicating satisfactory 
agreement. An R-squared value closer to 1, as seen with R² 
0.9461, indicates a better fit between the developed model 
and the gathered data. The R-squared values demonstrate the 
mathematical model's effectiveness in predicting the response. 
The high values of all determination coefficients confirm 
the strong correlation between the independent variables, 
highlighting the model's significance.

4.4. Quantitative assessment of Ra using ANOVA
Table 8. ANOVA table of Ra

Source Sum of Squares df Mean Square F-value p-value

Model 5.30 9 0.5891 9.74 0.0110

significant

VC 3.62 1 3.62 59.85 0.0006

Fr 0.3613 1 0.3613 5.98 0.0583

DC 0.1331 1 0.1331 2.20 0.1980

VC×Fr 0.0484 1 0.0484 0.8006 0.4119

VC×DC 0.7744 1 0.7744 12.81 0.0159

Fr×DC 0.3249 1 0.3249 5.37 0.0682

VC
2 0.0298 1 0.0298 0.4925 0.5141

Fr
2 0.0026 1 0.0026 0.0438 0.8425

DC
2 0.0140 1 0.0140 0.2317 0.6506

Residual 0.3023 5 0.0605

not significantLack of Fit 0.2925 4 0.0731 7.46 0.2672

Pure Error 0.0098 1 0.0098

Cor Total 5.60 14

Table 9. Fit statistics of Ra

Std. Dev. 0.2459 R² 0.9461

Mean 1.15 Adjusted R² 0.8490

C.V. % 21.37 Adeq Precision 11.0830

Table 10. Coefficients in terms of coded factors of Ra

Factor Coefficient Estimate df Standard Error 95% CI Low 95% CI High VIF

Intercept 1.18 1 0.1661 0.7564 1.61

VC -0.6725 1 0.0869 -0.8960 -0.4490 1.0000

Fr 0.2125 1 0.0869 -0.0110 0.4360 1.0000

DC 0.1233 1 0.0831 -0.0903 0.3368 1.02

VC×Fr -0.1100 1 0.1229 -0.4260 0.2060 1.0000

VC×DC -0.4400 1 0.1229 -0.7560 -0.1240 1.0000

Fr×DC -0.2850 1 0.1229 -0.6010 0.0310 1.0000

VC
2 -0.0926 1 0.1320 -0.4318 0.2466 1.08

Fr
2 -0.0276 1 0.1320 -0.3668 0.3116 1.08

DC
2 0.0659 1 0.1369 -0.2859 0.4177 1.12
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Table 10 presents the results of the analysis of variance, which 
indicates that the Ra mathematical models have the highest 
accuracy levels over the 95% confidence level, making them the 
most appropriate for response prediction. Table 10 explained 
the significance and dependability of each component in the 
regression model. The direction and strength of each factor's 
effect on Ra are shown by the coefficients. A negative coefficient 
indicates that increasing the coefficient of the corresponding 
parameter reduces the surface roughness. This suggests that 
the higher the coefficient of the corresponding parameter 
might lead to smoother surfaces. A positive coefficient indicates 
that increasing the coefficient of the corresponding parameter 
increases the surface roughness, implying rougher surfaces at 
higher coefficient of the corresponding parameter.

4.5. Coded equation
Ra=+1.18-0.6725VC+0.2125Fr+0.1233DC-(0.1100VC×Fr)-(0.4400 
VC×DC)-(0.2825Fr×DC)-0.0926VC

2-0.0276Fr
2+0.0659DC

2 

Figure 7. Graph of predicted values and actual values of Ra

Ra can be predicted provided the input variables (VC, DC, and 
Fr) in the equation have the necessary values. The application 
of the coded equation makes it easier and more convenient to 
evaluate the input variable coefficients, as well as to determine 
how the input and output interact. 

4.6. Actual equation
Ra=-2.54862+0.0031486VC+11.31486 Fr+7.24058 DC-(0.004074 
VC×Fr)-(0.008148VC×DC)-(14.25000Fr×DC)-1.27035-6VC

2-
2.76087Fr

2+1.64674DC
2 

The coefficients illustrate the links between each parameter 
and Ra as well as how they are affected. Ra is predictable if 
the input variables in the equation have the necessary values. 
The actual equation can be used to forecast the Ra when the 
genuine input values are available. These equations help with 
turning and machining process optimization for the composite 
by projecting Ra based on different input parameter values.

Figure 7 shows the predicted value of Ra plotted against the 
actual value. The image shows a dispersed plot that compares 
the Ra's actual and predicted values. A line linking each point 
indicates the degree to which the actual and predicted values 
agree, and each point represents a pair of actual and predicted 
values. The points seem to follow the line of best fit quite 
closely, suggesting that the model's predictions are not too far 
off. A perfect prediction is shown as a diagonal line, where the 
predicted and actual values coincide exactly. The color-coded 
Scatter Points display a range of 0.14 (green) to 2.61 (red), 
according to the Ra. The diagonal line and the points are nearly 
in line with one another, suggesting that the predictive model 
does a good job of forecasting Ra.

4.7. Optimization utilizing numerical method
Figure 8 illustrates the numerical optimization of AAERC. 
The primary objective is to optimize Ra and MRR by selecting 
the ideal input variables. The optimization was conducted 
with a desirability function of 1. The study uses a numerical 
optimization technique to determine the best input combination 
for optimal response. The results indicate that the best values for 
Ra and MRR are 1.0689 µm and 1793.93 mm³/min, respectively, 
when turning operations on AAERC are performed with input 
variables VC, DC, and Fr set at 369.822 rpm, 0.333554 mm/min, 
and 0.235944 mm, respectively.
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The analysis demonstrates that the optimal outcome minimizes 
built-up edge development and improves chip flow, hence 
reducing surface roughness. Surface roughness and material 
removal efficiency are directly impacted by cutting speed, feed 
rate, and depth of cut because of the impacts of tool engagement 
(Truong et al., 2025). Feed rate plays a crucial role in determining 
surface finish, as smaller incremental material removal results 
in smoother finishes, while excessive feed increases cutting 
forces, leading to rougher surfaces and potential tool deflection 
(Xu & Tang, 2014). Depth of cut affects material removal rate by 
controlling engagement volume, but excessive depths introduce 
instability and increased tool wear, impacting consistency in 
machining. The improved hardness and wear resistance of 
AAERC stabilizes machining performance, especially when 
turning in wet conditions. The eggshell reinforcement reduces 
thermal damage while preserving machining efficiency by 
promoting chip formation and aiding in heat dispersion 
(Gairola et al., 2023; Guemmour et al., 2015). High material 
removal efficiency and regulated surface finish are balanced by 
the interaction of process parameters, material qualities, and 
cutting mechanics, highlighting the significance of optimization 
in the machining of modern composites.

5. CONCLUSION
The objective of the wet turning of AAERC was to identify the 
optimal Ra and MRR in relation to three cutting parameters: 
VC, Fr and DC. The following conclusions were drawn from the 
evaluated findings:
The investigation successfully utilized AAERC. Response 
Surface Methodology (RSM) was employed to examine the 

interaction of input parameters with the response during the 
wet turning operation on AAERC. Numerical optimization was 
used to identify the optimal combinations of process parameters 
for achieving the best Ra and MRR outcomes.
The developed regression equation model can predict Ra 
and MRR when the values of input variables (VC, Fr and DC) 
are known. The parameters VC, Fr and DC significantly affect 
MRR, with p-values of 0.0003, 0.0017, and 0.0008, respectively. 
Similarly, VC, and Fr significantly impact Ra, with p-values of 
0.0006 and 0.0583, respectively.
The optimization results indicate that the best values for Ra 
and MRR are 1.0689 µm and 1793.93 mm³/min, respectively, 
when turning operations on AAERC are performed with input 
variables VC, DC, and Fr set at 369.822 rpm, 0.333554 mm/min, 
and 0.235944 mm, respectively.
This study is significant as it provides insights into the 
appropriate input parameters required to achieve the desired 
output parameters. Optimal selection of input variables reduces 
material waste, maximizes energy efficiency, and ensures the 
best surface finish.
Future research could concentrate on extending the use of 
AAERC in diverse machining operations and investigating how 
well it performs in various lubrication and cooling condition. 
Potential industry applications include aerospace, automotive, 
and precision manufacturing, although challenges such as high 
material costs, specialized equipment requirements, and process 
optimization may present barriers to widespread adoption.
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