Research Article

High Environmental Contamination by Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Maternity Wards of Yaounde, Cameroon

Authors

  • Gabriel Cedric Bessala Department of Microbiology, Faculty of Science, University of Yaounde I, Cameroon
  • Germanie Delaisie Abomo Department of Microbiology, Faculty of Science, University of Yaounde I, Cameroon
  • Yolande Francine Onomo Medja Laboratory Unit, Jamot Hospital, Yaoundé, Cameroon
  • Michèle Debora Abanda Assena Faculty of Science and Technology, Joseph de KI-ZERBO University of Ouagadougou, Burkina Faso
  • Anaïs Alexandra Dooh Department of Clinical Biology, School of Health Sciences, Catholic University of Central Africa, Cameroon
  • Félix Essiben Department of Obstetrics and Gynecology, Central Hospital of Yaounde, Cameroon
  • Micheline Mimché Laboratory Unit, Central Hospital of Yaounde, Cameroon
  • Blaise Pascal Bougnom Department of Microbiology, Faculty of Science, University of Yaounde I, Cameroon https://orcid.org/0000-0003-4892-2795

    blaise.bougnom@crid-cam.net

Abstract

Antimicrobial resistance (AMR) is an enormous global health burden, particularly in maternity and neonatal wards of hospitals where patients are extremely vulnerable to healthcare-associated infection. The objective of this study was to investigate the presence and cefotaxime-resistant Gram-negative bacteria (CRGNB) antimicrobial resistance profiles of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae contaminating environmental surfaces within Yaoundé, Cameroon maternity hospitals. From January to November, 1,519 environmental samples were collected from four maternity hospitals: Yaoundé Central Hospital (YCH), Cité-Verte District Hospital (CVDH), Nkolndongo District Hospital (NDH), and Odza District Hospital (ODH). The samples were cultured on selective media for CRGNB and antimicrobial susceptibility tested by conventional methods. CRGNB were isolated from all facilities with the highest contamination rate in NDH (230 ± 97 CFU/cm²). Significant space and time differences (p < 0.05) were observed with the peaks during March to May. Seventy-one CTX-resistant Enterobacteriaceae were recovered, of which the majority came from YCH (35.2%) and CVDH (29.6%), comprising E. coli (54%) and K. pneumoniae (46%). Alarming was the observation that all the ESBL-producing E. coli (n = 14) and K. pneumoniae (n = 4) isolates were 100% resistant to meropenem but 100% susceptible to imipenem and colistin. Similarly high rates of resistance were also found for aztreonam and cefotaxime (92.9%). The finding of meropenem resistance in ESBL-producing environmental isolates from maternity wards is a significant public health issue, indicating emerging porin- and efflux-mediated carbapenem resistance. Increased infection control, antimicrobial stewardship, and regular environmental surveillance are urgently necessary to block dissemination of such multidrug-resistant pathogens in healthcare facilities.

Keywords:

Antimicrobial Resistance Cameroon ESBL-Producing Enterobacteriaceae Hospital Environment Maternity Wards Meropenem Resistance

Article information

Journal

Journal of Life Science and Public Health

Volume (Issue)

1(2), (2025)

Pages

69-78

Published

04-12-2025

How to Cite

Bessala, G. C., Abomo, G. D., Medja, Y. F. O., Assena, M. D. A., Dooh, A. A., Essiben, F., Mimché, M., & Bougnom, B. P. (2025). High Environmental Contamination by Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Maternity Wards of Yaounde, Cameroon. Journal of Life Science and Public Health, 1(2), 69-78. https://doi.org/10.69739/jlsph.v1i2.1110

References

Akoachere, J. T. K., Yvonne, S., Akum, N. H., & Seraphine, E. N. (2014). Multidrug-resistant Gram-negative bacilli in hospitalised patients in Yaoundé, Cameroon. Pan African Medical Journal, 17, 193. https://doi.org/10.11604/pamj.2014.17.193.3048

Akoachere, J. T. K., Yvonne, S., Nkwelang, G., & Tita, M. A. (2009). Public health implications of contamination of French beans (Phaseolus vulgaris) by pathogenic bacteria sold in markets in Buea, Cameroon. BMC Research Notes, 2, 165. https://doi.org/10.1186/1756-0500-2-165

Belmonte, O., Drouet, D., Alba, M., Moiton, P.-M., Kuli, B., Lugagne-Delpon, N., Mourlan, C., & Jaffar-Bandjee, M.-C. (2010). Évolution de la résistance des entérobactéries aux antibiotiques sur l’île de la Réunion : émergence des bêta-lactamases à spectre élargi. Pathologie Biologie, 58(1), 18–24. https://doi.org/10.1016/j.patbio.2009.07.021

Bernabé, K. J., Langendorf, C., Ford, N., Ronat, J. B., & Murphy, R. A. (2017). Antimicrobial resistance in West Africa: A systematic review and meta-analysis. International Journal of Antimicrobial Agents, 50(5), 629–639. https://doi.org/10.1016/j.ijantimicag.2017.07.002

Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, M., Ouakrim, D. A., Oliveira, T. C., Struelens, M. J., Suetens, C., Monnet, D. L., & the Burden of AMR Collaborative Group. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and EEA, 2015. The Lancet Infectious Diseases, 19(1), 56–66. https://doi.org/10.1016/S1473-3099(18)30605-4

Chia, P. Y., Sengupta, S., Kukreja, A., Ponnampalavanar, S. S., Ng, O. T., & Marimuthu, K. (2020). The role of hospital environment in transmission of multidrug-resistant Gram-negative organisms. Antimicrobial Resistance and Infection Control, 9(1), 29. https://doi.org/10.1186/s13756-020-0692-8

Coulibaly, I., Koffi, K., Kouassi, K. A., Foba, F. I. S., Gbonon, M. V. C., Guessennd, N., Koné, B. T., Konate, I., & Koné, D. (2025). Evaluation of bacterial contamination risk in milk preparations and antibiotic resistance patterns in the neonatal unit of Treichville University Hospital, Côte d'Ivoire. International Journal of Biochemistry Research & Review, 34(3), 159–171. https://doi.org/10.9734/ijbcrr/2025/v34i3135486

Dancer, S. J. (2009). The role of environmental cleaning in the control of hospital-acquired infection. Journal of Hospital Infection, 73(4), 378–385. https://doi.org/10.1016/j.jhin.2009.03.030

Doumith, M., Ellington, M. J., Livermore, D. M., & Woodford, N. (2009). Molecular mechanisms disrupting porin expression in carbapenem-resistant Klebsiella and Enterobacter spp. Clinical Microbiology and Infection, 15(3), 213–219. https://doi: 10.1093/jac/dkp029.

Ekane, G. E., Ndip, L. M., & Akoachere, J. T. K. (2017). Bacterial contamination of hospital surfaces in Cameroon: Implications for nosocomial infections. BMC Research Notes, 10, 320. https://doi.org/10.1186/s13104-017-2621-1

European Committee on Antimicrobial Susceptibility Testing (EUCAST). (2021). Breakpoint tables for interpretation of MICs and zone diameters (Version 11.0). Växjö: EUCAST.

Horcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., Benito, N., & Grau, S. (2020). Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clinical Microbiology Reviews, 33(4), e00110-19. https://doi: 10.1128/CMR.00031-19.

Jacoby, G. A., & Munoz-Price, L. S. (2005). The new beta-lactamases. The New England Journal of Medicine, 352(4), 380–391. https://doi.org/10.1056/NEJMra041359

Kluytmans, J., Boumans, Y., Bonten, M., et al. (2017). Transmission of bacteria via environmental surfaces in hospitals. Clinical Microbiology and Infection, 23(4), 295–299. https://doi.org/10.1016/j.cmi.2016.12.021

Koulla-Shiro, S., Kuaban, C., & Ndumbe, P. M. (1997). Nosocomial infections and antibiotic resistance in a referral hospital in Yaoundé, Cameroon. Bulletin of the World Health Organization, 75(4), 339–344.

Livermore, D. M., Cantón, R., Gniadkowski, M., Nordmann, P., Rossolini, G. M., Arlet, G., Ayala, J., Coque, T. M., Kern-Zdanowicz, I., Luzzaro, F., Poirel, L., & Woodford, N. (2007). CTX-M: Changing the face of ESBLs in Europe. Journal of Antimicrobial Chemotherapy, 59(2), 165–174. https://doi.org/10.1093/jac/dkl483

Livermore, D. M., Warner, M., Mushtaq, S., Doumith, M., Zhang, J., & Woodford, N. (2011). What remains against carbapenem-resistant Enterobacteriaceae? International Journal of Antimicrobial Agents, 37(5), 415–419. https://doi.org/10.1016/j.ijantimicag.2011.01.012

Lonchel, C. M., Meex, C., Gangoué-Piéboji, J., Boreux, R., Assoumou, M. C. O., Melin, P., & De Mol, P. (2012). Proportion of extended-spectrum β-lactamase-producing Enterobacteriaceae in community settings in Ngaoundere, Cameroon. Journal of Clinical Microbiology, 50(4), 1512–1514. https://doi.org/10.1128/JCM.06485-11

Mahamat, O. O., Lounnas, M., Hide, M., Dumont, Y., Tidjani, A., Kamougam, K., Abderrahmane, M., Benavides, J., Solassol, J., Bañuls, A., Jean-Pierre, H., Carrière, C., & Godreuil, S. (2019). High prevalence and characterization of extended-spectrum β-lactamase producing Enterobacteriaceae in Chadian hospitals. BMC Infectious Diseases, 19, 205. https://doi.org/10.1186/s12879-019-3821-3

Martínez-Martínez, L., Pascual, A., & Jacoby, G. A. (2000). Quinolone resistance from a transferable plasmid. The Lancet, 351(9105), 797-799. https://doi.org/10.1016/s0140-6736(97)07322-4

Morrissey, I., Hackel, M., Badal, R., Bouchillon, S., Hawser, S., & Biedenbach, D. (2013). A review of ten years of the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2002–2011. Antimicrobial Agents and Chemotherapy, 57(4), 1891–1901. https://doi.org/10.1128/AAC.02060-12

Mouanga-Ndzime, Y., Bisseye, C., Longo-Pendy, N.-M., Bignoumba, M., Dikoumba, A.-C., & Onanga, R. (2025). Trends in Escherichia coli and Klebsiella pneumoniae urinary tract infections and antibiotic resistance over a 5-year period in Southeastern Gabon. Antibiotics, 14(1), 14. https://doi.org/10.3390/antibiotics14010014

Moutachakkir, M., Chinbo, M., Elkhoudri, N., & Soraa, N. (2015). Antibiotic resistance in uropathogenic Enterobacteriaceae in pediatric patients at CHU Marrakech. Journal of Pediatric Urology, 11(2), 81.e1–81.e7. https://doi.org/10.1016/j.jpurol.2014.11.007

Muller, A., Patry, I., Talon, D., Cornette, C., Lopez-Lozano, J. M., Plésiat, P., & Bertrand, X. (2006). Mise en place d’un outil informatisé de surveillance de la résistance bactérienne et de la consommation antibiotique dans un centre hospitalier universitaire. Pathologie Biologie, 54(2), 112–117. https://doi.org/10.1016/j.patbio.2005.10.003

Musicha, P., Cornick, J. E., Bar-Zeev, N., French, N., Masesa, C., Denis, B., Kennedy, N., Mallewla, J., Melita, A. G., Msefula, C. L., Heyderman, R., Everett, D., & Feasey, N. (2017). Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): A surveillance study. The Lancet Infectious Diseases, 17(10), 1042–1052. https://doi.org/10.1016/S1473-3099(17)30394-8

Ouedraogo, A. S., Sanou, M., Kissou, A., Sanou, S., Solaré, H., Kaboré, F., Sangaré, L., Poda, A., Aberkane, S., Bouzinbi, N., Sano, I., Nacro, B., Carrière, C., Decré, D., Ouédraogo, R., Jean-Pierre, H., & Godreuil, S. (2016). High prevalence of extended-spectrum β-lactamase producing Enterobacteriaceae among clinical isolates in Burkina Faso. BMC Infectious Diseases, 16, 326. https://doi.org/10.1186/s12879-016-1655-3

Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum beta-lactamases: A clinical update. Clinical Microbiology Reviews, 18(4), 657–686. https://doi.org/10.1128/CMR.18.4.657-686.2005

Perry, J. D., Butterworth, L. A., Nicholson, A., Appleby, M. R., & Orr, K. E. (2003). Evaluation of a new chromogenic medium, Uriselect 4, for the isolation and identification of urinary tract pathogens. Journal of Clinical Pathology, 56(7), 528–531. https://doi.org/10.1136/jcp.56.7.528

Philippon, A., Arlet, G., & Jacoby, G. A. (2002). Plasmid-determined AmpC-type β-lactamases. Antimicrobial Agents and Chemotherapy, 46(1), 1–11. https://doi.org/10.1128/AAC.46.1.1-11.2002

Pittet, D., Hugonnet, S., Harbarth, S., Mourouga, P., Sauvan, V., Touveneau, S., & Perneger, T. V. (2000). Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. The Lancet, 356(9238), 1307–1312. https://doi.org/10.1016/S0140-6736(00)02814-2

Rodríguez-Baño, J., Picón, E., Gijón, P., Hernández, J. R., Cisneros, M., Peña, C., Almela, M., Almirante, B., Grill, F., Colomina, J., Molinos, S., Oliver, A., Fernández-Mazarrasa, C., Navarro, G., Coloma, A., López-Cerero, L., & Pascual, Á. (2010). Risk factors and prognosis of nosocomial bloodstream infections caused by ESBL-producing Escherichia coli. Journal of Clinical Microbiology, 48(5), 1726–1731. https://doi.org/10.1128/JCM.02375-09

Seni, J., Falgenhauer, L., Simeo, N., Mirambo, M. M., Imirzalioglu, C., Matee, M., Mshana, S. E., & Chakraborty, T. (2016). Multiple ESBL-producing Escherichia coli sequence types carrying quinolone and aminoglycoside resistance genes circulating in companion and domestic farm animals in Mwanza, Tanzania, harbor commonly occurring plasmids. Frontiers in Microbiology, 7, 142. https://doi.org/10.3389/fmicb.2016.00142

Storberg, V. (2014). ESBL-producing Enterobacteriaceae in Africa: A non-systematic literature review of research published 2008–2012. Infection Ecology & Epidemiology, 4, 20342. https://doi.org/10.3402/iee.v4.20342

World Health Organization. (2014). Antimicrobial resistance: Global report on surveillance 2014. Geneva: WHO Press.

World Health Organization. (2019). No time to wait: Securing the future from drug-resistant infections (Report to the Secretary-General of the United Nations). Geneva: WHO.

Yee, D., Osuka, H., Weiss, J., Kriengkauykiat, J., Kolwaite, A., Johnson, J., Hopman, J., Coffin, S., Ram, P., Serbanescu, F., & Park, B. (2021). Identifying the priority infection prevention and control gaps contributing to neonatal healthcare-associated infections in low- and middle-income countries: Results from a modified Delphi process. Journal of Global Health Reports, 5, e2021013. https://doi.org/10.29392/001c.21367

Downloads

Views

3

Downloads

1