Article section
AI-Driven Predictive Microbiology with Real-Time Sensors for Next-Generation Food Safety
Abstract
Food safety in modern processing environments requires monitoring strategies that are faster, more adaptive, and more predictive than traditional microbiological approaches. This systematic narrative review examines recent advances in AI-enhanced predictive microbiology and real-time sensor technologies, focusing on their potential to transform contamination detection and microbial risk assessment. A structured search was conducted across Scopus, Web of Science, PubMed, IEEE Xplore, ScienceDirect, and supplementary sources such as Google Scholar to identify studies published between 2000 and 2024 that addressed computational modeling, sensor technologies, or integrated food safety systems. Findings show that machine learning and deep learning models provide superior capability for modeling nonlinear microbial responses across diverse food matrices, while modern optical, biosensing, electrochemical, and spectroscopic sensors generate continuous high-resolution data streams to enhance situational awareness during processing. When combined through cloud or edge computing infrastructures, these tools enable dynamic prediction, rapid anomaly detection, and automated decision support. Despite these advances, challenges remain, including data harmonization, model interpretability, sensor reliability, and the lack of standardized validation frameworks for industrial implementation. Overall, the convergence of AI analytics and real-time sensing technologies represents a promising pathway toward next-generation food safety systems that are predictive, responsive, and capable of autonomous decision-making across increasingly complex global supply chains.
Keywords:
Artificial Intelligence Food Processing Predictive Microbiology Real-Time Sensors Smart Safety Systems
Article information
Journal
Journal of Life Science and Public Health
Volume (Issue)
1(2), (2025)
Pages
79-89
Published
Copyright
Copyright (c) 2025 Innocent Junior Opara, Muyiwa Emmanuel Fatola, Mariam I. Adeoba, Hannah Aghogho Sodje, Ndubuisi Timothy Chibueze, Mary Tomi Olorunkosebi, Akinmolayemi, Akinde Thomas (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Abdi, Y. H., Bashir, S. G., Abdullahi, Y. B., Abdi, M. S., & Ahmed, N. I. (2025). Artificial intelligence applications for strengthening global food safety systems. Discover Food, 5(1), 391. https://doi.org/10.1007/s44187-025-00678-y
Abdulhussain, S. H., Mahmmod, B. M., Alwhelat, A., Shehada, D., Shihab, Z. I., Mohammed, H. J., Abdulameer, T. H., Alsabah, M., Fadel, M. H., Ali, S. K., Abbood, G. H., Asker, Z. A., Hussain, A., Abdulhussain, S. H., Mahmmod, B. M., Alwhelat, A., Shehada, D., Shihab, Z. I., Mohammed, H. J., … Hussain, A. (2025). A Comprehensive Review of Sensor Technologies in IoT: Technical Aspects, Challenges, and Future Directions. Computers, 14(8). https://doi.org/10.3390/computers14080342
Abdullahi, Y. B., Ahmed, M. M., Abdi, Y. H., Bashir, S. G., Ahmed, N. I., & Abdi, M. S. (2025). The Economic and Public Health Burden of Foodborne Illness in Somalia: Prevalence, Costs, and Policy Imperatives. Public Health Challenges, 4(3), e70097. https://doi.org/10.1002/puh2.70097
Acici, K. (2025). Comparative Analysis of Machine and Deep Learning Algorithms for Bragg Peak Estimation in Polymeric Materials for Tissue-Sparing Radiotherapy. Polymers, 17(15). https://doi.org/10.3390/polym17152068
Adeleke, O. J., Jovanovich, K. D., Ogunbunmi, S., Samuel, O., & Kehinde, T. O. (2025). Comprehensive Exploration of Smart Cities: A Systematic Review of Benefits, Challenges, and Future Directions in Telecommunications and Urban Development. IEEE Sensors Reviews, 2, 228–245. https://doi.org/10.1109/SR.2025.3569239
Akkaş, T., Reshadsedghi, M., Şen, M., Kılıç, V., & Horzum, N. (2025). The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Advanced Materials (Deerfield Beach, Fla.), 37(34), 2504796. https://doi.org/10.1002/adma.202504796
Alsulimani, A., Akhter, N., Jameela, F., Ashgar, R. I., Jawed, A., Hassani, M. A., & Dar, S. A. (2024). The Impact of Artificial Intelligence on Microbial Diagnosis. Microorganisms, 12(6), 1051. https://doi.org/10.3390/microorganisms12061051
Amaiach, R., El Ouali Lalami, A., Fadil, M., Bouslamti, R., & Lairini, S. (2024). Food safety knowledge, attitudes, and practices among food handlers in collective catering in central Morocco. Heliyon, 10(23), e40739. https://doi.org/10.1016/j.heliyon.2024.e40739
Amendolara, A. B., Sant, D., Rotstein, H. G., & Fortune, E. (2023). LSTM-based recurrent neural network provides effective short term flu forecasting. BMC Public Health, 23, 1788. https://doi.org/10.1186/s12889-023-16720-6
Animashaun, T. A., Sunday, O., Ogunleye, E., Agbahiwe, O. K., Afolayan, O. N., Okpoko, O. A., Enabulele, A. B. O., Enobakhare, B. O., & Ifionu, E. S. (2025). AI-Powered Digital Twin Platforms for Next-Generation Structural Health Monitoring: From Concept to Intelligent Decision-Making. Journal of Engineering Research and Reports, 27(10), 12–37. https://doi.org/10.9734/jerr/2025/v27i101652
Banicod, R. J. S., Tabassum, N., Jo, D.-M., Javaid, A., Kim, Y.-M., & Khan, F. (2025). Integration of Artificial Intelligence in Biosensors for Enhanced Detection of Foodborne Pathogens. Biosensors, 15(10), 690. https://doi.org/10.3390/bios15100690
Bodkhe, G. A., Kumar, V., Li, X., Pei, S., Ma, L., & Kim, M. (2025). Biosensors in Microbial Ecology: Revolutionizing Food Safety and Quality. Microorganisms, 13(7), 1706. https://doi.org/10.3390/microorganisms13071706
Cordeiro, M., Ferreira, J. C., Cordeiro, M., & Ferreira, J. C. (2025). Beyond Traceability: Decentralised Identity and Digital Twins for Verifiable Product Identity in Agri-Food Supply Chains. Applied Sciences, 15(11). https://doi.org/10.3390/app15116062
Ding, H., Hou, H., Wang, L., Cui, X., Yu, W., Wilson, D. I., Ding, H., Hou, H., Wang, L., Cui, X., Yu, W., & Wilson, D. I. (2025). Application of Convolutional Neural Networks and Recurrent Neural Networks in Food Safety. Foods, 14(2). https://doi.org/10.3390/foods14020247
Enabulele, A. B. O., Eleweke, C. C., Okechukwu, O., Akanbi, O. O., & Majesty, C. (2025). A Strategic Project Management Framework for Implementing Patient-Centered Digital Health Record Systems to Improve Chronic Disease Outcomes in the United States. Journal of Sustainable Research and Development, 1(2), 55–67. https://doi.org/10.69739/jsrd.v1i2.1217
Enabulele, A. B. O., Omo-Enabulele, A. P., Borokinni, M., Iwerumoh, A. N., Olatunbosun, A., Enobakha, B. O., & Ifionu, E. S. (2025). Agile Leadership in Hybrid Workplaces: Evolving Roles and Competencies of Project Managers. Journal of Global Economics, Management and Business Research, 17(3), 211–225. https://doi.org/10.56557/jgembr/2025/v17i39756
Espina-Romero, L., Hurtado, H. G., Parra, D. R., Pirela, R. A. V., Talavera-Aguirre, R., Ochoa-Díaz, A., Espina-Romero, L., Hurtado, H. G., Parra, D. R., Pirela, R. A. V., Talavera-Aguirre, R., & Ochoa-Díaz, A. (2024). Challenges and Opportunities in the Implementation of AI in Manufacturing: A Bibliometric Analysis. Sci, 6(4). https://doi.org/10.3390/sci6040060
Garofalo, S. P., Ardito, F., Sanitate, N., Carolis, G. D., Ruggieri, S., Giannico, V., Rana, G., Ferrara, R. M., Garofalo, S. P., Ardito, F., Sanitate, N., Carolis, G. D., Ruggieri, S., Giannico, V., Rana, G., & Ferrara, R. M. (2025). Robustness of Actual Evapotranspiration Predicted by Random Forest Model Integrating Remote Sensing and Meteorological Information: Case of Watermelon (Citrullus lanatus, (Thunb.) Matsum. & Nakai, 1916). Water, 17(3). https://doi.org/10.3390/w17030323
Gorji, R., Skvaril, J., & Odlare, M. (2024). Applications of optical sensing and imaging spectroscopy in indoor farming: A systematic review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 322, 124820. https://doi.org/10.1016/j.saa.2024.124820
Grace, D. (2023). Burden of foodborne disease in low-income and middle-income countries and opportunities for scaling food safety interventions. Food Security, 15(6), 1475–1488. https://doi.org/10.1007/s12571-023-01391-3
Haque, M., Wang, B., Mvuyekure, A. L., & Chaves, B. D. (2024). Modeling the growth of Salmonella in raw ground pork under dynamic conditions of temperature abuse. International Journal of Food Microbiology, 422, 110808. https://doi.org/10.1016/j.ijfoodmicro.2024.110808
Hiura, S., Koseki, S., & Koyama, K. (2021). Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database. Scientific Reports, 11, 10613. https://doi.org/10.1038/s41598-021-90164-z
Jimoh, T. S., & Falakin, T. O. (2025). Microalgae as Fishmeal Replacements in Rainbow Trout: Effects on Growth, Feed Use and Nutrient Excretion. Journal of Applied Life Sciences International, 28(5), 186–202. https://doi.org/10.9734/jalsi/2025/v28i5726
Jimoh, T. S., Falakin, T. O., & Mensah, E. K. (2025). Advancing Sustainable U.S. Aquaculture: Microalgae as a Fishmeal Alternative for Rainbow Trout. Journal of Agriculture, Aquaculture, and Animal Science, 2(2), 112–120. https://doi.org/10.69739/jaaas.v2i2.1055
Jimoh, T. S., Mensah, E. K., Falakin, T. O., & Blessing, A. A. (2025). Black Soldier Fly Meal as a Sustainable Alternative to Fishmeal in Rainbow Trout: Impacts on Growth, Nutrient Utilization, and Sustainability. Journal of Agriculture, Aquaculture, and Animal Science, 2(2), 103–111. https://doi.org/10.69739/jaaas.v2i2.1054
Kgakatsi, M., Galeboe, O. P., Molelekwa, K. K., & Thango, B. A. (2024). The Impact of Big Data on SME Performance: A Systematic Review. Businesses, 4(4), 632–695. https://doi.org/10.3390/businesses4040038
Konstantinou, L., Varda, E., Apostolou, T., Loizou, K., Dougiakis, L., Inglezakis, A., Hadjilouka, A., Konstantinou, L., Varda, E., Apostolou, T., Loizou, K., Dougiakis, L., Inglezakis, A., & Hadjilouka, A. (2024). A Novel Application of B.EL.DTM Technology: Biosensor-Based Detection of Salmonella spp. in Food. Biosensors, 14(12). https://doi.org/10.3390/bios14120582
Lawal, O. P., Igwe, E. P., Olosunde, A., Chisom, E. P., Okeh, D. U., Olowookere, A. K., Adedayo, O. A., Agu, C. P., Mustapha, F. A., Odubo, F., & Orobator, E. T. (2025). Integrating Real-Time Data and Machine Learning in Predicting Infectious Disease Outbreaks: Enhancing Response Strategies in Sub-Saharan Africa. Asian Journal of Microbiology and Biotechnology, 10(1), 147–163. https://doi.org/10.56557/ajmab/2025/v10i19371
Lawal, O. P., Njoba, C. F., Olorunkosebi, M. T., Jacob, H., Igweonu, C., Dilioha, J. O., Fagbemi, B. T., Amesimenu, R., Jimoh, T. S., & Obiechi, M. N. (2025). Microplastics as emerging reservoirs of antimicrobial resistance: Clinical relevance and environmental mechanisms. Journal of Clinical and Experimental Investigations, 16(4), em00852. https://doi.org/10.29333/jcei/17401
Liang, Y., Li, Z., Shi, J., Zhang, N., Qin, Z., Du, L., Zhai, X., Shen, T., Zhang, R., Zou, X., Huang, X., Liang, Y., Li, Z., Shi, J., Zhang, N., Qin, Z., Du, L., Zhai, X., Shen, T., … Huang, X. (2025). Advances in Hyperspectral Imaging Technology for Grain Quality and Safety Detection: A Review. Foods, 14(17). https://doi.org/10.3390/foods14172977
Lun, Z., Wu, X., Dong, J., Wu, B., Lun, Z., Wu, X., Dong, J., & Wu, B. (2025). Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers. Foods, 14(13). https://doi.org/10.3390/foods14132350
Maduforo, A., Ngene, B., Chikwendu, J., Okorie, J., Henry, C., Chikadibia, M., Aloysius-Maduforo, & Chinemerem, H. (2022). Effect of Processing Methods on Nutritional Quality of Solanum aethiopicum and Colocasia esculenta Leafy Vegetables Commonly. Retrieved November 27, 2025, from https://www.semanticscholar.org/paper/Effect-of-Processing-Methods-on-Nutritional-Quality-Maduforo-Ngene/cf713e950c32d477a6f0e4ea8bba7e1c13b10b59
Mohamed, N. (2025). Artificial intelligence and machine learning in cybersecurity: A deep dive into state-of-the-art techniques and future paradigms. Knowledge and Information Systems, 67(8), 6969–7055. https://doi.org/10.1007/s10115-025-02429-y
Mohseni, P., & Ghorbani, A. (2024). Exploring the synergy of artificial intelligence in microbiology: Advancements, challenges, and future prospects. Computational and Structural Biotechnology Reports, 1, 100005. https://doi.org/10.1016/j.csbr.2024.100005
Mulet-Cabero, A.-I., Torres-Gonzalez, M., Geurts, J., Rosales, A., Farhang, B., Marmonier, C., Ulleberg, E. K., Hocking, E., Neiderer, I., Gandolfi, I., Anderson, L., Brader, L., Vermaak, M., Cameron, M., Christensen, M. M., Haryono, R., Peters, S., Mulet-Cabero, A.-I., Torres-Gonzalez, M., … Peters, S. (2024). The Dairy Matrix: Its Importance, Definition, and Current Application in the Context of Nutrition and Health. Nutrients, 16(17). https://doi.org/10.3390/nu16172908
Nikzadfar, M., Rashvand, M., Zhang, H., Shenfield, A., Genovese, F., Altieri, G., Matera, A., Tornese, I., Laveglia, S., Paterna, G., Lovallo, C., Mammadov, O., Aykanat, B., Renzo, G. C. D., Nikzadfar, M., Rashvand, M., Zhang, H., Shenfield, A., Genovese, F., … Renzo, G. C. D. (2024). Hyperspectral Imaging Aiding Artificial Intelligence: A Reliable Approach for Food Qualification and Safety. Applied Sciences, 14(21). https://doi.org/10.3390/app14219821
Olaitan, O. F., Akatakpo, O. N., Victor, C. O., Emejulu, C. J., Ayoola, T. M., Olayiwola, D. E., & Ajibola, A. A. (2025). Secure and Resilient Industrial IoT Architectures for Smart Manufacturing: A Comprehensive Review. Journal of Engineering Research and Reports, 27(6), 331–344. https://doi.org/10.9734/jerr/2025/v27i61548
Olaitan, O. F., Ayeni, S. O., Olosunde, A., Okeke, F. C., Okonkwo, U. U., Ochieze, C. G., Chukwujama, O. V., Akatakpo, O. N., Olaitan, O. F., Ayeni, S. O., Olosunde, A., Okeke, F. C., Okonkwo, U. U., Ochieze, C. G., Chukwujama, O. V., & Akatakpo, O. N. (2025). Quantum Computing in Artificial Intelligence: A Review of Quantum Machine Learning Algorithms. Path of Science, 11(5), Article 5. https://doi.org/10.22178/pos.117-25
Olaoye, J., Bakare-Abidola, T., Chinaza, O. F., Jude, D., Saka, J. T., Babatunde, E. T., & Isiaka, S. A. (2024). Bioaccumulation and toxicological effects of heavy metals in wildlife: Implications for ecosystem health and human exposure. International Journal of Science, Architecture, Technology, and Environment, 1(8), 294–303. https://doi.org/10.63680/ijsate0325035.07
Olawale, F., Alake, S. E., Chandrashekar, R., Islam, P., Sutton, B., Chaffin, N., Ugo, C. H., Jin, J. B., Lightfoot, S., Debédat, J., Schilmiller, A., Chowanadisai, W., Knotts, T. A., Smith, B. J., & Lucas, E. A. (2025). Pinto Bean Supplementation Modulates Gut Microbiota and Improves Markers of Gut Integrity in a Mouse Model of Estrogen Deficiency. The Journal of Nutrition, S0022-3166(25)00431-6. https://doi.org/10.1016/j.tjnut.2025.07.008
Sanislav, T., Mois, G. D., Zeadally, S., Folea, S., Radoni, T. C., Al-Suhaimi, E. A., Sanislav, T., Mois, G. D., Zeadally, S., Folea, S., Radoni, T. C., & Al-Suhaimi, E. A. (2025). A Comprehensive Review on Sensor-Based Electronic Nose for Food Quality and Safety. Sensors, 25(14). https://doi.org/10.3390/s25144437
Taiwo, O. R., Onyeaka, H., Oladipo, E. K., Oloke, J. K., & Chukwugozie, D. C. (2024a). Advancements in Predictive Microbiology: Integrating New Technologies for Efficient Food Safety Models. International Journal of Microbiology, 2024, 6612162. https://doi.org/10.1155/2024/6612162
Taiwo, O. R., Onyeaka, H., Oladipo, E. K., Oloke, J. K., & Chukwugozie, D. C. (2024b). Advancements in Predictive Microbiology: Integrating New Technologies for Efficient Food Safety Models. International Journal of Microbiology, 2024(1), 6612162. https://doi.org/10.1155/2024/6612162
Tang, S., Li, P., Chen, S., Li, C., Zhang, L., & Zhong, N. (2025, November 27). Hyperspectral Imaging Combined with Convolutional Neural Network for Rapid and Accurate Evaluation of Tilapia Fillet Freshness. Spectroscopy Online. https://www.spectroscopyonline.com/view/hyperspectral-imaging-combined-with-convolutional-neural-network-for-rapid-and-accurate-evaluation-of-tilapia-fillet-freshness
Tarlak, F. (2023). The Use of Predictive Microbiology for the Prediction of the Shelf Life of Food Products. Foods, 12(24), 4461. https://doi.org/10.3390/foods12244461
Tarlak, F., Costa, J. C. C. P., Yucel, O., Tarlak, F., Costa, J. C. C. P., & Yucel, O. (2025). The Development of Machine Learning-Assisted Software for Predicting the Interaction Behaviours of Lactic Acid Bacteria and Listeria monocytogenes. Life, 15(2). https://doi.org/10.3390/life15020244
Ugo, C. H., Ekara, E. C., Chukwudi, O. C., Chiwenite, M. C., Osuji, R. C., Nnanna, G., & Onuorah, U. M. (2022). Knowledge, Attitude and Practices (KAP) of Preconceptional Folic Acid supplementation among pregnant women (18-45years) attending antenatal clinic in Alex Ekwueme Federal University Teaching hospital Abakaliki, Ebonyi State, Nigeria. Saudi Journal of Medicine, 7(9), 485–500. https://doi.org/10.36348/sjm.2022.v07i09.006
Ugo, C. H., Eme, P. E., Eze, P. N., Obajaja, H. A., & Omeili, A. E. (2024). Chemical assessment of the quality of palm oil produced and sold in major markets in Orlu zone in Imo state, Nigeria. World Journal of Advanced Research and Reviews, 21(2), 1025–1033. https://doi.org/10.30574/wjarr.2024.21.2.0529
Ugo, C. H., Nnaemeka, M., Arene, E. C., Anyadike, I. K., Opara, S. O., Eze, P. N., Osuji, R. C., & Ohiri, Z. C. (2022). Nutritional Composition, Bioavailability, Medicinal Functions and Uses of Turmeric: A Review. Scholars Bulletin, 8(8), 248–260. https://doi.org/10.36348/sb.2022.v08i08.003
Wu, X., Yuan, Z., Gao, S., Zhang, X., El-Mesery, H. S., Lu, W., Dai, X., Xu, R., Wu, X., Yuan, Z., Gao, S., Zhang, X., El-Mesery, H. S., Lu, W., Dai, X., & Xu, R. (2025). Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance. Foods, 14(17). https://doi.org/10.3390/foods14173021
Yang, H., Jiao, W., Zouyi, L., Diao, H., & Xia, S. (2025). Artificial intelligence in the food industry: Innovations and applications. Discover Artificial Intelligence, 5(1), 60. https://doi.org/10.1007/s44163-025-00296-8
Yin, B., Tan, G., Muhammad, R., Liu, J., Bi, J., Yin, B., Tan, G., Muhammad, R., Liu, J., & Bi, J. (2025). AI-Powered Innovations in Food Safety from Farm to Fork. Foods, 14(11). https://doi.org/10.3390/foods14111973
Zhang, H., Sun, Z., Sun, K., Liu, Q., Chu, W., Fu, L., Dai, D., Liang, Z., & Lin, C.-T. (2025). Electrochemical Impedance Spectroscopy-Based Biosensors for Label-Free Detection of Pathogens. Biosensors, 15(7), 443. https://doi.org/10.3390/bios15070443
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline