Research Article

AI-Driven Predictive Microbiology with Real-Time Sensors for Next-Generation Food Safety

Authors

  • Innocent Junior Opara Department of Computer Information System, Prairie View A&M University, Texas, USA https://orcid.org/0009-0003-3252-5653

    dcentoprah@gmail.com

  • Muyiwa Emmanuel Fatola Department of Animal Science, Osun State University, Osogbo, Osun State, Nigeria https://orcid.org/0009-0004-4204-6952
  • Mariam I. Adeoba Department of Mechanical, Bioresources and Biomedical Engineering, University of South Africa, Zambia
  • Hannah Aghogho Sodje Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria https://orcid.org/0009-0007-3666-9653
  • Ndubuisi Timothy Chibueze Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Nigeria
  • Mary Tomi Olorunkosebi Department of Biological Sciences, Western Illinois University, Macomb, Illinois, USA https://orcid.org/0009-0006-5900-5625
  • Akinmolayemi, Akinde Thomas Department of Microbiology, Environmental Microbiology and Biotechnology Unit, University of Ibadan, Nigeria

Abstract

Food safety in modern processing environments requires monitoring strategies that are faster, more adaptive, and more predictive than traditional microbiological approaches. This systematic narrative review examines recent advances in AI-enhanced predictive microbiology and real-time sensor technologies, focusing on their potential to transform contamination detection and microbial risk assessment. A structured search was conducted across Scopus, Web of Science, PubMed, IEEE Xplore, ScienceDirect, and supplementary sources such as Google Scholar to identify studies published between 2000 and 2024 that addressed computational modeling, sensor technologies, or integrated food safety systems. Findings show that machine learning and deep learning models provide superior capability for modeling nonlinear microbial responses across diverse food matrices, while modern optical, biosensing, electrochemical, and spectroscopic sensors generate continuous high-resolution data streams to enhance situational awareness during processing. When combined through cloud or edge computing infrastructures, these tools enable dynamic prediction, rapid anomaly detection, and automated decision support. Despite these advances, challenges remain, including data harmonization, model interpretability, sensor reliability, and the lack of standardized validation frameworks for industrial implementation. Overall, the convergence of AI analytics and real-time sensing technologies represents a promising pathway toward next-generation food safety systems that are predictive, responsive, and capable of autonomous decision-making across increasingly complex global supply chains.

Keywords:

Artificial Intelligence Food Processing Predictive Microbiology Real-Time Sensors Smart Safety Systems

Article information

Journal

Journal of Life Science and Public Health

Volume (Issue)

1(2), (2025)

Pages

79-89

Published

20-12-2025

How to Cite

Opara, I. J., Fatola, M. E., Adeoba, M. I., Sodje, H. A., Chibueze, N. T., Olorunkosebi, M. T., & Akinmolayemi, A. T. (2025). AI-Driven Predictive Microbiology with Real-Time Sensors for Next-Generation Food Safety. Journal of Life Science and Public Health, 1(2), 79-89. https://doi.org/10.69739/jlsph.v1i2.1299

References

Abdi, Y. H., Bashir, S. G., Abdullahi, Y. B., Abdi, M. S., & Ahmed, N. I. (2025). Artificial intelligence applications for strengthening global food safety systems. Discover Food, 5(1), 391. https://doi.org/10.1007/s44187-025-00678-y

Abdulhussain, S. H., Mahmmod, B. M., Alwhelat, A., Shehada, D., Shihab, Z. I., Mohammed, H. J., Abdulameer, T. H., Alsabah, M., Fadel, M. H., Ali, S. K., Abbood, G. H., Asker, Z. A., Hussain, A., Abdulhussain, S. H., Mahmmod, B. M., Alwhelat, A., Shehada, D., Shihab, Z. I., Mohammed, H. J., … Hussain, A. (2025). A Comprehensive Review of Sensor Technologies in IoT: Technical Aspects, Challenges, and Future Directions. Computers, 14(8). https://doi.org/10.3390/computers14080342

Abdullahi, Y. B., Ahmed, M. M., Abdi, Y. H., Bashir, S. G., Ahmed, N. I., & Abdi, M. S. (2025). The Economic and Public Health Burden of Foodborne Illness in Somalia: Prevalence, Costs, and Policy Imperatives. Public Health Challenges, 4(3), e70097. https://doi.org/10.1002/puh2.70097

Acici, K. (2025). Comparative Analysis of Machine and Deep Learning Algorithms for Bragg Peak Estimation in Polymeric Materials for Tissue-Sparing Radiotherapy. Polymers, 17(15). https://doi.org/10.3390/polym17152068

Adeleke, O. J., Jovanovich, K. D., Ogunbunmi, S., Samuel, O., & Kehinde, T. O. (2025). Comprehensive Exploration of Smart Cities: A Systematic Review of Benefits, Challenges, and Future Directions in Telecommunications and Urban Development. IEEE Sensors Reviews, 2, 228–245. https://doi.org/10.1109/SR.2025.3569239

Akkaş, T., Reshadsedghi, M., Şen, M., Kılıç, V., & Horzum, N. (2025). The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Advanced Materials (Deerfield Beach, Fla.), 37(34), 2504796. https://doi.org/10.1002/adma.202504796

Alsulimani, A., Akhter, N., Jameela, F., Ashgar, R. I., Jawed, A., Hassani, M. A., & Dar, S. A. (2024). The Impact of Artificial Intelligence on Microbial Diagnosis. Microorganisms, 12(6), 1051. https://doi.org/10.3390/microorganisms12061051

Amaiach, R., El Ouali Lalami, A., Fadil, M., Bouslamti, R., & Lairini, S. (2024). Food safety knowledge, attitudes, and practices among food handlers in collective catering in central Morocco. Heliyon, 10(23), e40739. https://doi.org/10.1016/j.heliyon.2024.e40739

Amendolara, A. B., Sant, D., Rotstein, H. G., & Fortune, E. (2023). LSTM-based recurrent neural network provides effective short term flu forecasting. BMC Public Health, 23, 1788. https://doi.org/10.1186/s12889-023-16720-6

Animashaun, T. A., Sunday, O., Ogunleye, E., Agbahiwe, O. K., Afolayan, O. N., Okpoko, O. A., Enabulele, A. B. O., Enobakhare, B. O., & Ifionu, E. S. (2025). AI-Powered Digital Twin Platforms for Next-Generation Structural Health Monitoring: From Concept to Intelligent Decision-Making. Journal of Engineering Research and Reports, 27(10), 12–37. https://doi.org/10.9734/jerr/2025/v27i101652

Banicod, R. J. S., Tabassum, N., Jo, D.-M., Javaid, A., Kim, Y.-M., & Khan, F. (2025). Integration of Artificial Intelligence in Biosensors for Enhanced Detection of Foodborne Pathogens. Biosensors, 15(10), 690. https://doi.org/10.3390/bios15100690

Bodkhe, G. A., Kumar, V., Li, X., Pei, S., Ma, L., & Kim, M. (2025). Biosensors in Microbial Ecology: Revolutionizing Food Safety and Quality. Microorganisms, 13(7), 1706. https://doi.org/10.3390/microorganisms13071706

Cordeiro, M., Ferreira, J. C., Cordeiro, M., & Ferreira, J. C. (2025). Beyond Traceability: Decentralised Identity and Digital Twins for Verifiable Product Identity in Agri-Food Supply Chains. Applied Sciences, 15(11). https://doi.org/10.3390/app15116062

Ding, H., Hou, H., Wang, L., Cui, X., Yu, W., Wilson, D. I., Ding, H., Hou, H., Wang, L., Cui, X., Yu, W., & Wilson, D. I. (2025). Application of Convolutional Neural Networks and Recurrent Neural Networks in Food Safety. Foods, 14(2). https://doi.org/10.3390/foods14020247

Enabulele, A. B. O., Eleweke, C. C., Okechukwu, O., Akanbi, O. O., & Majesty, C. (2025). A Strategic Project Management Framework for Implementing Patient-Centered Digital Health Record Systems to Improve Chronic Disease Outcomes in the United States. Journal of Sustainable Research and Development, 1(2), 55–67. https://doi.org/10.69739/jsrd.v1i2.1217

Enabulele, A. B. O., Omo-Enabulele, A. P., Borokinni, M., Iwerumoh, A. N., Olatunbosun, A., Enobakha, B. O., & Ifionu, E. S. (2025). Agile Leadership in Hybrid Workplaces: Evolving Roles and Competencies of Project Managers. Journal of Global Economics, Management and Business Research, 17(3), 211–225. https://doi.org/10.56557/jgembr/2025/v17i39756

Espina-Romero, L., Hurtado, H. G., Parra, D. R., Pirela, R. A. V., Talavera-Aguirre, R., Ochoa-Díaz, A., Espina-Romero, L., Hurtado, H. G., Parra, D. R., Pirela, R. A. V., Talavera-Aguirre, R., & Ochoa-Díaz, A. (2024). Challenges and Opportunities in the Implementation of AI in Manufacturing: A Bibliometric Analysis. Sci, 6(4). https://doi.org/10.3390/sci6040060

Garofalo, S. P., Ardito, F., Sanitate, N., Carolis, G. D., Ruggieri, S., Giannico, V., Rana, G., Ferrara, R. M., Garofalo, S. P., Ardito, F., Sanitate, N., Carolis, G. D., Ruggieri, S., Giannico, V., Rana, G., & Ferrara, R. M. (2025). Robustness of Actual Evapotranspiration Predicted by Random Forest Model Integrating Remote Sensing and Meteorological Information: Case of Watermelon (Citrullus lanatus, (Thunb.) Matsum. & Nakai, 1916). Water, 17(3). https://doi.org/10.3390/w17030323

Gorji, R., Skvaril, J., & Odlare, M. (2024). Applications of optical sensing and imaging spectroscopy in indoor farming: A systematic review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 322, 124820. https://doi.org/10.1016/j.saa.2024.124820

Grace, D. (2023). Burden of foodborne disease in low-income and middle-income countries and opportunities for scaling food safety interventions. Food Security, 15(6), 1475–1488. https://doi.org/10.1007/s12571-023-01391-3

Haque, M., Wang, B., Mvuyekure, A. L., & Chaves, B. D. (2024). Modeling the growth of Salmonella in raw ground pork under dynamic conditions of temperature abuse. International Journal of Food Microbiology, 422, 110808. https://doi.org/10.1016/j.ijfoodmicro.2024.110808

Hiura, S., Koseki, S., & Koyama, K. (2021). Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database. Scientific Reports, 11, 10613. https://doi.org/10.1038/s41598-021-90164-z

Jimoh, T. S., & Falakin, T. O. (2025). Microalgae as Fishmeal Replacements in Rainbow Trout: Effects on Growth, Feed Use and Nutrient Excretion. Journal of Applied Life Sciences International, 28(5), 186–202. https://doi.org/10.9734/jalsi/2025/v28i5726

Jimoh, T. S., Falakin, T. O., & Mensah, E. K. (2025). Advancing Sustainable U.S. Aquaculture: Microalgae as a Fishmeal Alternative for Rainbow Trout. Journal of Agriculture, Aquaculture, and Animal Science, 2(2), 112–120. https://doi.org/10.69739/jaaas.v2i2.1055

Jimoh, T. S., Mensah, E. K., Falakin, T. O., & Blessing, A. A. (2025). Black Soldier Fly Meal as a Sustainable Alternative to Fishmeal in Rainbow Trout: Impacts on Growth, Nutrient Utilization, and Sustainability. Journal of Agriculture, Aquaculture, and Animal Science, 2(2), 103–111. https://doi.org/10.69739/jaaas.v2i2.1054

Kgakatsi, M., Galeboe, O. P., Molelekwa, K. K., & Thango, B. A. (2024). The Impact of Big Data on SME Performance: A Systematic Review. Businesses, 4(4), 632–695. https://doi.org/10.3390/businesses4040038

Konstantinou, L., Varda, E., Apostolou, T., Loizou, K., Dougiakis, L., Inglezakis, A., Hadjilouka, A., Konstantinou, L., Varda, E., Apostolou, T., Loizou, K., Dougiakis, L., Inglezakis, A., & Hadjilouka, A. (2024). A Novel Application of B.EL.DTM Technology: Biosensor-Based Detection of Salmonella spp. in Food. Biosensors, 14(12). https://doi.org/10.3390/bios14120582

Lawal, O. P., Igwe, E. P., Olosunde, A., Chisom, E. P., Okeh, D. U., Olowookere, A. K., Adedayo, O. A., Agu, C. P., Mustapha, F. A., Odubo, F., & Orobator, E. T. (2025). Integrating Real-Time Data and Machine Learning in Predicting Infectious Disease Outbreaks: Enhancing Response Strategies in Sub-Saharan Africa. Asian Journal of Microbiology and Biotechnology, 10(1), 147–163. https://doi.org/10.56557/ajmab/2025/v10i19371

Lawal, O. P., Njoba, C. F., Olorunkosebi, M. T., Jacob, H., Igweonu, C., Dilioha, J. O., Fagbemi, B. T., Amesimenu, R., Jimoh, T. S., & Obiechi, M. N. (2025). Microplastics as emerging reservoirs of antimicrobial resistance: Clinical relevance and environmental mechanisms. Journal of Clinical and Experimental Investigations, 16(4), em00852. https://doi.org/10.29333/jcei/17401

Liang, Y., Li, Z., Shi, J., Zhang, N., Qin, Z., Du, L., Zhai, X., Shen, T., Zhang, R., Zou, X., Huang, X., Liang, Y., Li, Z., Shi, J., Zhang, N., Qin, Z., Du, L., Zhai, X., Shen, T., … Huang, X. (2025). Advances in Hyperspectral Imaging Technology for Grain Quality and Safety Detection: A Review. Foods, 14(17). https://doi.org/10.3390/foods14172977

Lun, Z., Wu, X., Dong, J., Wu, B., Lun, Z., Wu, X., Dong, J., & Wu, B. (2025). Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers. Foods, 14(13). https://doi.org/10.3390/foods14132350

Maduforo, A., Ngene, B., Chikwendu, J., Okorie, J., Henry, C., Chikadibia, M., Aloysius-Maduforo, & Chinemerem, H. (2022). Effect of Processing Methods on Nutritional Quality of Solanum aethiopicum and Colocasia esculenta Leafy Vegetables Commonly. Retrieved November 27, 2025, from https://www.semanticscholar.org/paper/Effect-of-Processing-Methods-on-Nutritional-Quality-Maduforo-Ngene/cf713e950c32d477a6f0e4ea8bba7e1c13b10b59

Mohamed, N. (2025). Artificial intelligence and machine learning in cybersecurity: A deep dive into state-of-the-art techniques and future paradigms. Knowledge and Information Systems, 67(8), 6969–7055. https://doi.org/10.1007/s10115-025-02429-y

Mohseni, P., & Ghorbani, A. (2024). Exploring the synergy of artificial intelligence in microbiology: Advancements, challenges, and future prospects. Computational and Structural Biotechnology Reports, 1, 100005. https://doi.org/10.1016/j.csbr.2024.100005

Mulet-Cabero, A.-I., Torres-Gonzalez, M., Geurts, J., Rosales, A., Farhang, B., Marmonier, C., Ulleberg, E. K., Hocking, E., Neiderer, I., Gandolfi, I., Anderson, L., Brader, L., Vermaak, M., Cameron, M., Christensen, M. M., Haryono, R., Peters, S., Mulet-Cabero, A.-I., Torres-Gonzalez, M., … Peters, S. (2024). The Dairy Matrix: Its Importance, Definition, and Current Application in the Context of Nutrition and Health. Nutrients, 16(17). https://doi.org/10.3390/nu16172908

Nikzadfar, M., Rashvand, M., Zhang, H., Shenfield, A., Genovese, F., Altieri, G., Matera, A., Tornese, I., Laveglia, S., Paterna, G., Lovallo, C., Mammadov, O., Aykanat, B., Renzo, G. C. D., Nikzadfar, M., Rashvand, M., Zhang, H., Shenfield, A., Genovese, F., … Renzo, G. C. D. (2024). Hyperspectral Imaging Aiding Artificial Intelligence: A Reliable Approach for Food Qualification and Safety. Applied Sciences, 14(21). https://doi.org/10.3390/app14219821

Olaitan, O. F., Akatakpo, O. N., Victor, C. O., Emejulu, C. J., Ayoola, T. M., Olayiwola, D. E., & Ajibola, A. A. (2025). Secure and Resilient Industrial IoT Architectures for Smart Manufacturing: A Comprehensive Review. Journal of Engineering Research and Reports, 27(6), 331–344. https://doi.org/10.9734/jerr/2025/v27i61548

Olaitan, O. F., Ayeni, S. O., Olosunde, A., Okeke, F. C., Okonkwo, U. U., Ochieze, C. G., Chukwujama, O. V., Akatakpo, O. N., Olaitan, O. F., Ayeni, S. O., Olosunde, A., Okeke, F. C., Okonkwo, U. U., Ochieze, C. G., Chukwujama, O. V., & Akatakpo, O. N. (2025). Quantum Computing in Artificial Intelligence: A Review of Quantum Machine Learning Algorithms. Path of Science, 11(5), Article 5. https://doi.org/10.22178/pos.117-25

Olaoye, J., Bakare-Abidola, T., Chinaza, O. F., Jude, D., Saka, J. T., Babatunde, E. T., & Isiaka, S. A. (2024). Bioaccumulation and toxicological effects of heavy metals in wildlife: Implications for ecosystem health and human exposure. International Journal of Science, Architecture, Technology, and Environment, 1(8), 294–303. https://doi.org/10.63680/ijsate0325035.07

Olawale, F., Alake, S. E., Chandrashekar, R., Islam, P., Sutton, B., Chaffin, N., Ugo, C. H., Jin, J. B., Lightfoot, S., Debédat, J., Schilmiller, A., Chowanadisai, W., Knotts, T. A., Smith, B. J., & Lucas, E. A. (2025). Pinto Bean Supplementation Modulates Gut Microbiota and Improves Markers of Gut Integrity in a Mouse Model of Estrogen Deficiency. The Journal of Nutrition, S0022-3166(25)00431-6. https://doi.org/10.1016/j.tjnut.2025.07.008

Sanislav, T., Mois, G. D., Zeadally, S., Folea, S., Radoni, T. C., Al-Suhaimi, E. A., Sanislav, T., Mois, G. D., Zeadally, S., Folea, S., Radoni, T. C., & Al-Suhaimi, E. A. (2025). A Comprehensive Review on Sensor-Based Electronic Nose for Food Quality and Safety. Sensors, 25(14). https://doi.org/10.3390/s25144437

Taiwo, O. R., Onyeaka, H., Oladipo, E. K., Oloke, J. K., & Chukwugozie, D. C. (2024a). Advancements in Predictive Microbiology: Integrating New Technologies for Efficient Food Safety Models. International Journal of Microbiology, 2024, 6612162. https://doi.org/10.1155/2024/6612162

Taiwo, O. R., Onyeaka, H., Oladipo, E. K., Oloke, J. K., & Chukwugozie, D. C. (2024b). Advancements in Predictive Microbiology: Integrating New Technologies for Efficient Food Safety Models. International Journal of Microbiology, 2024(1), 6612162. https://doi.org/10.1155/2024/6612162

Tang, S., Li, P., Chen, S., Li, C., Zhang, L., & Zhong, N. (2025, November 27). Hyperspectral Imaging Combined with Convolutional Neural Network for Rapid and Accurate Evaluation of Tilapia Fillet Freshness. Spectroscopy Online. https://www.spectroscopyonline.com/view/hyperspectral-imaging-combined-with-convolutional-neural-network-for-rapid-and-accurate-evaluation-of-tilapia-fillet-freshness

Tarlak, F. (2023). The Use of Predictive Microbiology for the Prediction of the Shelf Life of Food Products. Foods, 12(24), 4461. https://doi.org/10.3390/foods12244461

Tarlak, F., Costa, J. C. C. P., Yucel, O., Tarlak, F., Costa, J. C. C. P., & Yucel, O. (2025). The Development of Machine Learning-Assisted Software for Predicting the Interaction Behaviours of Lactic Acid Bacteria and Listeria monocytogenes. Life, 15(2). https://doi.org/10.3390/life15020244

Ugo, C. H., Ekara, E. C., Chukwudi, O. C., Chiwenite, M. C., Osuji, R. C., Nnanna, G., & Onuorah, U. M. (2022). Knowledge, Attitude and Practices (KAP) of Preconceptional Folic Acid supplementation among pregnant women (18-45years) attending antenatal clinic in Alex Ekwueme Federal University Teaching hospital Abakaliki, Ebonyi State, Nigeria. Saudi Journal of Medicine, 7(9), 485–500. https://doi.org/10.36348/sjm.2022.v07i09.006

Ugo, C. H., Eme, P. E., Eze, P. N., Obajaja, H. A., & Omeili, A. E. (2024). Chemical assessment of the quality of palm oil produced and sold in major markets in Orlu zone in Imo state, Nigeria. World Journal of Advanced Research and Reviews, 21(2), 1025–1033. https://doi.org/10.30574/wjarr.2024.21.2.0529

Ugo, C. H., Nnaemeka, M., Arene, E. C., Anyadike, I. K., Opara, S. O., Eze, P. N., Osuji, R. C., & Ohiri, Z. C. (2022). Nutritional Composition, Bioavailability, Medicinal Functions and Uses of Turmeric: A Review. Scholars Bulletin, 8(8), 248–260. https://doi.org/10.36348/sb.2022.v08i08.003

Wu, X., Yuan, Z., Gao, S., Zhang, X., El-Mesery, H. S., Lu, W., Dai, X., Xu, R., Wu, X., Yuan, Z., Gao, S., Zhang, X., El-Mesery, H. S., Lu, W., Dai, X., & Xu, R. (2025). Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance. Foods, 14(17). https://doi.org/10.3390/foods14173021

Yang, H., Jiao, W., Zouyi, L., Diao, H., & Xia, S. (2025). Artificial intelligence in the food industry: Innovations and applications. Discover Artificial Intelligence, 5(1), 60. https://doi.org/10.1007/s44163-025-00296-8

Yin, B., Tan, G., Muhammad, R., Liu, J., Bi, J., Yin, B., Tan, G., Muhammad, R., Liu, J., & Bi, J. (2025). AI-Powered Innovations in Food Safety from Farm to Fork. Foods, 14(11). https://doi.org/10.3390/foods14111973

Zhang, H., Sun, Z., Sun, K., Liu, Q., Chu, W., Fu, L., Dai, D., Liang, Z., & Lin, C.-T. (2025). Electrochemical Impedance Spectroscopy-Based Biosensors for Label-Free Detection of Pathogens. Biosensors, 15(7), 443. https://doi.org/10.3390/bios15070443

Downloads

Views

0

Downloads

0