Article section
Dark Data in Business Intelligence: A Systematic Review of Challenges, Opportunities, and Value Creation Potential
Abstract
An increasingly important yet underexplored aspect of Business Intelligence (BI) is dark data the massive volume of data acquired by firms but left unanalyzed. Hidden assets include textual documents, IoT logs, photos, audio records, and hybrid datasets, which often constitute the majority of company data. This review examines the significance of dark data, the barriers businesses face in unlocking its value, and the technological advancements that are gradually revealing its potential. The paper highlights how organizations can use dark data to improve decision-making, enhance operational efficiency, and gain a competitive edge. Key challenges such as poor data quality, integration difficulties, and high processing costs currently hinder the systematic use of dark data. However, advancements in natural language processing, machine learning, computer vision, knowledge graphs, and synthetic data production offer promising avenues for overcoming these obstacles. Case studies in manufacturing, banking, and retail demonstrate how dark data can drive predictive maintenance, fraud detection, and personalized consumer engagement. The review also explores the ethical and legal implications surrounding the use of dark data, particularly in relation to privacy, bias, and regulatory compliance. The paper emphasizes the strategic imperative for organizations to adopt a proactive, ethically informed approach to dark data, integrating advanced technologies and robust governance frameworks to transform hidden information into actionable insights that drive sustainable business value.
Keywords:
Artificial Intelligence (AI) Business Intelligence (BI) Dark Data Data Governance Ethical Data Management Unstructured Data Analytics
Article information
Journal
Journal of Economics, Business, and Commerce
Volume (Issue)
2(2), (2025)
Pages
135-142
Published
Copyright
Copyright (c) 2025 Ololade Funke Olaitan, Temitope Anthony Adebanjo, Loveth Itohan Obozokhai, Ambrose Nwawuweneonye Iwerumoh, Isaac Oluwaseyi Balogun, Damilola Ayodele Ojo (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Afzal, S., Ghani, S., Hittawe, M. M., Rashid, S. F., Knio, O. M., Hadwiger, M., & Hoteit, I. (2023). Visualization and visual analytics approaches for image and video datasets: A survey. ACM Transactions on Interactive Intelligent Systems, 13(1), 1-41. https://doi.org/10.1145/3576935
Ahuja, A. S. (2019). The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, 7, e7702. https://doi.org/10.7717/peerj.7702
Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13(6), 951. https://doi.org/10.3390/jpm13060951
Aminzadeh, A., Sattarpanah Karganroudi, S., Majidi, S., Dabompre, C., Azaiez, K., Mitride, C., & Sénéchal, E. (2025). A Machine Learning Implementation to Predictive Maintenance and Monitoring of Industrial Compressors. Sensors, 25(4), 1006. https://doi.org/10.3390/s25041006
Ayaz, O., Tabaghdehi, S. A. H., Rosli, A., & Tambay, P. (2025). Ethical implications of employee and customer digital footprint: SMEs perspective. Journal of Business Research, 188, 115088. https://doi.org/10.1016/j.jbusres.2024.115088
Bresciani, S., Ciampi, F., Meli, F., & Ferraris, A. (2021). Using big data for co-innovation processes: Mapping the field of data-driven innovation, proposing theoretical developments and providing a research agenda. International Journal of Information Management, 60, 102347. https://doi.org/10.1016/j.ijinfomgt.2021.102347
Chiruvella, V., & Guddati, A. K. (2021). Ethical Issues in Patient Data Ownership. Interactive Journal of Medical Research, 10(2), e22269. https://doi.org/10.2196/22269
Coecke, B., Felice, G. de, Meichanetzidis, K., & Toumi, A. (2020). Foundations for Near-Term Quantum Natural Language Processing (No. arXiv:2012.03755). arXiv. https://doi.org/10.48550/arXiv.2012.03755
Dichev, A., Zarkova, S., & Angelov, P. (2025). Machine Learning as a Tool for Assessment and Management of Fraud Risk in Banking Transactions. Journal of Risk and Financial Management, 18(3), 130. https://doi.org/10.3390/jrfm18030130
Eke, D., & Stahl, B. (2024). Ethics in the Governance of Data and Digital Technology: An Analysis of European Data Regulations and Policies. Digital Society, 3(1), 11. https://doi.org/10.1007/s44206-024-00101-6
Fagbenle, E. (2025). Leveraging predictive analytics to optimize healthcare delivery, resource allocation, and patient outcome forecasting systems. International Journal of Research Publication and Reviews, 6(4), 6224–6239. https://doi.org/10.55248/gengpi.6.0425.14143
George, D. A. S., Dr.V.Sujatha, George, A. S. H., & Dr.T.Baskar. (2023). Bringing Light to Dark Data: A Framework for Unlocking Hidden Business Value. Partners Universal International Innovation Journal (PUIIJ), 01(04), 35–60. https://doi.org/10.5281/zenodo.8262384
Herhausen, D., Ludwig, S., Abedin, E., Haque, N. U., & de Jong, D. (2025). From words to insights: Text analysis in business research. Journal of Business Research, 198, 115491. https://doi.org/10.1016/j.jbusres.2025.115491
Hoofnagle, C. J., Sloot, B. van der, & Borgesius, F. Z. (2019). The European Union general data protection regulation: What it is and what it means*. Information & Communications Technology Law. https://www.tandfonline.com/doi/abs/10.1080/13600834.2019.1573501
Houssein, E. H., Gamal, A. M., Younis, E. M. G., & Mohamed, E. (2025). Explainable artificial intelligence for medical imaging systems using deep learning: A comprehensive review. Cluster Computing, 28(7), 469. https://doi.org/10.1007/s10586-025-05281-5
Kgakatsi, M., Galeboe, O. P., Molelekwa, K. K., & Thango, B. A. (2024). The Impact of Big Data on SME Performance: A Systematic Review. Businesses, 4(4), 632–695. https://doi.org/10.3390/businesses4040038
Kong, H.-J. (2019). Managing Unstructured Big Data in Healthcare System. Healthcare Informatics Research, 25(1), 1–2. https://doi.org/10.4258/hir.2019.25.1.1
Lawal, O., Oyebamiji, H. O., Kelenna, I. J., Chioma, F. J., Oyefeso, E., Adeyemi, B. I., Foster-Pagaebi, E., & Moses, E. F. (2025). A Review on Usage of Digital Health Literacy to Combat Antibiotic Misuse and Misinformation in Nigeria: Review Article. Journal of Pharma Insights and Research, 3(2), Article 2. https://doi.org/10.69613/dja1jc18
Le, T. D., Le-Dinh, T., & Uwizeyemungu, S. (2025). Cybersecurity Analytics for the Enterprise Environment: A Systematic Literature Review. Electronics, 14(11), 2252. https://doi.org/10.3390/electronics14112252
Li, H., Lu, Y., & Zhu, H. (2024). Multi-Modal Sentiment Analysis Based on Image and Text Fusion Based on Cross-Attention Mechanism. Electronics, 13(11), 2069. https://doi.org/10.3390/electronics13112069
Madanchian, M. (2024). The Impact of Artificial Intelligence Marketing on E-Commerce Sales. Systems, 12(10), 429. https://doi.org/10.3390/systems12100429
Mansouri, T., Moghadam, M. R. S., Monshizadeh, F., & Zareravasan, A. (2021). IoT Data Quality Issues and Potential Solutions: A Literature Review (No. arXiv:2103.13303). arXiv. https://doi.org/10.48550/arXiv.2103.13303
Nwosu, N. T., Babatunde, S. O., & Ijomah, T. (2024). Enhancing customer experience and market penetration through advanced data analytics in the health industry. World Journal of Advanced Research and Reviews, 22(3), 1157–1170. https://doi.org/10.30574/wjarr.2024.22.3.1810
Olaitan, O. F., Akatakpo, O. N., Victor, C. O., Emejulu, C. J., Ayoola, T. M., Olayiwola, D. E., & Ajibola, A. A. (2025). Secure and Resilient Industrial IoT Architectures for Smart Manufacturing: A Comprehensive Review. Journal of Engineering Research and Reports, 27(6), 331–344. https://doi.org/10.9734/jerr/2025/v27i61548
Olaitan, O. F., Ayeni, S. O., Olosunde, A., Okeke, F. C., Okonkwo, U. U., Ochieze, C. G., Chukwujama, O. V., Akatakpo, O. N., Olaitan, O. F., Ayeni, S. O., Olosunde, A., Okeke, F. C., Okonkwo, U. U., Ochieze, C. G., Chukwujama, O. V., & Akatakpo, O. N. (2025). Quantum Computing in Artificial Intelligence: A Review of Quantum Machine Learning Algorithms. Path of Science, 11(5), Article 5. https://doi.org/10.22178/pos.117-25
Olaitan, O. F., Okoh, I., Onuche, P. U. O., Alabi, J. O., Sone, P. E., Kalyanaraman, K. K., Ukanu, J., & Arthur, C. (2025). The Role of Organic Solar Cells in U.S. Energy Transition: Technical Advances, Deployment Challenges, and Policy Pathways. Journal of Environment, Climate, and Ecology, 2(1), 49–60. https://doi.org/10.69739/jece.v2i1.546
Pancić, M., Ćućić, D., & Serdarušić, H. (2023). Business Intelligence (BI) in Firm Performance: Role of Big Data Analytics and Blockchain Technology. Economies, 11(3), 99. https://doi.org/10.3390/economies11030099
Patel, P. (2024). Synthetic data. Business Information Review. https://doi.org/10.1177/02663821241231101
Płaza, M., Kazała, R., Koruba, Z., Kozłowski, M., Lucińska, M., Sitek, K., & Spyrka, J. (2022). Emotion Recognition Method for Call/Contact Centre Systems. Applied Sciences, 12(21), 10951. https://doi.org/10.3390/app122110951
Schembera, B., & Durán, J. M. (2020). Dark Data as the New Challenge for Big Data Science and the Introduction of the Scientific Data Officer. Philosophy & Technology, 33(1), 93–115. https://doi.org/10.1007/s13347-019-00346-x
Sedlakova, J., Daniore, P., Horn Wintsch, A., Wolf, M., Stanikic, M., Haag, C., Sieber, C., Schneider, G., Staub, K., Alois Ettlin, D., Grübner, O., Rinaldi, F., & von Wyl, V. (2023). Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review. PLOS Digital Health, 2(10), e0000347. https://doi.org/10.1371/journal.pdig.0000347
Shah, S., Ghomeshi, H., Vakaj, E., Cooper, E., & Fouad, S. (2023). A review of natural language processing in contact centre automation. Pattern Analysis and Applications, 26(3), 823–846. https://doi.org/10.1007/s10044-023-01182-8
Shahid, N. U., & Sheikh, N. J. (2021). Impact of Big Data on Innovation, Competitive Advantage, Productivity, and Decision Making: Literature Review. Open Journal of Business and Management, 9(2), 586–617. https://doi.org/10.4236/ojbm.2021.92032
Sharma, K., Shetty, A., Jain, A., & Dhanare, R. K. (2021). A Comparative Analysis on Various Business Intelligence (BI), Data Science and Data Analytics Tools. 2021 International Conference on Computer Communication and Informatics (ICCCI), 1–11. https://doi.org/10.1109/ICCCI50826.2021.9402226
Siddique, S., Haque, M. A., George, R., Gupta, K. D., Gupta, D., & Faruk, M. J. H. (2024). Survey on Machine Learning Biases and Mitigation Techniques. Digital, 4(1), 1–68. https://doi.org/10.3390/digital4010001
Stefanovic, N., Radenkovic, M., Bogdanovic, Z., Plasic, J., & Gaborovic, A. (2025). Adaptive Cloud-Based Big Data Analytics Model for Sustainable Supply Chain Management. Sustainability, 17(1), 354. https://doi.org/10.3390/su17010354
Theodos, K., & Sittig, S. (2020). Health Information Privacy Laws in the Digital Age: HIPAA Doesn’t Apply. Perspectives in Health Information Management, 18(1), 1l.
Williamson, S. M., & Prybutok, V. (2024). Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Applied Sciences, 14(2), 675. https://doi.org/10.3390/app14020675