Research Article

Dark Data in Business Intelligence: A Systematic Review of Challenges, Opportunities, and Value Creation Potential

Authors

  • Ololade Funke Olaitan David Eccles School of Business, information Systems, University of Utah, USA

    ololadefunke@gmail.com

  • Temitope Anthony Adebanjo Department of Marketing and Analytics, Regenesys Education, Johannesburg, South Africa
  • Loveth Itohan Obozokhai Robinson College of Business, Georgia State University, Atlanta, Georgia, USA https://orcid.org/0009-0008-9231-2787
  • Ambrose Nwawuweneonye Iwerumoh Department of Quality Management, Rushford Business School, Lucerne, Switzerland https://orcid.org/0009-0004-6987-7596
  • Isaac Oluwaseyi Balogun Robinson College of Business, Georgia State University, Atlanta, Georgia, USA https://orcid.org/0009-0000-6767-3582
  • Damilola Ayodele Ojo College of Business, Missouri State University, Springfield, Missouri, USA https://orcid.org/0009-0007-7432-3792

Abstract

An increasingly important yet underexplored aspect of Business Intelligence (BI) is dark data the massive volume of data acquired by firms but left unanalyzed. Hidden assets include textual documents, IoT logs, photos, audio records, and hybrid datasets, which often constitute the majority of company data. This review examines the significance of dark data, the barriers businesses face in unlocking its value, and the technological advancements that are gradually revealing its potential. The paper highlights how organizations can use dark data to improve decision-making, enhance operational efficiency, and gain a competitive edge. Key challenges such as poor data quality, integration difficulties, and high processing costs currently hinder the systematic use of dark data. However, advancements in natural language processing, machine learning, computer vision, knowledge graphs, and synthetic data production offer promising avenues for overcoming these obstacles. Case studies in manufacturing, banking, and retail demonstrate how dark data can drive predictive maintenance, fraud detection, and personalized consumer engagement. The review also explores the ethical and legal implications surrounding the use of dark data, particularly in relation to privacy, bias, and regulatory compliance. The paper emphasizes the strategic imperative for organizations to adopt a proactive, ethically informed approach to dark data, integrating advanced technologies and robust governance frameworks to transform hidden information into actionable insights that drive sustainable business value.

Keywords:

Artificial Intelligence (AI) Business Intelligence (BI) Dark Data Data Governance Ethical Data Management Unstructured Data Analytics

Article information

Journal

Journal of Economics, Business, and Commerce

Volume (Issue)

2(2), (2025)

Pages

135-142

Published

10-10-2025

How to Cite

Olaitan, O. F., Adebanjo, T. A., Obozokhai, L. I., Iwerumoh, A. N., Balogun, I. O., & Ojo, D. A. (2025). Dark Data in Business Intelligence: A Systematic Review of Challenges, Opportunities, and Value Creation Potential. Journal of Economics, Business, and Commerce, 2(2), 135-142. https://doi.org/10.69739/jebc.v2i2.1000

References

Afzal, S., Ghani, S., Hittawe, M. M., Rashid, S. F., Knio, O. M., Hadwiger, M., & Hoteit, I. (2023). Visualization and visual analytics approaches for image and video datasets: A survey. ACM Transactions on Interactive Intelligent Systems, 13(1), 1-41. https://doi.org/10.1145/3576935

Ahuja, A. S. (2019). The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, 7, e7702. https://doi.org/10.7717/peerj.7702

Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13(6), 951. https://doi.org/10.3390/jpm13060951

Aminzadeh, A., Sattarpanah Karganroudi, S., Majidi, S., Dabompre, C., Azaiez, K., Mitride, C., & Sénéchal, E. (2025). A Machine Learning Implementation to Predictive Maintenance and Monitoring of Industrial Compressors. Sensors, 25(4), 1006. https://doi.org/10.3390/s25041006

Ayaz, O., Tabaghdehi, S. A. H., Rosli, A., & Tambay, P. (2025). Ethical implications of employee and customer digital footprint: SMEs perspective. Journal of Business Research, 188, 115088. https://doi.org/10.1016/j.jbusres.2024.115088

Bresciani, S., Ciampi, F., Meli, F., & Ferraris, A. (2021). Using big data for co-innovation processes: Mapping the field of data-driven innovation, proposing theoretical developments and providing a research agenda. International Journal of Information Management, 60, 102347. https://doi.org/10.1016/j.ijinfomgt.2021.102347

Chiruvella, V., & Guddati, A. K. (2021). Ethical Issues in Patient Data Ownership. Interactive Journal of Medical Research, 10(2), e22269. https://doi.org/10.2196/22269

Coecke, B., Felice, G. de, Meichanetzidis, K., & Toumi, A. (2020). Foundations for Near-Term Quantum Natural Language Processing (No. arXiv:2012.03755). arXiv. https://doi.org/10.48550/arXiv.2012.03755

Dichev, A., Zarkova, S., & Angelov, P. (2025). Machine Learning as a Tool for Assessment and Management of Fraud Risk in Banking Transactions. Journal of Risk and Financial Management, 18(3), 130. https://doi.org/10.3390/jrfm18030130

Eke, D., & Stahl, B. (2024). Ethics in the Governance of Data and Digital Technology: An Analysis of European Data Regulations and Policies. Digital Society, 3(1), 11. https://doi.org/10.1007/s44206-024-00101-6

Fagbenle, E. (2025). Leveraging predictive analytics to optimize healthcare delivery, resource allocation, and patient outcome forecasting systems. International Journal of Research Publication and Reviews, 6(4), 6224–6239. https://doi.org/10.55248/gengpi.6.0425.14143

George, D. A. S., Dr.V.Sujatha, George, A. S. H., & Dr.T.Baskar. (2023). Bringing Light to Dark Data: A Framework for Unlocking Hidden Business Value. Partners Universal International Innovation Journal (PUIIJ), 01(04), 35–60. https://doi.org/10.5281/zenodo.8262384

Herhausen, D., Ludwig, S., Abedin, E., Haque, N. U., & de Jong, D. (2025). From words to insights: Text analysis in business research. Journal of Business Research, 198, 115491. https://doi.org/10.1016/j.jbusres.2025.115491

Hoofnagle, C. J., Sloot, B. van der, & Borgesius, F. Z. (2019). The European Union general data protection regulation: What it is and what it means*. Information & Communications Technology Law. https://www.tandfonline.com/doi/abs/10.1080/13600834.2019.1573501

Houssein, E. H., Gamal, A. M., Younis, E. M. G., & Mohamed, E. (2025). Explainable artificial intelligence for medical imaging systems using deep learning: A comprehensive review. Cluster Computing, 28(7), 469. https://doi.org/10.1007/s10586-025-05281-5

Kgakatsi, M., Galeboe, O. P., Molelekwa, K. K., & Thango, B. A. (2024). The Impact of Big Data on SME Performance: A Systematic Review. Businesses, 4(4), 632–695. https://doi.org/10.3390/businesses4040038

Kong, H.-J. (2019). Managing Unstructured Big Data in Healthcare System. Healthcare Informatics Research, 25(1), 1–2. https://doi.org/10.4258/hir.2019.25.1.1

Lawal, O., Oyebamiji, H. O., Kelenna, I. J., Chioma, F. J., Oyefeso, E., Adeyemi, B. I., Foster-Pagaebi, E., & Moses, E. F. (2025). A Review on Usage of Digital Health Literacy to Combat Antibiotic Misuse and Misinformation in Nigeria: Review Article. Journal of Pharma Insights and Research, 3(2), Article 2. https://doi.org/10.69613/dja1jc18

Le, T. D., Le-Dinh, T., & Uwizeyemungu, S. (2025). Cybersecurity Analytics for the Enterprise Environment: A Systematic Literature Review. Electronics, 14(11), 2252. https://doi.org/10.3390/electronics14112252

Li, H., Lu, Y., & Zhu, H. (2024). Multi-Modal Sentiment Analysis Based on Image and Text Fusion Based on Cross-Attention Mechanism. Electronics, 13(11), 2069. https://doi.org/10.3390/electronics13112069

Madanchian, M. (2024). The Impact of Artificial Intelligence Marketing on E-Commerce Sales. Systems, 12(10), 429. https://doi.org/10.3390/systems12100429

Mansouri, T., Moghadam, M. R. S., Monshizadeh, F., & Zareravasan, A. (2021). IoT Data Quality Issues and Potential Solutions: A Literature Review (No. arXiv:2103.13303). arXiv. https://doi.org/10.48550/arXiv.2103.13303

Nwosu, N. T., Babatunde, S. O., & Ijomah, T. (2024). Enhancing customer experience and market penetration through advanced data analytics in the health industry. World Journal of Advanced Research and Reviews, 22(3), 1157–1170. https://doi.org/10.30574/wjarr.2024.22.3.1810

Olaitan, O. F., Akatakpo, O. N., Victor, C. O., Emejulu, C. J., Ayoola, T. M., Olayiwola, D. E., & Ajibola, A. A. (2025). Secure and Resilient Industrial IoT Architectures for Smart Manufacturing: A Comprehensive Review. Journal of Engineering Research and Reports, 27(6), 331–344. https://doi.org/10.9734/jerr/2025/v27i61548

Olaitan, O. F., Ayeni, S. O., Olosunde, A., Okeke, F. C., Okonkwo, U. U., Ochieze, C. G., Chukwujama, O. V., Akatakpo, O. N., Olaitan, O. F., Ayeni, S. O., Olosunde, A., Okeke, F. C., Okonkwo, U. U., Ochieze, C. G., Chukwujama, O. V., & Akatakpo, O. N. (2025). Quantum Computing in Artificial Intelligence: A Review of Quantum Machine Learning Algorithms. Path of Science, 11(5), Article 5. https://doi.org/10.22178/pos.117-25

Olaitan, O. F., Okoh, I., Onuche, P. U. O., Alabi, J. O., Sone, P. E., Kalyanaraman, K. K., Ukanu, J., & Arthur, C. (2025). The Role of Organic Solar Cells in U.S. Energy Transition: Technical Advances, Deployment Challenges, and Policy Pathways. Journal of Environment, Climate, and Ecology, 2(1), 49–60. https://doi.org/10.69739/jece.v2i1.546

Pancić, M., Ćućić, D., & Serdarušić, H. (2023). Business Intelligence (BI) in Firm Performance: Role of Big Data Analytics and Blockchain Technology. Economies, 11(3), 99. https://doi.org/10.3390/economies11030099

Patel, P. (2024). Synthetic data. Business Information Review. https://doi.org/10.1177/02663821241231101

Płaza, M., Kazała, R., Koruba, Z., Kozłowski, M., Lucińska, M., Sitek, K., & Spyrka, J. (2022). Emotion Recognition Method for Call/Contact Centre Systems. Applied Sciences, 12(21), 10951. https://doi.org/10.3390/app122110951

Schembera, B., & Durán, J. M. (2020). Dark Data as the New Challenge for Big Data Science and the Introduction of the Scientific Data Officer. Philosophy & Technology, 33(1), 93–115. https://doi.org/10.1007/s13347-019-00346-x

Sedlakova, J., Daniore, P., Horn Wintsch, A., Wolf, M., Stanikic, M., Haag, C., Sieber, C., Schneider, G., Staub, K., Alois Ettlin, D., Grübner, O., Rinaldi, F., & von Wyl, V. (2023). Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review. PLOS Digital Health, 2(10), e0000347. https://doi.org/10.1371/journal.pdig.0000347

Shah, S., Ghomeshi, H., Vakaj, E., Cooper, E., & Fouad, S. (2023). A review of natural language processing in contact centre automation. Pattern Analysis and Applications, 26(3), 823–846. https://doi.org/10.1007/s10044-023-01182-8

Shahid, N. U., & Sheikh, N. J. (2021). Impact of Big Data on Innovation, Competitive Advantage, Productivity, and Decision Making: Literature Review. Open Journal of Business and Management, 9(2), 586–617. https://doi.org/10.4236/ojbm.2021.92032

Sharma, K., Shetty, A., Jain, A., & Dhanare, R. K. (2021). A Comparative Analysis on Various Business Intelligence (BI), Data Science and Data Analytics Tools. 2021 International Conference on Computer Communication and Informatics (ICCCI), 1–11. https://doi.org/10.1109/ICCCI50826.2021.9402226

Siddique, S., Haque, M. A., George, R., Gupta, K. D., Gupta, D., & Faruk, M. J. H. (2024). Survey on Machine Learning Biases and Mitigation Techniques. Digital, 4(1), 1–68. https://doi.org/10.3390/digital4010001

Stefanovic, N., Radenkovic, M., Bogdanovic, Z., Plasic, J., & Gaborovic, A. (2025). Adaptive Cloud-Based Big Data Analytics Model for Sustainable Supply Chain Management. Sustainability, 17(1), 354. https://doi.org/10.3390/su17010354

Theodos, K., & Sittig, S. (2020). Health Information Privacy Laws in the Digital Age: HIPAA Doesn’t Apply. Perspectives in Health Information Management, 18(1), 1l.

Williamson, S. M., & Prybutok, V. (2024). Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Applied Sciences, 14(2), 675. https://doi.org/10.3390/app14020675

Downloads

Views

0

Downloads

0