Article section
Accounting and Artificial Intelligence: A Systematic Review of the Literature on the Technological Impacts in the Accounting Field
Abstract
The incorporation of artificial intelligence (AI) has redefined the boundaries of accounting by shifting the focus from operational tasks to data-driven cognitive processes and strategic decisions. The general objective of this study was to analyze the impacts of artificial intelligence on contemporary accounting, specifically seeking to: (i) identify the main domains of application of AI in accounting practice; (ii) discuss the challenges and limitations associated with its adoption in organizational and professional contexts; and (iii) examine the implications of intelligent automation on human competencies, professional ethics, and the training of new accountants. The systematic literature review (RSL) technique was employed, utilizing 102 peer-reviewed publications published from 2020 to 2025 in the Web of Science database, of which 26 were thoroughly studied and 12 were directly pertinent to the research aims. The results indicate that AI transcends automation by transforming accounting into a strategic function, increasing the efficiency of processes, the quality of decisions, and the reliability of information. However, its adoption imposes ethical, technical, and regulatory challenges, such as algorithmic biases, governance gaps, and the need for continuous reskilling. In addition, automation redefines the accountant's profile by requiring analytical thinking, critical judgment, and mastery of emerging technologies. Thus, it is concluded that artificial intelligence reconfigures the epistemological and institutional logic of accounting, demanding new normative structures, educational strategies, and governance models capable of guiding its application in an ethical, efficient, and socially responsible way.
Keywords:
Accounting Algorithms Artificial Intelligence Automation Ethics Innovation Systematic Review
Article information
Journal
Journal of Economics, Business, and Commerce
Volume (Issue)
2(2), (2025)
Pages
150-157
Published
Copyright
Copyright (c) 2025 Silvio da Conceição Barbosa, Lucas da Cunha Lins, Ana Claudia Mendes Coutinho Leandro, Daniela Oliveira Neves, Fábio André De Farias Vilhena, Francinária Fernandes Santos Cotrim Souza, Lídia Conceição Barros, Lucas da Cunha Lins, Paulo Roberto de Araujo, Tiago Luz de Oliveira, Edson Nogueira da Silva (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
AlSaad, R., Abusarhan, L., Odeh, N., Abd-Alrazaq, A., Choucair, F., Zegour, R., ... & Sheikh, J. (2025). Deep learning applications for human embryo assessment using time-lapse imaging: scoping review. Frontiers in Reproductive Health, 7, 1549642. https://doi.org/10.3389/frph.2025.1549642
Ao, S.-I., Hurwitz, M., & Palade, V. (2025). Cognitive Computing and Business Intelligence Applications in Accounting, Finance and Management. Big Data and Cognitive Computing, 9(3). https://doi.org/10.3390/bdcc9030054
Banta, V.-C., Rindasu, S.-M., Tanasie, A., & Cojocaru, D. (2022). Artificial Intelligence in the Accounting of International Businesses: A Perception-Based Approach. Sustainability, 14(11). https://doi.org/10.3390/su14116632
Barros, R. I. M., Campana, C. A., Vilhena, F. A. F., Pereira, G. A. B., Ferreira, H. S., Fagundes, J. M., Oliveira, T. L., Ricardo, L. O., & Silva, E. N. (2025). The rapid digital transformation and the need for new alignments in accounting practices. American Journal of Financial Technology and Innovation, 3(1), 109-114.
Bellucci, M., Bianchi, D. C., & Manetti, G. (2022). Blockchain in accounting practice and research: Systematic literature review. Meditari Accountancy Research, 30(7), 121–146. https://doi.org/10.1108/MEDAR-10-2021-1477
Bou Reslan, F. & Jabbour Al Maalouf, N. (2024). Assessing the Transformative Impact of AI Adoption on Efficiency, Fraud Detection, and Skill Dynamics in Accounting Practices. Journal of Risk and Financial Management, 17(12), 577. https://doi.org/10.3390/jrfm17120577.
Butler, N., & Spoelstra, S. (2025). Algorithmic management learning. Management Learning, 56(1), 132-139. https://doi.org/10.1177/13505076241279062
Campana, C. A., Costa Neto, A., Carmo, A. P. F., Printes da Silva, A. T., Santos, E. M., Oliveira, E. D., Ferreira, H. S., Lima, G. S., Silva, J. A., Fagundes, J. M., Beker, J. C., Sousa, M. Q., Rocha, N. L. S., & Silva, E. N. (2025). A influência da contabilidade ambiental no desempenho sustentável das empresas: uma revisão sistemática da literatura. Contribuciones a Las Ciencias Sociales, 18(3), 1-17.
Dong, M. M., Stratopoulos, T. C., & Wang, V. X. (2024). A scoping review of ChatGPT research in accounting and finance. International Journal of Accounting Information Systems, 55. https://doi.org/10.1016/j.accinf.2024.100715
Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2024). GPTs are GPTs: Labor market impact potential of LLMs. Science, 384(6702), 1306–1308. https://doi.org/10.1126/science.adj0998
Filippi, E., Bannò, M., & Trento, S. (2023). Automation technologies and their impact on employment: A review, synthesis and future research agenda. Technological Forecasting and Social Change, 191, 122448. https://doi.org/10.1016/j.techfore.2023.122448
Garanina, T., Ranta, M., & Dumay, J. (2022). Blockchain in accounting research: Current trends and emerging topics. Accounting Auditing & Accountability Journal, 35(7, SI), 1507–1533. https://doi.org/10.1108/AAAJ-10-2020-4991
Han, H., Shiwakoti, R. K., Jarvis, R., Mordi, C., & Botchie, D. (2023). Accounting and auditing with blockchain technology and artificial Intelligence: A literature review. International Journal of Accounting Information Systems, 48. https://doi.org/10.1016/j.accinf.2022.100598
Londono-Cardozo, J. (2025). The evolution of accounting practice in the age of artificial intelligence: Challenges and opportunities for higher education in public accounting. Cuadernos De Administracion-Universidad Del Valle, 41(81). https://doi.org/10.25100/cdea.v41i81.13755
Murikah, W., Nthenge, J. K., & Musyoka, F. M. (2024). Bias and ethics of AI systems applied in auditing—A systematic review. Scientific African, 25. https://doi.org/10.1016/j.sciaf.2024.e02281
Murphy, B., Feeney, O., Rosati, P., & Lynn, T. (2024). Exploring accounting and AI using topic modelling. International Journal of Accounting Information Systems, 55, Article 100709. https://doi.org/10.1016/j.accinf.2024.100709
Neto, M. S., et al. (2024). Automation in public sector payment workflows: RPA as a driver of process standardization and human resource reallocation. IOSR Journal of Business and Management, 26(5), 77–85.
Organisation for Economic Co-operation and Development (OCDE) — relatório Algorithmic Management in the Workplace (2025).
Peng, Y., Ahmad, S. F., Ahmad, A. Y. A. B., Al Shaikh, M. S., Daoud, M. K., & Alhamdi, F. M. H. (2023). Riding the Waves of Artificial Intelligence in Advancing Accounting and Its Implications for Sustainable Development Goals. Sustainability, 15(19). https://doi.org/10.3390/su151914165
Santoni de Sio, F. (2024). Artificial intelligence and the future of work: Mapping the ethical issues. The Journal of Ethics, 28(3), 407-427. https://doi.org/10.1007/s10892-024-09493-6
Silva, E. N., Veloso, C. C. F., E Silva, E. F., Abreu Silva, F. D., Pinho De Matos, F. R., Do Nascimento, J. W., Da Cunha Lins, L., Soares, L., Amaral De Castro, M. A., & Freitas, V. M. S. (2024). Innovation in the evolution of accounting: A study of accounting transformation in the digital age. IOSR Journal of Business and Management, 26(8), 9–15.
Silva, M. C. J., Carmo, A. P. F., Silva, A. S., Teixeira, A. R., Campana, C. A., Sousa, B. H. A. B., Franco, D. M., Silva, E. N., Santos, E. M., Vilhena, F. A. F., Lima, G. S., Ferreira, H. S., Nascimento, J. W., Neto, M. S., & Barros, R. I. M. (2025). Inovação na auditoria contábil: uma análise bibliométrica das tecnologias emergentes. IOSR Journal of Business and Management, 27(1), 6–11.
Sullivan, R., Veen, A., & Riemer, K. (2024). Furthering engaged algorithmic management research: Surfacing foundational positions through a hermeneutic literature analysis. Information and Organization, 34(4), 100528. https://doi.org/10.1016/j.infoandorg.2024.100528
Tavares, M. C., Azevedo, G., Marques, R. P., & Bastos, M. A. (2023). Challenges of education in the accounting profession in the Era 5.0: A systematic review. Cogent Business & Management, 10(2). https://doi.org/10.1080/23311975.2023.2220198
Tiron-Tudor, A., Dontu, A. N., & Bresfelean, V. P. (2022). Emerging Technologies’ Contribution to the Digital Transformation in Accountancy Firms. Electronics, 11(22). https://doi.org/10.3390/electronics11223818
Tranfield, D., Denyer, D., & Smart, P. (2003). Toward a methodology for developing evidence‐informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
Valtonen, A., Saunila, M., Ukko, J., Treves, L., & Ritala, P. (2025). AI and employee wellbeing in the workplace: An empirical study. Journal of Business Research, 199, 115584. https://doi.org/10.1016/j.jbusres.2025.115584
Wassie, F. A., & Lakatos, L. P. (2024). Artificial intelligence and the future of the internal audit function. Humanities & Social Sciences Communications, 11(1). https://doi.org/10.1057/s41599-024-02905-w
Zhang, M. M., Cooke, F. L., Ahlstrom, D., & McNeil, N. (2025). The Rise of Algorithmic Management and Implications for Work and Organisations. New Technology, Work and Employment. https://doi.org/10.1111/ntwe.12343
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline