Article section
Genotype-by-Environment Interactions in Transgenic Crops: A Critical Review of Gene Function Validation under Variable Agronomic Conditions
Abstract
Genotype-by-environment (G×E) interactions frequently derail transgenic crops that excel under controlled conditions. Abiotic stress, soil chemistry, and photoperiod can suppress promoters, destabilize transcripts, or misfold proteins, reshaping phenotypes across locations. Literature from the past two decades reveals recurring patterns: Bt Cry toxins lose potency during drought and heat; OsTZF5 rice yields rise only within moderate moisture deficits; safe-harbor insertions and stress-inducible promoters reduce but do not eliminate variability. Contemporary toolkits, AMMI and GGE biplots, UAV phenomics, multi-omics tracking, and crop simulators detect interaction signals earlier, while machine-learning models direct trials toward environments with high crossover risk. A staged validation pipeline is proposed: factorial stress screens, multi-environment trials, molecular bookkeeping, data integration, and iterative redesign through predictive modeling. Environment-responsive constructs tested in this framework produce evidence that satisfies regulatory comparators, improves deployment targeting, and strengthens confidence that laboratory performance will translate to climate-volatile farms.
Keywords:
Agronomic Conditions Gene Function Validation Genotype Transgenic Crops
Article information
Journal
Journal of Environment, Climate, and Ecology
Volume (Issue)
2(2), (2025)
Pages
63-76
Published
Copyright
Copyright (c) 2025 Chinechendo N. Eze, Juwon I. Hassan, Richmore Chiamaka Ibeh, Igboeli Chukwuduziem N., Samuel Osabutey, Oluwasola David Kehinde (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Alseekh, S., Klemmer, A., Yan, J., Guo, T., & Fernie, A. R. (2025). Embracing plant plasticity or robustness as a means of ensuring food security. Nature Communications, 16(1), 461. https://doi.org/10.1038/s41467-025-55872-4
Amack, S. C., & Antunes, M. S. (2020). CaMV35S promoter – A plant biology and biotechnology workhorse in the era of synthetic biology. Current Plant Biology, 24, 100179. https://doi.org/10.1016/j.cpb.2020.100179
Animal and Plant Health Inspection Service. (2025, July 16). USDA-APHIS: Biotechnology Regulatory Services. U.S. Department of Agriculture. https://www.aphis.usda.gov/biotechnology
Bano, N., Fakhrah, S., Mohanty, C. S., & Bag, S. K. (2022). Transcriptome Meta-Analysis Associated Targeting Hub Genes and Pathways of Drought and Salt Stress Responses in Cotton (Gossypium hirsutum): A Network Biology Approach. Frontiers in Plant Science, 13, 818472. https://doi.org/10.3389/fpls.2022.818472
Baye, T. M., Abebe, T., & Wilke, R. A. (2011). Genotype–Environment Interactions and Their Translational Implications. Personalized Medicine, 8(1), 59–70. https://doi.org/10.2217/pme.10.75
Bernardino, K. da C., Guilhen, J. H. S., de Menezes, C. B., Tardin, F. D., Schaffert, R. E., Bastos, E. A., Cardoso, M. J., Gazaffi, R., Rosa, J. R. B. F., Garcia, A. A. F., Guimarães, C. T., Kochian, L., Pastina, M. M., & Magalhaes, J. V. (2024). Genetic loci associated with sorghum drought tolerance in multiple environments and their sensitivity to environmental covariables. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 137(11), 259. https://doi.org/10.1007/s00122-024-04761-3
Beura, K., & Rakshit, A. (2011). Effect of BT Cotton on Nutrient Dynamics Under Varied Soil Type. Italian Journal of Agronomy, 6(4), e35. https://doi.org/10.4081/ija.2011.e35
BGRI. (2025). BGRI - Borlaug Global Rust Initiative. BGRI - Borlaug Global Rust Initiative. http://bgri.cornell.edu/
Cantos, C., Francisco, P., Trijatmiko, K. R., Slamet-Loedin, I., & Chadha-Mohanty, P. K. (2014). Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Frontiers in Plant Science, 5, 302. https://doi.org/10.3389/fpls.2014.00302
CGIAR. (2018, May 22). Harmonizing crop trait data: Crop Ontology. CGIAR Platform for Big Data in Agriculture. https://bigdata.cgiar.org/harmonizing-crop-trait-data-crop-ontology/
CGIAR. (2025). Excellence in Agronomy. CGIAR. https://www.cgiar.org/initiative/excellence-in-agronomy/
Cooper, M., & Messina, C. D. (2023). Breeding crops for drought-affected environments and improved climate resilience. The Plant Cell, 35(1), 162–186. https://doi.org/10.1093/plcell/koac321
Costa-Neto, G., Crespo-Herrera, L., Fradgley, N., Gardner, K., Bentley, A. R., Dreisigacker, S., Fritsche-Neto, R., Montesinos-López, O. A., & Crossa, J. (2022). Envirome-wide associations enhance multi-year genome-based prediction of historical wheat breeding data. G3: Genes|Genomes|Genetics, 13(2), jkac313. https://doi.org/10.1093/g3journal/jkac313
Crossa, J., Montesinos-Lopez, O. A., Costa-Neto, G., Vitale, P., Martini, J. W. R., Runcie, D., Fritsche-Neto, R., Montesinos-Lopez, A., Pérez-Rodríguez, P., Gerard, G., Dreisigacker, S., Crespo-Herrera, L., Pierre, C. S., Lillemo, M., Cuevas, J., Bentley, A., & Ortiz, R. (2025). Machine learning algorithms translate big data into predictive breeding accuracy. Trends in Plant Science, 30(2), 167–184. https://doi.org/10.1016/j.tplants.2024.09.011
Dannfald, A., Carpentier, M.-C., Merret, R., Favory, J.-J., & Deragon, J.-M. (2025). Plant response to intermittent heat stress involves modulation of mRNA translation efficiency. Plant Physiology, 197(2), kiae648. https://doi.org/10.1093/plphys/kiae648
de Leon, N., Jannink, J.-L., Edwards, J. W., & Kaeppler, S. M. (2016). Introduction to a Special Issue on Genotype by Environment Interaction. Crop Science, 56(5), 2081–2089. https://doi.org/10.2135/cropsci2016.07.0002in
De Oliveira, L. A., Da Silva, C. P., Nuvunga, J. J., Da Silva, A. Q., & Balestre, M. (2016). Bayesian GGE biplot models applied to maize multi-environments trials. Genetics and Molecular Research, 15(2). https://doi.org/10.4238/gmr.15028612
Demelash, H. (2024). Genotype by environment interaction, AMMI, GGE biplot, and mega environment analysis of elite Sorghum bicolor (L.) Moench genotypes in humid lowland areas of Ethiopia. Heliyon, 10(5), e26528. https://doi.org/10.1016/j.heliyon.2024.e26528
Dias, K. O. D. G., Gezan, S. A., Guimarães, C. T., Nazarian, A., da Costa e Silva, L., Parentoni, S. N., de Oliveira Guimarães, P. E., de Oliveira Anoni, C., Pádua, J. M. V., de Oliveira Pinto, M., Noda, R. W., Ribeiro, C. A. G., de Magalhães, J. V., Garcia, A. A. F., de Souza, J. C., Guimarães, L. J. M., & Pastina, M. M. (2018). Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Heredity, 121(1), 24–37. https://doi.org/10.1038/s41437-018-0053-6
Donev, E. N., Derba‐Maceluch, M., Yassin, Z., Gandla, M. L., Pramod, S., Heinonen, E., Kumar, V., Scheepers, G., Vilaplana, F., Johansson, U., Hertzberg, M., Sundberg, B., Winestrand, S., Hörnberg, A., Alriksson, B., Jönsson, L. J., & Mellerowicz, E. J. (2023). Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners. Plant Biotechnology Journal, 21(5), 1005. https://doi.org/10.1111/pbi.14012
Dong, O. X., Yu, S., Jain, R., Zhang, N., Duong, P. Q., Butler, C., Li, Y., Lipzen, A., Martin, J. A., Barry, K. W., Schmutz, J., Tian, L., & Ronald, P. C. (2020). Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 11(1), 1178. https://doi.org/10.1038/s41467-020-14981-y
EFSA. (2010). Guidance on the environmental risk assessment of genetically modified plants. EFSA Journal, 8(11), 1879. https://doi.org/10.2903/j.efsa.2010.1879
European Food Safety Authority. (2010). Guidance on Selection of Comparators for the Risk Assessment of GM Plants1. European Food Safety Authority (EFSA). https://www.efsa.europa.eu/sites/default/files/consultation/consultation/GMO_comparator_public_consult.pdf
Fernandes, I. K., Vieira, C. C., Dias, K. O. G., & Fernandes, S. B. (2024). Using machine learning to combine genetic and environmental data for maize grain yield predictions across multi-environment trials. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 137(8), 189. https://doi.org/10.1007/s00122-024-04687-w
Ford, C. (2023, October 30). These Plants Can Sound the Alarm in a Toxic World. Wired. https://www.wired.com/story/these-plants-change-color-when-exposed-to-a-pesticide/
Gan, J., Qiu, Y., Tao, Y., Zhang, L., Okita, T. W., Yan, Y., & Tian, L. (2024). RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1394223
Gao, L., Kantar, M. B., Moxley, D., Ortiz-Barrientos, D., & Rieseberg, L. H. (2023). Crop adaptation to climate change: An evolutionary perspective. Molecular Plant, 16(10), 1518–1546. https://doi.org/10.1016/j.molp.2023.07.011
Garin, V., Diallo, C., Tékété, M. L., Théra, K., Guitton, B., Dagno, K., Diallo, A. G., Kouressy, M., Leiser, W., Rattunde, F., Sissoko, I., Touré, A., Nébié, B., Samaké, M., Kholovà, J., Berger, A., Frouin, J., Pot, D., Vaksmann, M., … Rami, J.-F. (2024). Characterization of adaptation mechanisms in sorghum using a multireference back-cross nested association mapping design and envirotyping. Genetics, 226(4), iyae003. https://doi.org/10.1093/genetics/iyae003
Girón-Calva, P. S., Twyman, R. M., Albajes, R., Gatehouse, A. M. R., & Christou, P. (2020). The Impact of Environmental Stress on Bt Crop Performance. Trends in Plant Science, 25(3), 264–278. https://doi.org/10.1016/j.tplants.2019.12.019
Grondin, A., Natividad, M. A., Ogata, T., Jan, A., Gaudin, A. C. M., Trijatmiko, K. R., Liwanag, E., Maruyama, K., Fujita, Y., Yamaguchi-Shinozaki, K., Nakashima, K., Slamet-Loedin, I. H., & Henry, A. (2024). A Case Study from the Overexpression of OsTZF5, Encoding a CCCH Tandem Zinc Finger Protein, in Rice Plants Across Nineteen Yield Trials. Rice, 17(1), 25. https://doi.org/10.1186/s12284-024-00705-z
Gutha, L. R., Purushottam, D., Veeramachaneni, A., Tigulla, S., Kodappully, V., Enjala, C., Rajput, H., Anderson, J., Hong, B., Schmidt, J., & Bagga, S. (2018). Expression of endogenous proteins in maize hybrids in a multi-location field trial in India. Transgenic Research, 27(4), 331–342. https://doi.org/10.1007/s11248-018-0077-y
Ha, C. M., Rao, X., Saxena, G., & Dixon, R. A. (2021). Growth–defense trade-offs and yield loss in plants with engineered cell walls. New Phytologist, 231(1), 60–74. https://doi.org/10.1111/nph.17383
Hallgrímsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, Developmental Stability, and Morphological Integration in Primate Limbs. American Journal of Physical Anthropology, Suppl 35, 131–158. https://doi.org/10.1002/ajpa.10182
Hazman, M., Guo, L., Tong, H., Fawzy, S., Anis, G., Elsherif, A., Riemann, M., & Nick, P. (2025). RNA-seq unveils pathways for drought and salinity resilience in Egyptian rice Sakha 102. Plant Growth Regulation. https://doi.org/10.1007/s10725-025-01349-9
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., Moore, A. D., Brown, H., Whish, J. P. M., Verrall, S., Fainges, J., Bell, L. W., Peake, A. S., Poulton, P. L., Hochman, Z., … Keating, B. A. (2014). APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327–350. https://doi.org/10.1016/j.envsoft.2014.07.009
Huang, P., Shyu, C., Coelho, C. P., Cao, Y., & Brutnell, T. P. (2016). Setaria viridis as a Model System to Advance Millet Genetics and Genomics. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01781
Initiative, E. in A. (2025). CGIAR Excellence in Agronomy. Accelerating the Uptake of Agronomy at Scale. Excellence in Agronomy Initiative. https://eia.cgiar.org
Jarquín, D., Pérez-Elizalde, S., Burgueño, J., & Crossa, J. (2016). A Hierarchical Bayesian Estimation Model for Multienvironment Plant Breeding Trials in Successive Years. Crop Science, 56(5), 2260–2276. https://doi.org/10.2135/cropsci2015.08.0475
Jehangir, N., & Ali, S. (2023). The insecticidal efficacy and performance of Bt Cotton under variable abiotic stresses – A review on recent findings. Plant Stress, 8, 100151. https://doi.org/10.1016/j.stress.2023.100151
Jubair, S., Tremblay-Savard, O., & Domaratzki, M. (2023). GxENet: Novel fully connected neural network based approaches to incorporate GxE for predicting wheat yield. Artificial Intelligence in Agriculture, 8, 60–76. https://doi.org/10.1016/j.aiia.2023.05.001
Karasov, T. L., Chae, E., Herman, J. J., & Bergelson, J. (2017). Mechanisms to Mitigate the Trade-Off between Growth and Defense. The Plant Cell, 29(4), 666–680. https://doi.org/10.1105/tpc.16.00931
Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant & Cell Physiology, 45(3), 346–350. https://doi.org/10.1093/pcp/pch037
Kaur, S., Kakani, V. G., Carver, B., Jarquin, D., & Singh, A. (2024). Hyperspectral imaging combined with machine learning for high-throughput phenotyping in winter wheat. The Plant Phenome Journal, 7(1), e20111. https://doi.org/10.1002/ppj2.20111
Khan, S. U., Ali, S., Shah, S. H., Zia, M. A., Shoukat, S., Hussain, Z., & Shahzad, A. (2023). Impact of nitrogen and phosphorus fertilizers on Cry1Ac protein contents in transgenic cotton. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.246436
Kiselev, K. V., Aleynova, O. A., Ogneva, Z. V., Suprun, A. R., & Dubrovina, A. S. (2021). 35S promoter-driven transgenes are variably expressed in different organs of Arabidopsis thaliana and in response to abiotic stress. Molecular Biology Reports, 48(3), 2235–2241. https://doi.org/10.1007/s11033-021-06235-x
Lee, F. C., Yeap, W.-C., Kee, S. Y., Kulaveerasingam, H., & Ross Appleton, D. (2024). Core transcriptome network modulates temperature (heat and cold) and osmotic (drought, salinity, and waterlogging) stress responses in oil palm. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1497017
Li, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. https://doi.org/10.1016/j.fcr.2013.05.006
Mafouasson, H. N. A., Gracen, V., Yeboah, M. A., Ntsomboh-Ntsefong, G., Tandzi, L. N., & Mutengwa, C. S. (2018). Genotype-by-Environment Interaction and Yield Stability of Maize Single Cross Hybrids Developed from Tropical Inbred Lines. Agronomy, 8(5), Article 5. https://doi.org/10.3390/agronomy8050062
Malosetti, M., Ribaut, J.-M., & Eeuwijk, F. A. van. (2013). The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4, 44. https://doi.org/10.3389/fphys.2013.00044
Manuck, S. B. (2010). The Reaction Norm in Gene-Environment Interaction. Molecular Psychiatry, 15(9), 881–882. https://doi.org/10.1038/mp.2009.139
McKie, R., & editor, R. M. S. (2024, May 25). ‘A catastrophe’: Greenpeace blocks planting of ‘lifesaving’ Golden Rice. The Guardian. https://www.theguardian.com/environment/article/2024/may/25/greenpeace-blocks-planting-of-lifesaving-golden-rice-philippines
Murani, E., & Hadlich, F. (2023). Exploration of genotype-by-environment interactions affecting gene expression responses in porcine immune cells. Frontiers in Genetics, 14. https://doi.org/10.3389/fgene.2023.1157267
Muthusamy, M., Kim, J.-H., Kim, J. A., & Lee, S.-I. (2021). Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview. International Journal of Molecular Sciences, 22(13), 6731. https://doi.org/10.3390/ijms22136731
Napier, J. D., Heckman, R. W., & Juenger, T. E. (2023). Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. The Plant Cell, 35(1), 109–124. https://doi.org/10.1093/plcell/koac322
Nguyen, H. T., Khan, M. A. R., Nguyen, T. T., Pham, N. T., Nguyen, T. T. B., Anik, T. R., Nguyen, M. D., Li, M., Nguyen, K. H., Ghosh, U. K., Tran, L.-S. P., & Ha, C. V. (2025). Advancing Crop Resilience Through High-Throughput Phenotyping for Crop Improvement in the Face of Climate Change. Plants, 14(6), Article 6. https://doi.org/10.3390/plants14060907
Obunyali, C. O., Pillay, K., Meisel, B., Ndou, E. N., Mashingaidze, K., Sserumaga, J. P., Asea, G., Mwimali, M., Tende, R., Beyene, Y., Mugo, S., Okogbenin, E., & Oikeh, S. O. (2024). Efficacy of Event MON 87460 in drought-tolerant maize hybrids under optimal and managed drought-stress in eastern and southern africa. Journal of Genetic Engineering & Biotechnology, 22(1), 100352. https://doi.org/10.1016/j.jgeb.2024.100352
OECD. (2023a). Safety Assessment of Transgenic Organisms in the Environment (Volume 10): OECD Consensus Document on Environmental Considerations for the Release of Transgenic Plants. OECD. https://doi.org/10.1787/62ed0e04-en
OECD. (2023b, July 27). Consensus Document on Environmental Considerations for Risk/safety Assessment for the Release of Transgenic Plants. Organisation for Economic Co-operation and Development. https://one.oecd.org/document/ENV/CBC/MONO%282023%2930/en/pdf
Organisms (GMO), E. P. on G. M. (2011). Guidance on selection of comparators for the risk assessment of genetically modified plants and derived food and feed. EFSA Journal, 9(5), 2149. https://doi.org/10.2903/j.efsa.2011.2149
Pour-Aboughadareh, A., Jadidi, O., Jamshidi, B., Bocianowski, J., & Niemann, J. (2025). Cross-talk between stability parameters and selection models: A new procedure for improving the identification of the superior genotypes in multi-environment trials. BMC Research Notes, 18(1), 306. https://doi.org/10.1186/s13104-025-07366-1
Rahamkulov, I., & Bakhsh, A. (2020). Tissue-specific and stress-inducible promoters establish their suitability for containment of foreign gene(s) expression in transgenic potatoes. 3 Biotech, 10(10), 426. https://doi.org/10.1007/s13205-020-02350-x
Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), Article 2. https://doi.org/10.3390/plants8020034
Reynolds, M. P., Braun, H. J., Cavalieri, A. J., Chapotin, S., Davies, W. J., Ellul, P., Feuillet, C., Govaerts, B., Kropff, M. J., Lucas, H., Nelson, J., Powell, W., Quilligan, E., Rosegrant, M. W., Singh, R. P., Sonder, K., Tang, H., Visscher, S., & Wang, R. (2017). Improving global integration of crop research. Science, 357(6349), 359–360. https://doi.org/10.1126/science.aam8559
Rudy, E., Grabsztunowicz, M., Arasimowicz-Jelonek, M., Tanwar, U. K., Maciorowska, J., & Sobieszczuk-Nowicka, E. (2023). N6-methyladenosine (m6A) RNA modification as a metabolic switch between plant cell survival and death in leaf senescence. Frontiers in Plant Science, 13, 1064131. https://doi.org/10.3389/fpls.2022.1064131
S. A. Eberhart & W. A. Russell. (1966). Stability Parameters for Comparing Varieties. https://pdfs.semanticscholar.org/6957/95243d5cb6c106d6995dda37579d9f6a7830.pdf
Saand, M. A., Li, J., Wu, Y., Zhou, L., Cao, H., & Yang, Y. (2022). Integrative Omics Analysis of Three Oil Palm Varieties Reveals (Tanzania × Ekona) TE as a Cold-Resistant Variety in Response to Low-Temperature Stress. International Journal of Molecular Sciences, 23(23), 14926. https://doi.org/10.3390/ijms232314926
Saltz, J. B., Bell, A. M., Flint, J., Gomulkiewicz, R., Hughes, K. A., & Keagy, J. (2018). Why does the magnitude of genotype‐by‐environment interaction vary? Ecology and Evolution, 8(12), 6342–6353. https://doi.org/10.1002/ece3.4128
Sami, A., Xue, Z., Tazein, S., Arshad, A., He Zhu, Z., Ping Chen, Y., Hong, Y., Tian Zhu, X., & Jin Zhou, K. (n.d.). CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 12(1), 5814–5829. https://doi.org/10.1080/21655979.2021.1969831
Selvaraj, M. G., Jan, A., Ishizaki, T., Valencia, M., Dedicova, B., Maruyama, K., Ogata, T., Todaka, D., Yamaguchi‐Shinozaki, K., Nakashima, K., & Ishitani, M. (2020). Expression of the CCCH‐tandem zinc finger protein gene OsTZF5 under a stress‐inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions. Plant Biotechnology Journal, 18(8), 1711–1721. https://doi.org/10.1111/pbi.13334
Sharma, S. P., Leskovar, D. I., Crosby, K. M., & Ibrahim, A. M. H. (2020). GGE Biplot Analysis of Genotype-by-environment Interactions for Melon Fruit Yield and Quality Traits. HortScience, 55(4), 533–542. https://doi.org/10.21273/HORTSCI14760-19
Shu, G., Wang, A., Wang, X., Chen, R., Gao, F., Wang, A., Li, T., & Wang, Y. (2023). Identification of QTNs, QTN-by-environment interactions for plant height and ear height in maize multi-environment GWAS. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1284403
Smith, A. B., & Cullis, B. R. (2018). Plant breeding selection tools built on factor analytic mixed models for multi-environment trial data. Euphytica, 214(8), 143. https://doi.org/10.1007/s10681-018-2220-5
Smith, A. B., Ganguly, D. R., Moore, M., Bowerman, A. F., Janapala, Y., Shirokikh, N. E., Pogson, B. J., & Crisp, P. A. (2024). Dynamics of mRNA fate during light stress and recovery: From transcription to stability and translation. The Plant Journal, 117(3), 818–839. https://doi.org/10.1111/tpj.16531
Smith, A., Cullis, B., & Thompson, R. (2001). Analyzing Variety by Environment Data Using Multiplicative Mixed Models and Adjustments for Spatial Field Trend. Biometrics, 57(4), 1138–1147. https://doi.org/10.1111/j.0006-341X.2001.01138.x
Supriadi, D., Bimantara, Y. M., Zendrato, Y. M., Widaryanto, E., Kuswanto, K., & Waluyo, B. (2024). Assessment of genotype by environment and yield performance of tropical maize hybrids using stability statistics and graphical biplots. PeerJ, 12, e18624. https://doi.org/10.7717/peerj.18624
Tadese, D., Piepho, H., & Hartung, J. (2024). Accuracy of prediction from multi-environment trials for new locations using pedigree information and environmental covariates: The case of sorghum (Sorghum bicolor (L.) Moench) breeding. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 137(8), 181. https://doi.org/10.1007/s00122-024-04684-z
Talabi, A. O., Vikram, P., Thushar, S., Rahman, H., Ahmadzai, H., Nhamo, N., Shahid, M., & Singh, R. K. (2022). Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments. Frontiers in Plant Science, 13, 839704. https://doi.org/10.3389/fpls.2022.839704
USDA. (2024, May 8). EPA, FDA, and USDA Issue Joint Regulatory Plan for Biotechnology | Home. U.S. Department of Agriculture. https://www.usda.gov/about-usda/news/press-releases/2024/05/08/epa-fda-and-usda-issue-joint-regulatory-plan-biotechnology
USDA. (2025a). Project: USDA ARS. https://www.ars.usda.gov/research/project/?accnNo=444559
USDA. (2025b, June 12). Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which are Plant Pests or Which There is Reason to Believe are Plant Pests. https://www.aphis.usda.gov/sites/default/files/notification-guidance.pdf?utm_source=chatgpt.com
Villao-Uzho, L., Chávez-Navarrete, T., Pacheco-Coello, R., Sánchez-Timm, E., & Santos-Ordóñez, E. (2023). Plant Promoters: Their Identification, Characterization, and Role in Gene Regulation. Genes, 14(6), 1226. https://doi.org/10.3390/genes14061226
Waddington, C. H. (1942). Canalization of Development and the Inheritance of Acquired Characters. Nature, 150(3811), 563–565. https://doi.org/10.1038/150563a0
Walsh, B. (2021, January 23). Startup Joyn Bio aims to reduce pollution involved in large-scale agriculture. Axios. https://www.axios.com/2021/01/23/bioengineering-sustainable-farming-startup
Werner, C. R., Gemenet, D. C., & Tolhurst, D. J. (2024). FieldSimR: An R package for simulating plot data in multi-environment field trials. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1330574
Werner, C., Tolhurst, D., & Bancic, J. (2024). FieldSimR: Simulation of Plot Errors and Phenotypes in Plant Breeding Field Trials (Version 1.4.0) [Computer software]. https://cloud.r-project.org/web/packages/FieldSimR/index.html
Winans, N. D., Fonseca, J. M. O., Perumal, R., Klein, P. E., Klein, R. R., & Rooney, W. L. (2024). Envirotyping can increase genomic prediction accuracy of new environments in grain sorghum trials depending on mega-environment. Crop Science, 64(5), 2519–2533. https://doi.org/10.1002/csc2.21213
Wodebo, K. Y., Tolemariam, T., Demeke, S., Garedew, W., Tesfaye, T., Zeleke, M., Gemiyu, D., Bedeke, W., Wamatu, J., & Sharma, M. (2023). AMMI and GGE Biplot Analyses for Mega-Environment Identification and Selection of Some High-Yielding Oat (Avena sativa L.) Genotypes for Multiple Environments. Plants, 12(17), Article 17. https://doi.org/10.3390/plants12173064
Wu, J., Chen, X., Wang, S., Yang, K., Long, L., Jiang, M., Wang, J., & Yang, M. (2025). Analyses of multicopy insertions and unintended responses to drought stress in dual Bt gene transgenic poplar. Industrial Crops and Products, 223, 120247. https://doi.org/10.1016/j.indcrop.2024.120247
Xie, C., & Yang, C. (2020). A review on plant high-throughput phenotyping traits using UAV-based sensors. Computers and Electronics in Agriculture, 178, 105731. https://doi.org/10.1016/j.compag.2020.105731
Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 129, 653–673. https://doi.org/10.1007/s00122-016-2691-5
Xu, Y., Zhang, X., Li, H., Zheng, H., Zhang, J., Olsen, M. S., Varshney, R. K., Prasanna, B. M., & Qian, Q. (2022). Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Molecular Plant, 15(11), 1664–1695. https://doi.org/10.1016/j.molp.2022.09.001
Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Science, 47(2), 643–653. https://doi.org/10.2135/cropsci2006.06.0374
Yan, W., Nilsen, K. T., & Beattie, A. (2023). Mega-environment analysis and breeding for specific adaptation. Crop Science, 63(2), 480–494. https://doi.org/10.1002/csc2.20895
Yang, S., Vanderbeld, B., Wan, J., & Huang, Y. (2010). Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops. Molecular Plant, 3(3), 469–490. https://doi.org/10.1093/mp/ssq016
Yang, Y., Chaffin, T. A., Shao, Y., Balasubramanian, V. K., Markillie, M., Mitchell, H., Rubio-Wilhelmi, M. M., Ahkami, A. H., Blumwald, E., & Neal Stewart Jr, C. (2024). Novel synthetic inducible promoters controlling gene expression during water-deficit stress with green tissue specificity in transgenic poplar. Plant Biotechnology Journal, 22(6), 1596–1609. https://doi.org/10.1111/pbi.14289
Yao, Z., Yao, M., Wang, C., Li, K., Guo, J., Xiao, Y., Yan, J., & Liu, J. (2025). GEFormer: A genotype-environment interaction-based genomic prediction method that integrates the gating multilayer perceptron and linear attention mechanisms. Molecular Plant, 18(3), 527–549. https://doi.org/10.1016/j.molp.2025.01.020
Ye, X., Qin, K., Fernie, A. R., & Zhang, Y. (2024). Prospects for synthetic biology in 21st Century agriculture. Journal of Genetics and Genomics. https://doi.org/10.1016/j.jgg.2024.12.016
Yerlikaya, B. A., Yerlikaya, S., Aydin, A., Yilmaz, N. N., Bahadır, S., Abdulla, M. F., Mostafa, K., & Kavas, M. (2025). Enhanced drought and salt stress tolerance in Arabidopsis via ectopic expression of the PvMLP19 gene. Plant Cell Reports, 44(6), 130. https://doi.org/10.1007/s00299-025-03520-y
Zhang, C., Tang, Y., Tang, S., Chen, L., Li, T., Yuan, H., Xu, Y., Zhou, Y., Zhang, S., Wang, J., Wen, H., Jiang, W., Pang, Y., Deng, X., Cao, X., Zhou, J., Song, X., & Liu, Q. (2024). An inducible CRISPR activation tool for accelerating plant regeneration. Plant Communications, 5(5), 100823. https://doi.org/10.1016/j.xplc.2024.100823
Zhang, Y., & Zhang, N. (2018). Imaging technologies for plant high-throughput phenotyping: A review. Frontiers of Agricultural Science and Engineering, 5(4), Article 4. https://doi.org/10.15302/J-FASE-2018242