Review Article

Genotype-by-Environment Interactions in Transgenic Crops: A Critical Review of Gene Function Validation under Variable Agronomic Conditions

Authors

  • Chinechendo N. Eze Department of Biology, University of Louisiana at Lafayette, LA, USA https://orcid.org/0009-0002-4934-7331

    chinexng@gmail.com

  • Juwon I. Hassan Department of Biotechnology, Federal University of Technology, Akure, Nigeria https://orcid.org/0009-0008-7359-1784
  • Richmore Chiamaka Ibeh Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria https://orcid.org/0009-0002-6831-7285
  • Igboeli Chukwuduziem N. Federal Polytechnic Oko, Anambra State, Nigeria
  • Samuel Osabutey Department of Plant Pathology and Environmental Microbiology, State College, PA, 16801, USA
  • Oluwasola David Kehinde Department of Environmental Change Management and Monitoring, University of Hull, UK

Abstract

Genotype-by-environment (G×E) interactions frequently derail transgenic crops that excel under controlled conditions. Abiotic stress, soil chemistry, and photoperiod can suppress promoters, destabilize transcripts, or misfold proteins, reshaping phenotypes across locations. Literature from the past two decades reveals recurring patterns: Bt Cry toxins lose potency during drought and heat; OsTZF5 rice yields rise only within moderate moisture deficits; safe-harbor insertions and stress-inducible promoters reduce but do not eliminate variability. Contemporary toolkits, AMMI and GGE biplots, UAV phenomics, multi-omics tracking, and crop simulators detect interaction signals earlier, while machine-learning models direct trials toward environments with high crossover risk. A staged validation pipeline is proposed: factorial stress screens, multi-environment trials, molecular bookkeeping, data integration, and iterative redesign through predictive modeling. Environment-responsive constructs tested in this framework produce evidence that satisfies regulatory comparators, improves deployment targeting, and strengthens confidence that laboratory performance will translate to climate-volatile farms.

Keywords:

Agronomic Conditions Gene Function Validation Genotype Transgenic Crops

Article information

Journal

Journal of Environment, Climate, and Ecology

Volume (Issue)

2(2), (2025)

Pages

63-76

Published

18-09-2025

How to Cite

Eze, C. N., Hassan, J. I., Ibeh, R. C., Igboeli, C. N., Osabutey, S., & Kehinde, O. D. (2025). Genotype-by-Environment Interactions in Transgenic Crops: A Critical Review of Gene Function Validation under Variable Agronomic Conditions. Journal of Environment, Climate, and Ecology, 2(2), 63-76. https://doi.org/10.69739/jece.v2i2.1021

References

Alseekh, S., Klemmer, A., Yan, J., Guo, T., & Fernie, A. R. (2025). Embracing plant plasticity or robustness as a means of ensuring food security. Nature Communications, 16(1), 461. https://doi.org/10.1038/s41467-025-55872-4

Amack, S. C., & Antunes, M. S. (2020). CaMV35S promoter – A plant biology and biotechnology workhorse in the era of synthetic biology. Current Plant Biology, 24, 100179. https://doi.org/10.1016/j.cpb.2020.100179

Animal and Plant Health Inspection Service. (2025, July 16). USDA-APHIS: Biotechnology Regulatory Services. U.S. Department of Agriculture. https://www.aphis.usda.gov/biotechnology

Bano, N., Fakhrah, S., Mohanty, C. S., & Bag, S. K. (2022). Transcriptome Meta-Analysis Associated Targeting Hub Genes and Pathways of Drought and Salt Stress Responses in Cotton (Gossypium hirsutum): A Network Biology Approach. Frontiers in Plant Science, 13, 818472. https://doi.org/10.3389/fpls.2022.818472

Baye, T. M., Abebe, T., & Wilke, R. A. (2011). Genotype–Environment Interactions and Their Translational Implications. Personalized Medicine, 8(1), 59–70. https://doi.org/10.2217/pme.10.75

Bernardino, K. da C., Guilhen, J. H. S., de Menezes, C. B., Tardin, F. D., Schaffert, R. E., Bastos, E. A., Cardoso, M. J., Gazaffi, R., Rosa, J. R. B. F., Garcia, A. A. F., Guimarães, C. T., Kochian, L., Pastina, M. M., & Magalhaes, J. V. (2024). Genetic loci associated with sorghum drought tolerance in multiple environments and their sensitivity to environmental covariables. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 137(11), 259. https://doi.org/10.1007/s00122-024-04761-3

Beura, K., & Rakshit, A. (2011). Effect of BT Cotton on Nutrient Dynamics Under Varied Soil Type. Italian Journal of Agronomy, 6(4), e35. https://doi.org/10.4081/ija.2011.e35

BGRI. (2025). BGRI - Borlaug Global Rust Initiative. BGRI - Borlaug Global Rust Initiative. http://bgri.cornell.edu/

Cantos, C., Francisco, P., Trijatmiko, K. R., Slamet-Loedin, I., & Chadha-Mohanty, P. K. (2014). Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Frontiers in Plant Science, 5, 302. https://doi.org/10.3389/fpls.2014.00302

CGIAR. (2018, May 22). Harmonizing crop trait data: Crop Ontology. CGIAR Platform for Big Data in Agriculture. https://bigdata.cgiar.org/harmonizing-crop-trait-data-crop-ontology/

CGIAR. (2025). Excellence in Agronomy. CGIAR. https://www.cgiar.org/initiative/excellence-in-agronomy/

Cooper, M., & Messina, C. D. (2023). Breeding crops for drought-affected environments and improved climate resilience. The Plant Cell, 35(1), 162–186. https://doi.org/10.1093/plcell/koac321

Costa-Neto, G., Crespo-Herrera, L., Fradgley, N., Gardner, K., Bentley, A. R., Dreisigacker, S., Fritsche-Neto, R., Montesinos-López, O. A., & Crossa, J. (2022). Envirome-wide associations enhance multi-year genome-based prediction of historical wheat breeding data. G3: Genes|Genomes|Genetics, 13(2), jkac313. https://doi.org/10.1093/g3journal/jkac313

Crossa, J., Montesinos-Lopez, O. A., Costa-Neto, G., Vitale, P., Martini, J. W. R., Runcie, D., Fritsche-Neto, R., Montesinos-Lopez, A., Pérez-Rodríguez, P., Gerard, G., Dreisigacker, S., Crespo-Herrera, L., Pierre, C. S., Lillemo, M., Cuevas, J., Bentley, A., & Ortiz, R. (2025). Machine learning algorithms translate big data into predictive breeding accuracy. Trends in Plant Science, 30(2), 167–184. https://doi.org/10.1016/j.tplants.2024.09.011

Dannfald, A., Carpentier, M.-C., Merret, R., Favory, J.-J., & Deragon, J.-M. (2025). Plant response to intermittent heat stress involves modulation of mRNA translation efficiency. Plant Physiology, 197(2), kiae648. https://doi.org/10.1093/plphys/kiae648

de Leon, N., Jannink, J.-L., Edwards, J. W., & Kaeppler, S. M. (2016). Introduction to a Special Issue on Genotype by Environment Interaction. Crop Science, 56(5), 2081–2089. https://doi.org/10.2135/cropsci2016.07.0002in

De Oliveira, L. A., Da Silva, C. P., Nuvunga, J. J., Da Silva, A. Q., & Balestre, M. (2016). Bayesian GGE biplot models applied to maize multi-environments trials. Genetics and Molecular Research, 15(2). https://doi.org/10.4238/gmr.15028612

Demelash, H. (2024). Genotype by environment interaction, AMMI, GGE biplot, and mega environment analysis of elite Sorghum bicolor (L.) Moench genotypes in humid lowland areas of Ethiopia. Heliyon, 10(5), e26528. https://doi.org/10.1016/j.heliyon.2024.e26528

Dias, K. O. D. G., Gezan, S. A., Guimarães, C. T., Nazarian, A., da Costa e Silva, L., Parentoni, S. N., de Oliveira Guimarães, P. E., de Oliveira Anoni, C., Pádua, J. M. V., de Oliveira Pinto, M., Noda, R. W., Ribeiro, C. A. G., de Magalhães, J. V., Garcia, A. A. F., de Souza, J. C., Guimarães, L. J. M., & Pastina, M. M. (2018). Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Heredity, 121(1), 24–37. https://doi.org/10.1038/s41437-018-0053-6

Donev, E. N., Derba‐Maceluch, M., Yassin, Z., Gandla, M. L., Pramod, S., Heinonen, E., Kumar, V., Scheepers, G., Vilaplana, F., Johansson, U., Hertzberg, M., Sundberg, B., Winestrand, S., Hörnberg, A., Alriksson, B., Jönsson, L. J., & Mellerowicz, E. J. (2023). Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners. Plant Biotechnology Journal, 21(5), 1005. https://doi.org/10.1111/pbi.14012

Dong, O. X., Yu, S., Jain, R., Zhang, N., Duong, P. Q., Butler, C., Li, Y., Lipzen, A., Martin, J. A., Barry, K. W., Schmutz, J., Tian, L., & Ronald, P. C. (2020). Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 11(1), 1178. https://doi.org/10.1038/s41467-020-14981-y

EFSA. (2010). Guidance on the environmental risk assessment of genetically modified plants. EFSA Journal, 8(11), 1879. https://doi.org/10.2903/j.efsa.2010.1879

European Food Safety Authority. (2010). Guidance on Selection of Comparators for the Risk Assessment of GM Plants1. European Food Safety Authority (EFSA). https://www.efsa.europa.eu/sites/default/files/consultation/consultation/GMO_comparator_public_consult.pdf

Fernandes, I. K., Vieira, C. C., Dias, K. O. G., & Fernandes, S. B. (2024). Using machine learning to combine genetic and environmental data for maize grain yield predictions across multi-environment trials. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 137(8), 189. https://doi.org/10.1007/s00122-024-04687-w

Ford, C. (2023, October 30). These Plants Can Sound the Alarm in a Toxic World. Wired. https://www.wired.com/story/these-plants-change-color-when-exposed-to-a-pesticide/

Gan, J., Qiu, Y., Tao, Y., Zhang, L., Okita, T. W., Yan, Y., & Tian, L. (2024). RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1394223

Gao, L., Kantar, M. B., Moxley, D., Ortiz-Barrientos, D., & Rieseberg, L. H. (2023). Crop adaptation to climate change: An evolutionary perspective. Molecular Plant, 16(10), 1518–1546. https://doi.org/10.1016/j.molp.2023.07.011

Garin, V., Diallo, C., Tékété, M. L., Théra, K., Guitton, B., Dagno, K., Diallo, A. G., Kouressy, M., Leiser, W., Rattunde, F., Sissoko, I., Touré, A., Nébié, B., Samaké, M., Kholovà, J., Berger, A., Frouin, J., Pot, D., Vaksmann, M., … Rami, J.-F. (2024). Characterization of adaptation mechanisms in sorghum using a multireference back-cross nested association mapping design and envirotyping. Genetics, 226(4), iyae003. https://doi.org/10.1093/genetics/iyae003

Girón-Calva, P. S., Twyman, R. M., Albajes, R., Gatehouse, A. M. R., & Christou, P. (2020). The Impact of Environmental Stress on Bt Crop Performance. Trends in Plant Science, 25(3), 264–278. https://doi.org/10.1016/j.tplants.2019.12.019

Grondin, A., Natividad, M. A., Ogata, T., Jan, A., Gaudin, A. C. M., Trijatmiko, K. R., Liwanag, E., Maruyama, K., Fujita, Y., Yamaguchi-Shinozaki, K., Nakashima, K., Slamet-Loedin, I. H., & Henry, A. (2024). A Case Study from the Overexpression of OsTZF5, Encoding a CCCH Tandem Zinc Finger Protein, in Rice Plants Across Nineteen Yield Trials. Rice, 17(1), 25. https://doi.org/10.1186/s12284-024-00705-z

Gutha, L. R., Purushottam, D., Veeramachaneni, A., Tigulla, S., Kodappully, V., Enjala, C., Rajput, H., Anderson, J., Hong, B., Schmidt, J., & Bagga, S. (2018). Expression of endogenous proteins in maize hybrids in a multi-location field trial in India. Transgenic Research, 27(4), 331–342. https://doi.org/10.1007/s11248-018-0077-y

Ha, C. M., Rao, X., Saxena, G., & Dixon, R. A. (2021). Growth–defense trade-offs and yield loss in plants with engineered cell walls. New Phytologist, 231(1), 60–74. https://doi.org/10.1111/nph.17383

Hallgrímsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, Developmental Stability, and Morphological Integration in Primate Limbs. American Journal of Physical Anthropology, Suppl 35, 131–158. https://doi.org/10.1002/ajpa.10182

Hazman, M., Guo, L., Tong, H., Fawzy, S., Anis, G., Elsherif, A., Riemann, M., & Nick, P. (2025). RNA-seq unveils pathways for drought and salinity resilience in Egyptian rice Sakha 102. Plant Growth Regulation. https://doi.org/10.1007/s10725-025-01349-9

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., Moore, A. D., Brown, H., Whish, J. P. M., Verrall, S., Fainges, J., Bell, L. W., Peake, A. S., Poulton, P. L., Hochman, Z., … Keating, B. A. (2014). APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327–350. https://doi.org/10.1016/j.envsoft.2014.07.009

Huang, P., Shyu, C., Coelho, C. P., Cao, Y., & Brutnell, T. P. (2016). Setaria viridis as a Model System to Advance Millet Genetics and Genomics. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01781

Initiative, E. in A. (2025). CGIAR Excellence in Agronomy. Accelerating the Uptake of Agronomy at Scale. Excellence in Agronomy Initiative. https://eia.cgiar.org

Jarquín, D., Pérez-Elizalde, S., Burgueño, J., & Crossa, J. (2016). A Hierarchical Bayesian Estimation Model for Multienvironment Plant Breeding Trials in Successive Years. Crop Science, 56(5), 2260–2276. https://doi.org/10.2135/cropsci2015.08.0475

Jehangir, N., & Ali, S. (2023). The insecticidal efficacy and performance of Bt Cotton under variable abiotic stresses – A review on recent findings. Plant Stress, 8, 100151. https://doi.org/10.1016/j.stress.2023.100151

Jubair, S., Tremblay-Savard, O., & Domaratzki, M. (2023). GxENet: Novel fully connected neural network based approaches to incorporate GxE for predicting wheat yield. Artificial Intelligence in Agriculture, 8, 60–76. https://doi.org/10.1016/j.aiia.2023.05.001

Karasov, T. L., Chae, E., Herman, J. J., & Bergelson, J. (2017). Mechanisms to Mitigate the Trade-Off between Growth and Defense. The Plant Cell, 29(4), 666–680. https://doi.org/10.1105/tpc.16.00931

Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant & Cell Physiology, 45(3), 346–350. https://doi.org/10.1093/pcp/pch037

Kaur, S., Kakani, V. G., Carver, B., Jarquin, D., & Singh, A. (2024). Hyperspectral imaging combined with machine learning for high-throughput phenotyping in winter wheat. The Plant Phenome Journal, 7(1), e20111. https://doi.org/10.1002/ppj2.20111

Khan, S. U., Ali, S., Shah, S. H., Zia, M. A., Shoukat, S., Hussain, Z., & Shahzad, A. (2023). Impact of nitrogen and phosphorus fertilizers on Cry1Ac protein contents in transgenic cotton. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.246436

Kiselev, K. V., Aleynova, O. A., Ogneva, Z. V., Suprun, A. R., & Dubrovina, A. S. (2021). 35S promoter-driven transgenes are variably expressed in different organs of Arabidopsis thaliana and in response to abiotic stress. Molecular Biology Reports, 48(3), 2235–2241. https://doi.org/10.1007/s11033-021-06235-x

Lee, F. C., Yeap, W.-C., Kee, S. Y., Kulaveerasingam, H., & Ross Appleton, D. (2024). Core transcriptome network modulates temperature (heat and cold) and osmotic (drought, salinity, and waterlogging) stress responses in oil palm. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1497017

Li, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. https://doi.org/10.1016/j.fcr.2013.05.006

Mafouasson, H. N. A., Gracen, V., Yeboah, M. A., Ntsomboh-Ntsefong, G., Tandzi, L. N., & Mutengwa, C. S. (2018). Genotype-by-Environment Interaction and Yield Stability of Maize Single Cross Hybrids Developed from Tropical Inbred Lines. Agronomy, 8(5), Article 5. https://doi.org/10.3390/agronomy8050062

Malosetti, M., Ribaut, J.-M., & Eeuwijk, F. A. van. (2013). The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4, 44. https://doi.org/10.3389/fphys.2013.00044

Manuck, S. B. (2010). The Reaction Norm in Gene-Environment Interaction. Molecular Psychiatry, 15(9), 881–882. https://doi.org/10.1038/mp.2009.139

McKie, R., & editor, R. M. S. (2024, May 25). ‘A catastrophe’: Greenpeace blocks planting of ‘lifesaving’ Golden Rice. The Guardian. https://www.theguardian.com/environment/article/2024/may/25/greenpeace-blocks-planting-of-lifesaving-golden-rice-philippines

Murani, E., & Hadlich, F. (2023). Exploration of genotype-by-environment interactions affecting gene expression responses in porcine immune cells. Frontiers in Genetics, 14. https://doi.org/10.3389/fgene.2023.1157267

Muthusamy, M., Kim, J.-H., Kim, J. A., & Lee, S.-I. (2021). Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview. International Journal of Molecular Sciences, 22(13), 6731. https://doi.org/10.3390/ijms22136731

Napier, J. D., Heckman, R. W., & Juenger, T. E. (2023). Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. The Plant Cell, 35(1), 109–124. https://doi.org/10.1093/plcell/koac322

Nguyen, H. T., Khan, M. A. R., Nguyen, T. T., Pham, N. T., Nguyen, T. T. B., Anik, T. R., Nguyen, M. D., Li, M., Nguyen, K. H., Ghosh, U. K., Tran, L.-S. P., & Ha, C. V. (2025). Advancing Crop Resilience Through High-Throughput Phenotyping for Crop Improvement in the Face of Climate Change. Plants, 14(6), Article 6. https://doi.org/10.3390/plants14060907

Obunyali, C. O., Pillay, K., Meisel, B., Ndou, E. N., Mashingaidze, K., Sserumaga, J. P., Asea, G., Mwimali, M., Tende, R., Beyene, Y., Mugo, S., Okogbenin, E., & Oikeh, S. O. (2024). Efficacy of Event MON 87460 in drought-tolerant maize hybrids under optimal and managed drought-stress in eastern and southern africa. Journal of Genetic Engineering & Biotechnology, 22(1), 100352. https://doi.org/10.1016/j.jgeb.2024.100352

OECD. (2023a). Safety Assessment of Transgenic Organisms in the Environment (Volume 10): OECD Consensus Document on Environmental Considerations for the Release of Transgenic Plants. OECD. https://doi.org/10.1787/62ed0e04-en

OECD. (2023b, July 27). Consensus Document on Environmental Considerations for Risk/safety Assessment for the Release of Transgenic Plants. Organisation for Economic Co-operation and Development. https://one.oecd.org/document/ENV/CBC/MONO%282023%2930/en/pdf

Organisms (GMO), E. P. on G. M. (2011). Guidance on selection of comparators for the risk assessment of genetically modified plants and derived food and feed. EFSA Journal, 9(5), 2149. https://doi.org/10.2903/j.efsa.2011.2149

Pour-Aboughadareh, A., Jadidi, O., Jamshidi, B., Bocianowski, J., & Niemann, J. (2025). Cross-talk between stability parameters and selection models: A new procedure for improving the identification of the superior genotypes in multi-environment trials. BMC Research Notes, 18(1), 306. https://doi.org/10.1186/s13104-025-07366-1

Rahamkulov, I., & Bakhsh, A. (2020). Tissue-specific and stress-inducible promoters establish their suitability for containment of foreign gene(s) expression in transgenic potatoes. 3 Biotech, 10(10), 426. https://doi.org/10.1007/s13205-020-02350-x

Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), Article 2. https://doi.org/10.3390/plants8020034

Reynolds, M. P., Braun, H. J., Cavalieri, A. J., Chapotin, S., Davies, W. J., Ellul, P., Feuillet, C., Govaerts, B., Kropff, M. J., Lucas, H., Nelson, J., Powell, W., Quilligan, E., Rosegrant, M. W., Singh, R. P., Sonder, K., Tang, H., Visscher, S., & Wang, R. (2017). Improving global integration of crop research. Science, 357(6349), 359–360. https://doi.org/10.1126/science.aam8559

Rudy, E., Grabsztunowicz, M., Arasimowicz-Jelonek, M., Tanwar, U. K., Maciorowska, J., & Sobieszczuk-Nowicka, E. (2023). N6-methyladenosine (m6A) RNA modification as a metabolic switch between plant cell survival and death in leaf senescence. Frontiers in Plant Science, 13, 1064131. https://doi.org/10.3389/fpls.2022.1064131

S. A. Eberhart & W. A. Russell. (1966). Stability Parameters for Comparing Varieties. https://pdfs.semanticscholar.org/6957/95243d5cb6c106d6995dda37579d9f6a7830.pdf

Saand, M. A., Li, J., Wu, Y., Zhou, L., Cao, H., & Yang, Y. (2022). Integrative Omics Analysis of Three Oil Palm Varieties Reveals (Tanzania × Ekona) TE as a Cold-Resistant Variety in Response to Low-Temperature Stress. International Journal of Molecular Sciences, 23(23), 14926. https://doi.org/10.3390/ijms232314926

Saltz, J. B., Bell, A. M., Flint, J., Gomulkiewicz, R., Hughes, K. A., & Keagy, J. (2018). Why does the magnitude of genotype‐by‐environment interaction vary? Ecology and Evolution, 8(12), 6342–6353. https://doi.org/10.1002/ece3.4128

Sami, A., Xue, Z., Tazein, S., Arshad, A., He Zhu, Z., Ping Chen, Y., Hong, Y., Tian Zhu, X., & Jin Zhou, K. (n.d.). CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 12(1), 5814–5829. https://doi.org/10.1080/21655979.2021.1969831

Selvaraj, M. G., Jan, A., Ishizaki, T., Valencia, M., Dedicova, B., Maruyama, K., Ogata, T., Todaka, D., Yamaguchi‐Shinozaki, K., Nakashima, K., & Ishitani, M. (2020). Expression of the CCCH‐tandem zinc finger protein gene OsTZF5 under a stress‐inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions. Plant Biotechnology Journal, 18(8), 1711–1721. https://doi.org/10.1111/pbi.13334

Sharma, S. P., Leskovar, D. I., Crosby, K. M., & Ibrahim, A. M. H. (2020). GGE Biplot Analysis of Genotype-by-environment Interactions for Melon Fruit Yield and Quality Traits. HortScience, 55(4), 533–542. https://doi.org/10.21273/HORTSCI14760-19

Shu, G., Wang, A., Wang, X., Chen, R., Gao, F., Wang, A., Li, T., & Wang, Y. (2023). Identification of QTNs, QTN-by-environment interactions for plant height and ear height in maize multi-environment GWAS. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1284403

Smith, A. B., & Cullis, B. R. (2018). Plant breeding selection tools built on factor analytic mixed models for multi-environment trial data. Euphytica, 214(8), 143. https://doi.org/10.1007/s10681-018-2220-5

Smith, A. B., Ganguly, D. R., Moore, M., Bowerman, A. F., Janapala, Y., Shirokikh, N. E., Pogson, B. J., & Crisp, P. A. (2024). Dynamics of mRNA fate during light stress and recovery: From transcription to stability and translation. The Plant Journal, 117(3), 818–839. https://doi.org/10.1111/tpj.16531

Smith, A., Cullis, B., & Thompson, R. (2001). Analyzing Variety by Environment Data Using Multiplicative Mixed Models and Adjustments for Spatial Field Trend. Biometrics, 57(4), 1138–1147. https://doi.org/10.1111/j.0006-341X.2001.01138.x

Supriadi, D., Bimantara, Y. M., Zendrato, Y. M., Widaryanto, E., Kuswanto, K., & Waluyo, B. (2024). Assessment of genotype by environment and yield performance of tropical maize hybrids using stability statistics and graphical biplots. PeerJ, 12, e18624. https://doi.org/10.7717/peerj.18624

Tadese, D., Piepho, H., & Hartung, J. (2024). Accuracy of prediction from multi-environment trials for new locations using pedigree information and environmental covariates: The case of sorghum (Sorghum bicolor (L.) Moench) breeding. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 137(8), 181. https://doi.org/10.1007/s00122-024-04684-z

Talabi, A. O., Vikram, P., Thushar, S., Rahman, H., Ahmadzai, H., Nhamo, N., Shahid, M., & Singh, R. K. (2022). Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments. Frontiers in Plant Science, 13, 839704. https://doi.org/10.3389/fpls.2022.839704

USDA. (2024, May 8). EPA, FDA, and USDA Issue Joint Regulatory Plan for Biotechnology | Home. U.S. Department of Agriculture. https://www.usda.gov/about-usda/news/press-releases/2024/05/08/epa-fda-and-usda-issue-joint-regulatory-plan-biotechnology

USDA. (2025a). Project: USDA ARS. https://www.ars.usda.gov/research/project/?accnNo=444559

USDA. (2025b, June 12). Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which are Plant Pests or Which There is Reason to Believe are Plant Pests. https://www.aphis.usda.gov/sites/default/files/notification-guidance.pdf?utm_source=chatgpt.com

Villao-Uzho, L., Chávez-Navarrete, T., Pacheco-Coello, R., Sánchez-Timm, E., & Santos-Ordóñez, E. (2023). Plant Promoters: Their Identification, Characterization, and Role in Gene Regulation. Genes, 14(6), 1226. https://doi.org/10.3390/genes14061226

Waddington, C. H. (1942). Canalization of Development and the Inheritance of Acquired Characters. Nature, 150(3811), 563–565. https://doi.org/10.1038/150563a0

Walsh, B. (2021, January 23). Startup Joyn Bio aims to reduce pollution involved in large-scale agriculture. Axios. https://www.axios.com/2021/01/23/bioengineering-sustainable-farming-startup

Werner, C. R., Gemenet, D. C., & Tolhurst, D. J. (2024). FieldSimR: An R package for simulating plot data in multi-environment field trials. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1330574

Werner, C., Tolhurst, D., & Bancic, J. (2024). FieldSimR: Simulation of Plot Errors and Phenotypes in Plant Breeding Field Trials (Version 1.4.0) [Computer software]. https://cloud.r-project.org/web/packages/FieldSimR/index.html

Winans, N. D., Fonseca, J. M. O., Perumal, R., Klein, P. E., Klein, R. R., & Rooney, W. L. (2024). Envirotyping can increase genomic prediction accuracy of new environments in grain sorghum trials depending on mega-environment. Crop Science, 64(5), 2519–2533. https://doi.org/10.1002/csc2.21213

Wodebo, K. Y., Tolemariam, T., Demeke, S., Garedew, W., Tesfaye, T., Zeleke, M., Gemiyu, D., Bedeke, W., Wamatu, J., & Sharma, M. (2023). AMMI and GGE Biplot Analyses for Mega-Environment Identification and Selection of Some High-Yielding Oat (Avena sativa L.) Genotypes for Multiple Environments. Plants, 12(17), Article 17. https://doi.org/10.3390/plants12173064

Wu, J., Chen, X., Wang, S., Yang, K., Long, L., Jiang, M., Wang, J., & Yang, M. (2025). Analyses of multicopy insertions and unintended responses to drought stress in dual Bt gene transgenic poplar. Industrial Crops and Products, 223, 120247. https://doi.org/10.1016/j.indcrop.2024.120247

Xie, C., & Yang, C. (2020). A review on plant high-throughput phenotyping traits using UAV-based sensors. Computers and Electronics in Agriculture, 178, 105731. https://doi.org/10.1016/j.compag.2020.105731

Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 129, 653–673. https://doi.org/10.1007/s00122-016-2691-5

Xu, Y., Zhang, X., Li, H., Zheng, H., Zhang, J., Olsen, M. S., Varshney, R. K., Prasanna, B. M., & Qian, Q. (2022). Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Molecular Plant, 15(11), 1664–1695. https://doi.org/10.1016/j.molp.2022.09.001

Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Science, 47(2), 643–653. https://doi.org/10.2135/cropsci2006.06.0374

Yan, W., Nilsen, K. T., & Beattie, A. (2023). Mega-environment analysis and breeding for specific adaptation. Crop Science, 63(2), 480–494. https://doi.org/10.1002/csc2.20895

Yang, S., Vanderbeld, B., Wan, J., & Huang, Y. (2010). Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops. Molecular Plant, 3(3), 469–490. https://doi.org/10.1093/mp/ssq016

Yang, Y., Chaffin, T. A., Shao, Y., Balasubramanian, V. K., Markillie, M., Mitchell, H., Rubio-Wilhelmi, M. M., Ahkami, A. H., Blumwald, E., & Neal Stewart Jr, C. (2024). Novel synthetic inducible promoters controlling gene expression during water-deficit stress with green tissue specificity in transgenic poplar. Plant Biotechnology Journal, 22(6), 1596–1609. https://doi.org/10.1111/pbi.14289

Yao, Z., Yao, M., Wang, C., Li, K., Guo, J., Xiao, Y., Yan, J., & Liu, J. (2025). GEFormer: A genotype-environment interaction-based genomic prediction method that integrates the gating multilayer perceptron and linear attention mechanisms. Molecular Plant, 18(3), 527–549. https://doi.org/10.1016/j.molp.2025.01.020

Ye, X., Qin, K., Fernie, A. R., & Zhang, Y. (2024). Prospects for synthetic biology in 21st Century agriculture. Journal of Genetics and Genomics. https://doi.org/10.1016/j.jgg.2024.12.016

Yerlikaya, B. A., Yerlikaya, S., Aydin, A., Yilmaz, N. N., Bahadır, S., Abdulla, M. F., Mostafa, K., & Kavas, M. (2025). Enhanced drought and salt stress tolerance in Arabidopsis via ectopic expression of the PvMLP19 gene. Plant Cell Reports, 44(6), 130. https://doi.org/10.1007/s00299-025-03520-y

Zhang, C., Tang, Y., Tang, S., Chen, L., Li, T., Yuan, H., Xu, Y., Zhou, Y., Zhang, S., Wang, J., Wen, H., Jiang, W., Pang, Y., Deng, X., Cao, X., Zhou, J., Song, X., & Liu, Q. (2024). An inducible CRISPR activation tool for accelerating plant regeneration. Plant Communications, 5(5), 100823. https://doi.org/10.1016/j.xplc.2024.100823

Zhang, Y., & Zhang, N. (2018). Imaging technologies for plant high-throughput phenotyping: A review. Frontiers of Agricultural Science and Engineering, 5(4), Article 4. https://doi.org/10.15302/J-FASE-2018242

Downloads

Views

31

Downloads

7