Article section
Binary CuO/ZnO Nanocomposites: A Mini-Review on Synthesis, Properties, and Emerging Applications
Abstract
In the fields of energy conversion, storage and also in environmental remediation, metal oxides nanocomposites are the emerging and promising materials with a plethora of applications in the essayed fields of catalysis, sensing, hydrogen storage, energy conversion, optoelectronics, and environmental remediation. Therefore, they encompass the entirety of sustainability and energy conversion. Metal oxide nanocomposites such as copper oxide/zinc oxide (CuO/ZnO) are of tremendous interest due to the ease with which their catalytic, electrical, optical, magnetic, biodegradable and biocompatible properties can be modified. The composite of CuO and ZnO gives a distinct composite with heterogenous grains of higher surface area, more active sites, facilitated electron transfer, and reduced photo-corrosion which results in high performance. CuO/ZnO nanocomposites have been prepared via different synthesis routes such as co-precipitation, sol–gel, wet impregnation, and thermal decomposition. Hydrothermal and microwave-assisted methods have emerged as some of the most promising synthesis methods due to their added control over the particle shape. Depending on the synthesis route and conditions, composites may appear as Cu-doped ZnO or as mixed CuO/ZnO oxides with varied morphologies including nanoparticles (0D), nanorods (1D) and hierarchical structures. Various advanced Characterization methods have also been employed in determining the properties of the synthesized nanocomposite such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Uv-Vis spectroscopy. This review is dedicated to the discussion of synthesis methods, properties, and the wide spectrum of the applications, especially photocatalysis, sensing, and energy devices, along with the mention of the challenges and progress of the future realization.
Keywords:
Copper Oxide Environmental Remediation Nanocomposites Photocatalysis Zinc Oxide
Article information
Journal
Journal of Environment, Climate, and Ecology
Volume (Issue)
2(2), (2025)
Pages
163-172
Published
Copyright
Copyright (c) 2025 Olayinka Afeez Bankole, Olayinka Taiwo Olasimbo (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Cha, C., Shin, S. R., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2013). Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. ACS Nano, 7(4), 2891–2897. https://doi.org/10.1021/nn401196a
Chan, Y., Selvanathan, V., Tey, L.-H., Akhtaruzzaman, Md., Anur, F., Djearamane, S., Watanabe, A., & Aminuzzaman, M. (2022). Effect of Calcination Temperature on Structural, Morphological and Optical Properties of Copper Oxide Nanostructures Derived from Garcinia mangostana L. Leaf Extract. Nanomaterials, 12(20), 3589. https://doi.org/10.3390/nano12203589
Cheng, S.-C., & Wen, T.-C. (2014). Robust SERS substrates with massive nanogaps derived from silver nanocubes self-assembled on massed silver mirror via 1,2-ethanedithiol monolayer as linkage and ultra-thin spacer. Materials Chemistry and Physics, 143(3), 1331–1337. https://doi.org/10.1016/j.matchemphys.2013.11.043
Das, S., & Srivastava, V. C. (2018). An overview of the synthesis of CuO-ZnO nanocomposite for environmental and other applications. Nanotechnology Reviews, 7(3), 267–282. https://doi.org/10.1515/ntrev-2017-0144
Elsharawy, A. I. A., Yakout, S. M., Wahba, M. A., Abdel-Shafi, A. A., & Khalil, M. S. (2023). Transition-metal blends incorporated into CuO nanostructures: Tuning of room temperature spin-ferromagnetic order. Solid State Sciences, 139, 107166. https://doi.org/10.1016/j.solidstatesciences.2023.107166
Farouk, E. M., Mohamed, H. A., Hussien, M. M., Abdelfattah, N. M., Mohamed, S. A., & Hussien, S. A. H. (2024). The effect of zinc oxide in treatment and skin care. Journal of Applied Research in Science and Humanities, 1(1), 283–298. https://doi.org/10.21608/aash.2024.375761
Guo, X., Zhang, Q., Ding, X., Shen, Q., Wu, C., Zhang, L., & Yang, H. (2016). Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: A review. Journal of Sol-Gel Science and Technology, 79(2), 328–358. https://doi.org/10.1007/s10971-015-3935-6
Hasach, G. A., & Al-Salman, H. S. (2024). Enhancing Photoelectric Response of Self-powered UV and Visible Detectors Using CuO/ZnO NRs Heterojunctions. Journal of Fluorescence, 35(7), 5333–5343. https://doi.org/10.1007/s10895-024-03918-z
Hessien, M., Da’na, E., AL-Amer, K., & Khalaf, M. M. (2019). Nano ZnO (hexagonal wurtzite) of different shapes under various conditions: Fabrication and characterization. Materials Research Express, 6(8), 085057. https://doi.org/10.1088/2053-1591/ab1c21
Hu, Q., He, Y., Wang, F., Wu, J., Ci, Z., Chen, L., Xu, R., Yang, M., Lin, J., Han, L., & Zhang, D. (2021). Microwave technology: A novel approach to the transformation of natural metabolites. Chinese Medicine, 16(1), 87. https://doi.org/10.1186/s13020-021-00500-8
Karrari, S., Mohammadzadeh, H., & Jafari, R. (2025). Characterization of ZnO-CuO and ZnO-CuO-NiO nanocomposites prepared by co-precipitation and antibacterial properties. Applied Physics A, 131(2), 147. https://doi.org/10.1007/s00339-025-08273-9
Khatami, M., & Iravani, S. (2021). Green and Eco-Friendly Synthesis of Nanophotocatalysts: An Overview. Comments on Inorganic Chemistry, 41(3), 133–187. https://doi.org/10.1080/02603594.2021.1895127
Kim, J., Kim, W., & Yong, K. (2012). CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2 S Gas Sensing. The Journal of Physical Chemistry C, 116(29), 15682–15691. https://doi.org/10.1021/jp302129j
Lavín, A., Sivasamy, R., Mosquera, E., & Morel, M. J. (2019). High proportion ZnO/CuO nanocomposites: Synthesis, structural and optical properties, and their photocatalytic behavior. Surfaces and Interfaces, 17, 100367. https://doi.org/10.1016/j.surfin.2019.100367
Li, B., & Wang, Y. (2010). Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite. Superlattices and Microstructures, 47(5), 615–623. https://doi.org/10.1016/j.spmi.2010.02.005
Li, F., Huang, X., Liu, J.-X., & Zhang, G.-J. (2020). Sol-gel derived porous ultra-high temperature ceramics. Journal of Advanced Ceramics, 9(1), 1–16. https://doi.org/10.1007/s40145-019-0332-6
Liu, Z., Yang, L., Chen, M., & Chen, Q. (2020). Amine functionalized NaY/GdF4:Yb,Er upconversion-silver nanoparticles system as fluorescent turn-off probe for sensitive detection of Cr(III). Journal of Photochemistry and Photobiology A: Chemistry, 388, 112203. https://doi.org/10.1016/j.jphotochem.2019.112203
Morales-Mendoza, J. E., Herrera-Pérez, G., Fuentes-Cobas, L., Hermida-Montero, L. A., Pariona, N., & Paraguay-Delgado, F. (2023). Synthesis, structural and optical properties of Cu doped ZnO and CuO–ZnO composite nanoparticles. Nano-Structures & Nano-Objects, 34, 100967. https://doi.org/10.1016/j.nanoso.2023.100967
Moumen, A., Kumarage, G. C. W., & Comini, E. (2022). P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors, 22(4), 1359. https://doi.org/10.3390/s22041359
Nadargi, D. Y., Tamboli, M. S., Patil, S. S., Dateer, R. B., Mulla, I. S., Choi, H., & Suryavanshi, S. S. (2020). Microwave-Epoxide-Assisted Hydrothermal Synthesis of the CuO/ZnO Heterojunction: A Highly Versatile Route to Develop H2S Gas Sensors. ACS Omega, 5(15), 8587–8595. https://doi.org/10.1021/acsomega.9b04475
Nwanna, E. C., Imoisili, P. E., Bitire, S. O., & Jen, T.-C. (2021). Biosynthesis and Fabrication of Copper Oxide Thin Films as a P-Type Semiconductor for Solar Cell Applications. Coatings, 11(12), 1545. https://doi.org/10.3390/coatings11121545
Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536–551. https://doi.org/10.1016/j.rser.2017.08.020
Pandian, A., Rameesha, L., Boobalan, C., & Sanjnaa, S. (2025). An expanded review of green synthesis nanoparticles for the removal of industrial effluents, specifically methylene blue. Environmental Technology Reviews, 14(1), 885–909. https://doi.org/10.1080/21622515.2025.2551054
Patel, M., Mishra, S., Verma, R., & Shikha, D. (2022). Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique. Discover Materials, 2(1), 1. https://doi.org/10.1007/s43939-022-00022-6
Prabhu, Y. T., Navakoteswara Rao, V., Shankar, M. V., Sreedhar, B., & Pal, U. (2019). The facile hydrothermal synthesis of CuO@ZnO heterojunction nanostructures for enhanced photocatalytic hydrogen evolution. New Journal of Chemistry, 43(17), 6794–6805. https://doi.org/10.1039/C8NJ06056H
Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Narayanan, V., & Stephen, A. (2013a). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C, 33(1), 91–98. https://doi.org/10.1016/j.msec.2012.08.011
Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Narayanan, V., & Stephen, A. (2013b). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C, 33(1), 91–98. https://doi.org/10.1016/j.msec.2012.08.011
Schmidt, R., Prado-Gonjal, J., & Moran, E. (2022). Microwave Assisted Hydrothermal Synthesis of Nanoparticles (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2203.02394
Shahidi, S., Moazzenchi, B., & Ghoranneviss, M. (2015). A review-application of physical vapor deposition (PVD) and related methods in the textile industry. The European Physical Journal Applied Physics, 71(3), 31302. https://doi.org/10.1051/epjap/2015140439
Shao, S., & Loi, M. A. (2020). The Role of the Interfaces in Perovskite Solar Cells. Advanced Materials Interfaces, 7(1), 1901469. https://doi.org/10.1002/admi.201901469
Sharma, V., Sharma, J. K., Kansay, V., Sharma, V. D., Sharma, A., Kumar, S., Sharma, A. K., & Bera, M. K. (2023). The effect of calcination temperatures on the structural and optical properties of zinc oxide nanoparticles and their influence on the photocatalytic degradation of leather dye. Chemical Physics Impact, 6, 100196. https://doi.org/10.1016/j.chphi.2023.100196
Singh, S., Gupta, D., Jain, V., & Sharma, A. K. (2015). Microwave Processing of Materials and Applications in Manufacturing Industries: A Review. Materials and Manufacturing Processes, 30(1), 1–29. https://doi.org/10.1080/10426914.2014.952028
Sood, S., Kumar, A., & Sharma, N. (2016). Photocatalytic and Antibacterial Activity Studies of ZnO Nanoparticles Synthesized by Thermal Decomposition of Mechanochemically Processed Oxalate Precursor. ChemistrySelect, 1(21), 6925–6932. https://doi.org/10.1002/slct.201601435
Subramaniyan, A. L., Thiruppathi, S., Sathath, M. M., & Kannan, M. (2019). Investigation on Thermal Properties of CuO–ZnO Nanocomposites. National Academy Science Letters, 42(1), 81–85. https://doi.org/10.1007/s40009-018-0723-1
Zhu, C., & Wang, X. (2025). Nanomaterial ZnO Synthesis and Its Photocatalytic Applications: A Review. Nanomaterials, 15(9), 682. https://doi.org/10.3390/nano15090682
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline