Research Article

Aboveground Biomass Modeling of Forest Stands in Licuan-Baay, Abra, Philippines

Authors

Abstract

Climate change induced by global warming is the most important environmental concern facing the globe today. The study aimed to develop a model in determining the aboveground biomass of forest stands through remote sensing in licuan-baay abra, Philippines. It determined the total carbon, carbon dioxide of the forest stands. The developed models of ndvi, savi, sri, and evi were also compared to select the best model suited for estimation above ground biomass of forest stand. The estimated above-ground biomass using the regression models developed is 8m mg/ha-1 for ndvi, sri and savi while evi has an estimated agb of 7m mg/ha-1 respectively. But the four-model developed has a correlation of above ground biomass and the vegetation index. Therefore, enhance vegetation index is highly recommended in this study since R squared among the four-vegetation index has the highest total value computed and has the lowest total value computed in the rsme (mg/ha-1) which indicated as the most accurate to predict the above ground biomass of forest stand.

Keywords:

Above Ground Biomass Forest Stands Vegetation Indices

Article information

Journal

Journal of Environment, Climate, and Ecology

Volume (Issue)

2(1), (2025)

Pages

1-10

Published

24-01-2025

How to Cite

Islao, R. T., & Barcellano, E. V. (2025). Aboveground Biomass Modeling of Forest Stands in Licuan-Baay, Abra, Philippines. Journal of Environment, Climate, and Ecology, 2(1), 1-10. https://doi.org/10.69739/jece.v2i1.181

References

Askar, Nuthammachot, N., Phairuang, W., Wicaksono, P., & Sayektiningsih, T. (2018). Estimating Aboveground Biomass on Private Forest Using Sentinel‐2 Imagery. Journal of Sensors, 2018(1), 6745629. https://doi.org/10.1155/2018/6745629.

Baloloy, A. B., Blanco, A. C., Candido, C. G., Argamosa, R. J. L., Dumalag, J. B. L. C., Dimapilis, L. L. C., & Paringit, E. C. (2018). Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: Rapideye, planetscope and sentinel-2. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 4, 29-36. https://doi.org/10.5194/isprs-annals-IV-3-29-2018

Beets, P. N., Kimberley, M. O., Oliver, G. R., Pearce, S. H., Graham, J. D., & Brandon, A. (2012). Allometric equations for estimating carbon stocks in natural forest in New Zealand. Forests, 3(3), 818-839. https://doi.org/10.3390/f3030818

Boelman, N. T., Stieglitz, M., Rueth, H. M., Sommerkorn, M., Griffin, K. L., Shaver, G. R., & Gamon, J. A. (2003). Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia, 135, 414-421. https://doi.org/10.1007/s00442-003-1198-3

Borges, E. R., Dexter, K. G., Pyles, M. V., Bueno, M. L., Dos Santos, R. M., Fontes, M. A. L., & Carvalho, F. A. (2021). The interaction of land-use history and tree species diversity in driving variation in the aboveground biomass of urban versus non-urban tropical forests. Ecological Indicators, 129, 107915. https://doi.org/10.1016/j.ecolind.2021.107915

Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., ... & Kaasalainen, M. (2015). Nondestructive estimates of above‐ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution, 6(2), 198-208. https://doi.org/10.1111/2041-210X.12301

Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2010). Non-destructive estimation of tree biomass by using wood specific gravity in the estimator. National Academy Science Letters, 33(5-6), 133-138. https://www.researchgate.net/publication/225035042

Das, S., & Singh, T. P. (2012). Correlation analysis between biomass and spectral vegetation indices of forest ecosystem. Int. J. Eng. Res. Technol, 1(5), 1-13.

Fraser, R. H., Olthof, I., Carrière, M., Deschamps, A., & Pouliot, D. (2011). Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive. Environmental Research Letters, 6(4), 045502. https://doi.org/10.1088/1748-9326/6/4/045502

Gizachew, B., Solberg, S., Næsset, E., Gobakken, T., Bollandsås, O. M., Breidenbach, J., ... & Mauya, E. W. (2016). Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon balance and management, 11, 1-14. https://doi.org/10.1186/s13021-016-0055-8

Goswami, S., Gamon, J., Vargas, S., & Tweedie, C. (2015). Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska (No. e913v1). PeerJ PrePrints. https://dx.doi.org/10.7287/peerj.preprints.913v1

Günlü, A., Ercanli, I., Başkent, E. Z., & Çakır, G. (2014). Estimating aboveground biomass using Landsat TM imagery: A case study of Anatolian Crimean pine forests in Turkey. Annals of Forest Research, 57(2), 289-298. https://www.afrjournal.org/index.php/afr/article/view/278

Gunawardena, A. R., Nissanka, S. P., Dayawansa, N. D. K., & Fernando, T. T. (2015). Estimation of above ground biomass in Horton Plains national park, Sri Lanka using optical, thermal and RADAR remote sensing data. Tropical Agricultural Research, 26(4), 608-623 https://doi.org/10.4038/tar.v26i4.8123

Hairiah, K., Sitompul, S. M., Noordwijk, M. V. & Cheryl Palm, C. (2001). Methods for sampling carbon stocks above and below ground. International Centre for Research in Agroforestry, Southeast Asian Regional Research Programme PO Box 161, Bogor, Indonesia. http://www.icraf.cgiar.org/sea

Hasmadi, M., Ismail, Omar, H., & Sarmin, N. S. (2018). Estimation aboveground biomass in mangrove forests using vegetation indices from SPOT-5 image. https://www.researchgate.net/publication/324758402

Hogrefe, K. R., Patil, V. P., Ruthrauff, D. R., Meixell, B. W., Budde, M. E., Hupp, J. W., & Ward, D. H. (2017). Normalized difference vegetation index as an estimator for abundance and quality of avian herbivore forage in Arctic Alaska. Remote Sensing, 9(12), 1234. https://doi.org/10.3390/rs9121234

Huy, B., Truong, N. Q., Khiem, N. Q., Poudel, K. P., & Temesgen, H. (2022). Deep learning models for improved reliability of tree aboveground biomass prediction in the tropical evergreen broadleaf forests. Forest Ecology and Management, 508, 120031. https://doi.org/10.1016/j.foreco.2022.120031

Ihlen, V., & Zanter, K. (2019). Landsat 8 (L8) data users handbook. US Geological Survey, 54-55.

Karakoc, A., & Karabulut, M. (2019). Ratio-based vegetation indices for biomass estimation depending on grassland characteristics. Turkish Journal of Botany, 43(5), 619-633. https://doi.org/10.3906/bot-1902-50

Kumar, L., & Mutanga, O. (2017). Remote sensing of above-ground biomass. Remote Sensing, 9(9), 935. https://doi.org/10.3390/rs9090935

Lasco, R. D., MacDicken, G., Pulhin, F., Guillermo, I. Q., Sales, R. F., & Cruz, R. V. O. (2006). Carbon stocks assessment of a selectively logged dipterocarp forest and wood processing mill in the Philippines. Journal of Tropical Forest Science, 18(4), 212-221. http://www.jstor.org/stable/43594677

Lee, H. I., Seo, Y. O., Kim, H., Ali, A., Lee, C. B., & Chung, Y. (2022). Species evenness declines but specific functional strategy enhances aboveground biomass across strata in subtropical–Warm-temperate forests of South Korea. Forest Ecology and Management, 512, 120179. https://doi.org/10.1016/j.foreco.2022.120179

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), 63-105. https://doi.org/10.1080/17538947.2014.990526

Liu, S., Su, X., Dong, S., Cheng, F., Zhao, H., Wu, X., ... & Li, J. (2015). Modeling aboveground biomass of an alpine desert grassland with SPOT-VGT NDVI. GIScience & Remote Sensing, 52(6), 680-699. https://doi.org/10.1080/15481603.2015.1080143

Lumbierres, M., Méndez, P. F., Bustamante, J., Soriguer, R., & Santamaría, L. (2017). Modeling biomass production in seasonal wetlands using MODIS NDVI land surface phenology. Remote Sensing, 9(4), 392. https://doi.org/10.3390/rs9040392

Macedo, F. L., Sousa, A. M., Gonçalves, A. C., Marques da Silva, J. R., Mesquita, P. A., & Rodrigues, R. A. (2018). Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images. European Journal of Remote Sensing, 51(1), 932-944. https://doi.org/10.1080/22797254.2018.1521250

Moradi, F., Darvishsefat, A. A., Pourrahmati, M. R., Deljouei, A., & Borz, S. A. (2022). Estimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data. Forests, 13(1), 104. https://doi.org/10.3390/f13010104

Pitriya, A., Rokhmatuloh, R., Wibowo, A., & Ash-Shidiq, I. P. (2018, October). Biomass estimation by combining field-sampling measurement and vegetation indices derived from SPOT-7 imagery in urban area: Case study in South Tangerang, Indonesia. In AIP conference proceedings (Vol. 2023, No. 1). AIP Publishing. https://doi.org/10.1063/1.5064185

Vashum, K. T., & Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests-a review. Journal of Ecosystem & Ecography, 2(4), 1-7. http://dx.doi.org/10.4172/2157-7625.1000116

Wani, A. A., Joshi, P. K., & Singh, O. (2015). Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data. Ecological informatics, 25, 63-70. https://doi.org/10.1016/j.ecoinf.2014.12.003

Wei, X., Sritharan, S. I., Kandiah, R., & Osterberg, J. (2012). Allometric Equations for Predicting Above-ground Biomass of Tamarix in the Lower Colorado River Basin. Desert Plants, 28(2) http://hdl.handle.net/10150/556805

Zhang, H., Wang, K., Zeng, Z., Du, H., & Zeng, F. (2017). Biomass and carbon sequestration by Juglans regia plantations in the Karst regions of Southwest China. Forests, 8(4), 103. https://doi.org/10.3390/f8040103

Downloads

Views

35

Downloads

8