Article section
Current Understanding of p53-Dependent Cellular Senescence in Health Disparities: Molecular Insights and Public-Health Strategies
Abstract
Disadvantaged populations age faster and develop chronic disease earlier, but the molecular conduit from social adversity to biology is not fully defined. This review synthesizes molecular, epidemiological, and policy evidence along a single axis: p53-governed cellular senescence. Genomic and metabolic stress stabilize p53, induce p21-mediated cell cycle arrest, and trigger a pro-inflammatory secretory program that compromises tissue function. Conditions concentrated in communities with limited resources, such as, air pollution, ultra-processed diets, chronic stress, and obesity activate these pathways and expand senescent populations in vascular, metabolic, and immune tissues, amplifying atherosclerosis, insulin resistance, and cancer progression. Senolytics (dasatinib plus quercetin, navitoclax, and fisetin) and senomorphics (metformin and rapamycin) show early benefit signals, but translation must be equity-first. The next step is to conduct community-engaged, cluster-randomized pilots that pair senotherapeutics with neighborhood exposure abatement, use co-primary endpoints (multi-omic senescence signatures plus exposure indices), stratify by deprivation, apply adaptive dosing, and track affordability and access, yielding decision rules for scalable, equity-ready implementation.
Keywords:
Cellular Senescence Health Disparities p53 Senescence Senolytics Senomorphic Drugs
Article information
Journal
Journal of Life Science and Public Health
Volume (Issue)
1(2), (2025)
Pages
8-17
Published
Copyright
Copyright (c) 2025 Deborah Pelumi Fadipe, Oluwapelumi Hannah Sonoiki, Loveth Chinwendu Iwuala, Chinemerem David Akujuobi, Confidence Nkechineyerem Chikezie, Chinedu George Ezeah (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Abdelgawad, I. Y., Agostinucci, K., Sadaf, B., Grant, M. K. O., & Zordoky, B. N. (2023). Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in Doxorubicin-induced senescent endothelial cells. Frontiers in Aging, 4, 1170434. https://doi.org/10.3389/fragi.2023.1170434
Acar, M. B., Ayaz-Güner, Ş., Gunaydin, Z., Karakukcu, M., Peluso, G., Di Bernardo, G., Özcan, S., & Galderisi, U. (2021). Proteomic and Biological Analysis of the Effects of Metformin Senomorphics on the Mesenchymal Stromal Cells. Frontiers in Bioengineering and Biotechnology, 9, 730813. https://doi.org/10.3389/fbioe.2021.730813
Blagosklonny, M. V. (2018). Rapamycin, proliferation and geroconversion to senescence. Cell Cycle, 17(24), 2655–2665. https://doi.org/10.1080/15384101.2018.1554781
Calabrò, A., Accardi, G., Aiello, A., Caruso, C., Galimberti, D., & Candore, G. (2024). Senotherapeutics to Counteract Senescent Cells Are Prominent Topics in the Context of Anti-Ageing Strategies. International Journal of Molecular Sciences, 25(3), Article 3. https://doi.org/10.3390/ijms25031792
Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N. E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin-Burns, N., Krager, K., Ponnappan, U., Hauer-Jensen, M., Meng, A., & Zhou, D. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78–83. https://doi.org/10.1038/nm.4010
Cheng, F.-F., Liu, Y.-L., Du, J., & Lin, J.-T. (2022). Metformin’s Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging and Disease, 13(4), 970–986. https://doi.org/10.14336/AD.2021.1213
Demidenko, Z., Lg, K., Av, G., & Mv, B. (2010). Paradoxical suppression of cellular senescence by p53. Proceedings of the National Academy of Sciences of the United States of America, 107(21). https://doi.org/10.1073/pnas.1002298107
Duthie, S. J., Ma, A., Ross, M. A., & Collins, A. R. (1996). Antioxidant supplementation decreases oxidative DNA damage in human lymphocytes. Cancer Research, 56(6), 1291–1295.
Emeny, R. T., Carpenter, D. O., & Lawrence, D. A. (2021). Health disparities: Intracellular consequences of social determinants of health. Toxicology and Applied Pharmacology, 416, 115444. https://doi.org/10.1016/j.taap.2021.115444
Fujita, K. (2019). P53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. International Journal of Molecular Sciences, 20(23), 6023. https://doi.org/10.3390/ijms20236023
Gulej, R., Nyúl-Tóth, Á., Ahire, C., DelFavero, J., Balasubramanian, P., Kiss, T., Tarantini, S., Benyo, Z., Pacher, P., Csik, B., Yabluchanskiy, A., Mukli, P., Kuan-Celarier, A., Krizbai, I. A., Campisi, J., Sonntag, W. E., Csiszar, A., & Ungvari, Z. (2023). Elimination of senescent cells by treatment with Navitoclax/ABT263 reverses whole brain irradiation-induced blood-brain barrier disruption in the mouse brain. GeroScience, 45(5), 2983–3002. https://doi.org/10.1007/s11357-023-00870-x
Hickson, L. J., Langhi Prata, L. G. P., Bobart, S. A., Evans, T. K., Giorgadze, N., Hashmi, S. K., Herrmann, S. M., Jensen, M. D., Jia, Q., Jordan, K. L., Kellogg, T. A., Khosla, S., Koerber, D. M., Lagnado, A. B., Lawson, D. K., LeBrasseur, N. K., Lerman, L. O., McDonald, K. M., McKenzie, T. J., … Kirkland, J. L. (2019). Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 47, 446–456. https://doi.org/10.1016/j.ebiom.2019.08.069
Islam, M. T., Tuday, E., Allen, S., Kim, J., Trott, D. W., Holland, W. L., Donato, A. J., & Lesniewski, L. A. (2023). Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell, 22(2), e13767. https://doi.org/10.1111/acel.13767
Kivimäki, M., J, P., P, F., F, L., A, B., St, N., J, V., A, S.-M., T, W.-C., Ka, W., L, P., & Jv, L. (2025). Social disadvantage accelerates aging. Nature Medicine, 31(5). https://doi.org/10.1038/s41591-025-03563-4
Kudlova, N., De Sanctis, J. B., & Hajduch, M. (2022). Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. International Journal of Molecular Sciences, 23(8), 4168. https://doi.org/10.3390/ijms23084168
Lelarge, V., Capelle, R., Oger, F., Mathieu, T., & Le Calvé, B. (2024). Senolytics: From pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. Npj Aging, 10(1), 12. https://doi.org/10.1038/s41514-024-00138-4
Liu, Y., Sanoff, H. K., Cho, H., Burd, C. E., Torrice, C., Ibrahim, J. G., Thomas, N. E., & Sharpless, N. E. (2009). Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell, 8(4), 439–448. https://doi.org/10.1111/j.1474-9726.2009.00489.x
Luís, C., Maduro, A. T., Pereira, P., Mendes, J. J., Soares, R., & Ramalho, R. (2022). Nutritional senolytics and senomorphics: Implications to immune cells metabolism and aging – from theory to practice. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.958563
MacGuire, F. A. S. (2020). Reducing Health Inequalities in Aging Through Policy Frameworks and Interventions. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00315
Martic, I., Jansen-Dürr, P., & Cavinato, M. (2022). Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells, 11(14), 2220. https://doi.org/10.3390/cells11142220
Mayo Clinic Staff. (2021, June 9). Exercise Reduces Indicators of Senescent Cells in the Body. Mayo Clinic News Network. https://newsnetwork.mayoclinic.org/discussion/exercise-reduces-indicators-of-senescent-cells-in-the-body/
Mijit, M., Caracciolo, V., Melillo, A., Amicarelli, F., & Giordano, A. (2020). Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 10(3), 420. https://doi.org/10.3390/biom10030420
Moiseeva, O., Deschênes-Simard, X., St-Germain, E., Igelmann, S., Huot, G., Cadar, A. E., Bourdeau, V., Pollak, M. N., & Ferbeyre, G. (2013). Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell, 12(3), 489–498. https://doi.org/10.1111/acel.12075
Narasimhan, A., Flores, R. R., Camell, C. D., Bernlohr, D. A., Robbins, P. D., & Niedernhofer, L. J. (2022). Cellular Senescence in Obesity and Associated Complications: A New Therapeutic Target. Current Diabetes Reports, 22(11), 537–548. https://doi.org/10.1007/s11892-022-01493-w
Noren Hooten, N., Nl, P., Jt, S., & Mk, E. (2022). The accelerated aging phenotype: The role of race and social determinants of health on aging. Ageing Research Reviews, 73. https://doi.org/10.1016/j.arr.2021.101536
Nyunoya, T., Monick, M. M., Klingelhutz, A., Yarovinsky, T. O., Cagley, J. R., & Hunninghake, G. W. (2006). Cigarette Smoke Induces Cellular Senescence. American Journal of Respiratory Cell and Molecular Biology, 35(6), 681–688. https://doi.org/10.1165/rcmb.2006-0169oc
Oba, S., Inaba, Y., Shibuya, T., Oshima, J., Seyama, K., Kobayashi, T., Kunugita, N., & Ino, T. (2019). Changes in oxidative stress levels during two weeks of smoking cessation treatment and their association with nutritional characteristics in Japanese smokers. Experimental and Therapeutic Medicine, 17(4), 2757–2764. https://doi.org/10.3892/etm.2019.7252
Park, J., & Shin, D. W. (2022). Senotherapeutics and Their Molecular Mechanism for Improving Aging. Biomolecules & Therapeutics, 30(6), 490–500. https://doi.org/10.4062/biomolther.2022.114
Priemé, H., Loft, S., Klarlund, M., Grønbaek, K., Tønnesen, P., & Poulsen, H. E. (1998). Effect of smoking cessation on oxidative DNA modification estimated by 8-oxo-7,8-dihydro-2’-deoxyguanosine excretion. Carcinogenesis, 19(2), 347–351. https://doi.org/10.1093/carcin/19.2.347
Qin, T., Chen, T., Ma, R., Li, H., Li, C., Zhao, J., Yuan, J., Zhang, Z., & Ning, X. (2024). Stress Hormones: Unveiling the Role in Accelerated Cellular Senescence. Aging and Disease, 16(4), 1946–1970. https://doi.org/10.14336/AD.2024.0262
Ramírez, R., Ceprian, N., Figuer, A., Valera, G., Bodega, G., Alique, M., & Carracedo, J. (2022). Endothelial Senescence and the Chronic Vascular Diseases: Challenges and Therapeutic Opportunities in Atherosclerosis. Journal of Personalized Medicine, 12(2), Article 2. https://doi.org/10.3390/jpm12020215
Tavenier, J., Nehlin, J. O., Houlind, M. B., Rasmussen, L. J., Tchkonia, T., Kirkland, J. L., Andersen, O., & Rasmussen, L. J. H. (2024). Fisetin as a senotherapeutic agent: Evidence and perspectives for age-related diseases. Mechanisms of Ageing and Development, 222, 111995. https://doi.org/10.1016/j.mad.2024.111995
Wang, R., Yu, Z., Sunchu, B., Shoaf, J., Dang, I., Zhao, S., Caples, K., Bradley, L., Beaver, L. M., Ho, E., Löhr, C. V., & Perez, V. I. (2017). Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2‐independent mechanism. Aging Cell, 16(3), 564–574. https://doi.org/10.1111/acel.12587
Yousefzadeh, M. J., Zhu, Y., McGowan, S. J., Angelini, L., Fuhrmann-Stroissnigg, H., Xu, M., Ling, Y. Y., Melos, K. I., Pirtskhalava, T., Inman, C. L., McGuckian, C., Wade, E. A., Kato, J. I., Grassi, D., Wentworth, M., Burd, C. E., Arriaga, E. A., Ladiges, W. L., Tchkonia, T., … Niedernhofer, L. J. (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 36, 18–28. https://doi.org/10.1016/j.ebiom.2018.09.015
Zhang, X., Englund, D. A., Aversa, Z., Jachim, S. K., White, T. A., & LeBrasseur, N. K. (2022). Exercise Counters the Age-Related Accumulation of Senescent Cells. Exercise and Sport Sciences Reviews, 50(4), 213–221. https://doi.org/10.1249/JES.0000000000000302
Zhu, X., Zhang, C., Liu, L., Xu, L., & Yao, L. (2024). Senolytic combination of dasatinib and quercetin protects against diabetic kidney disease by activating autophagy to alleviate podocyte dedifferentiation via the Notch pathway. International Journal of Molecular Medicine, 53(3), 26. https://doi.org/10.3892/ijmm.2024.5350
Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., Pirtskhalava, T., Giorgadze, N., Johnson, K. O., Giles, C. B., Wren, J. D., Niedernhofer, L. J., Robbins, P. D., & Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell, 15(3), 428–435. https://doi.org/10.1111/acel.12445
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline