Research Article

Mental-Health Crisis Prediction in U.S. Veterans: Opportunities and Pitfalls of Machine-Learning on VA–DoD Data

Authors

Abstract

One of the most urgent public health issues facing American veterans is mental health issues and suicide. Leveraging large-scale Department of Veterans Affairs (VA) and Department of Defense (DoD) data, machine learning (ML) models offer a complementary approach to traditional screening by mining high-dimensional electronic health records, administrative registers, and clinical text. This narrative review synthesizes developments from 2015 to 2025 in ML-based prediction of suicidal behavior and related crises among veterans. Key findings indicate moderate but clinically useful discrimination across studies; for example, operational deployment of VA risk modeling concentrated risk such that the top 1% of risk scores contained roughly 10.7% of subsequent suicides, enabling targeted outreach. ML approaches can improve identification of at-risk veterans and strengthen preventive workflows, yet translation is limited by false positives, algorithmic bias, data integration challenges, and uncertain impact on mortality. The review discusses veteran-specific risk factors, data infrastructure, modeling paradigms, validation evidence, and ethical governance, and concludes with recommendations to prioritize prospective evaluation, equity audits, and integration strategies that couple prediction with effective intervention.

Keywords:

Crisis Prediction Machine-Learning Mental-Health VA–DoD

Article information

Journal

Journal of Life Science and Public Health

Volume (Issue)

1(2), (2025)

Pages

18-28

Published

04-10-2025

How to Cite

Adediran, G. A., Okhueigbe, A. A., Otaigboria, R. E., Agu, C. P., & Dogbanya, G. (2025). Mental-Health Crisis Prediction in U.S. Veterans: Opportunities and Pitfalls of Machine-Learning on VA–DoD Data. Journal of Life Science and Public Health, 1(2), 18-28. https://doi.org/10.69739/jlsph.v1i2.975

References

Alemi, F., Avramovic, S., Renshaw, K. D., Kanchi, R., & Schwartz, M. (2020). Relative accuracy of social and medical determinants of suicide in electronic health records. Health Services Research, 55(Suppl 2), 833–840. https://doi.org/10.1111/1475-6773.13540

Bahraini, N., Reis, D. J., Matarazzo, B. B., Hostetter, T., Wade, C., & Brenner, L. A. (2022). Mental health follow-up and treatment engagement following suicide risk screening in the Veterans Health Administration. PLoS ONE, 17(3), e0265474. https://doi.org/10.1371/journal.pone.0265474

Carter, G., Milner, A., McGill, K., Pirkis, J., Kapur, N., & Spittal, M. J. (2017). Predicting suicidal behaviours using clinical instruments: Systematic review and meta-analysis of positive predictive values for risk scales. The British Journal of Psychiatry: The Journal of Mental Science, 210(6), 387–395. https://doi.org/10.1192/bjp.bp.116.182717

Dhaubhadel, S., Ganguly, K., Ribeiro, R. M., Cohn, J. D., Hyman, J. M., Hengartner, N. W., Kolade, B., Singley, A., Bhattacharya, T., Finley, P., Levin, D., Thelen, H., Cho, K., Costa, L., Ho, Y.-L., Justice, A. C., Pestian, J., Santel, D., Zamora-Resendiz, R., … McMahon, B. H. (2024). High dimensional predictions of suicide risk in 4.2 million US Veterans using ensemble transfer learning. Scientific Reports, 14(1), 1793. https://doi.org/10.1038/s41598-024-51762-9

Graham, E. (2024, October 18). VA is updating its AI suicide risk model to reach more women. Nextgov.Com. https://www.nextgov.com/artificial-intelligence/2024/10/va-updating-its-ai-suicide-risk-model-reach-more-women/400377/

Huang, S., Lewis, M. O., Bao, Y., Adekkanattu, P., Adkins, L. E., Banerjee, S., Bian, J., Gellad, W. F., Goodin, A. J., Luo, Y., Fairless, J. A., Walunas, T. L., Wilson, D. L., Wu, Y., Yin, P., Oslin, D. W., Pathak, J., & Lo-Ciganic, W.-H. (2022). Predictive Modeling for Suicide-Related Outcomes and Risk Factors among Patients with Pain Conditions: A Systematic Review. Journal of Clinical Medicine, 11(16), 4813. https://doi.org/10.3390/jcm11164813

Kessler, R. C., Hwang, I., Hoffmire, C. A., McCarthy, J. F., Petukhova, M. V., Rosellini, A. J., Sampson, N. A., Schneider, A. L., Bradley, P. A., Katz, I. R., Thompson, C., & Bossarte, R. M. (2017). Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration. International Journal of Methods in Psychiatric Research, 26(3), e1575. https://doi.org/10.1002/mpr.1575

Martinez, C., Levin, D., Jones, J., Finley, P. D., McMahon, B., Dhaubhadel, S., Cohn, J., Million Veteran Program, MVP Suicide Exemplar Workgroup, Oslin, D. W., Kimbrel, N. A., & Beckham, J. C. (2023). Deep sequential neural network models improve stratification of suicide attempt risk among US veterans. Journal of the American Medical Informatics Association: JAMIA, 31(1), 220–230. https://doi.org/10.1093/jamia/ocad167

Matarazzo, B. B., Eagan, A., Landes, S. J., Mina, L. K., Clark, K., Gerard, G. R., McCarthy, J. F., Trafton, J., Bahraini, N. H., Brenner, L. A., Keen, A., Gamble, S. A., Lawson, W. C., Katz, I. R., & Reger, M. A. (2023). The Veterans Health Administration REACH VET Program: Suicide Predictive Modeling in Practice. Psychiatric Services, 74(2), 206–209. https://doi.org/10.1176/appi.ps.202100629

McCarthy, J. F., Cooper, S. A., Dent, K. R., Eagan, A. E., Matarazzo, B. B., Hannemann, C. M., Reger, M. A., Landes, S. J., Trafton, J. A., Schoenbaum, M., & Katz, I. R. (2021). Evaluation of the Recovery Engagement and Coordination for Health-Veterans Enhanced Treatment Suicide Risk Modeling Clinical Program in the Veterans Health Administration. JAMA Network Open, 4(10), e2129900. https://doi.org/10.1001/jamanetworkopen.2021.29900

Meerwijk, E. L., Finlay, A. K., & Harris, A. H. S. (2025). Retraining the veterans health administration’s REACH VET suicide risk prediction model for patients involved in the legal system. Npj Mental Health Research, 4(1), 29. https://doi.org/10.1038/s44184-025-00143-9

Miché, M., Strippoli, M.-P. F., Preisig, M., & Lieb, R. (2024). Evaluating the clinical utility of an easily applicable prediction model of suicide attempts, newly developed and validated with a general community sample of adults. BMC Psychiatry, 24(1), 217. https://doi.org/10.1186/s12888-024-05647-w

Ramchand, R., & Montoya, T. (2025). Suicide Among Veterans. https://www.rand.org/pubs/perspectives/PEA1363-1-v2.html

Shortreed, S. M., Walker, R. L., Johnson, E., Wellman, R., Cruz, M., Ziebell, R., Coley, R. Y., Yaseen, Z. S., Dharmarajan, S., Penfold, R. B., Ahmedani, B. K., Rossom, R. C., Beck, A., Boggs, J. M., & Simon, G. E. (2023). Complex modeling with detailed temporal predictors does not improve health records-based suicide risk prediction. Npj Digital Medicine, 6(1), 47. https://doi.org/10.1038/s41746-023-00772-4

Smith, E. G., Kim, H. M., Ganoczy, D., Stano, C., Pfeiffer, P. N., & Valenstein, M. (2013). Suicide risk assessment received prior to suicide death by Veterans Health Administration patients with a history of depression. The Journal of Clinical Psychiatry, 74(3), 226–232. https://doi.org/10.4088/JCP.12m07853

U. S. Government Accountability. (2022, September 14). Veteran Suicide: VA Efforts to Identify Veterans at Risk through Analysis of Health Record Information | U.S. GAO. U.S. Government Accountability Office. https://www.gao.gov/products/gao-22-105165

VA News. (2017, April 3). VA REACH VET Initiative Helps Save Veterans Lives: Program Signals When More Help Is Needed for At-risk Veterans - VA News. U.S. Department of Veterans Affairs. https://news.va.gov/press-room/va-reach-vet-initiative-helps-save-veterans-lives-program-signals-when-more-help-is-needed-for-at-risk-veterans

VA News. (2018, October 9). Identifying Veterans at highest risk for suicide—VA News. U.S. Department of Veterans Affairs. https://news.va.gov/53076/identifying-veterans-highest-risk-suicide/

VA News. (2024, December 19). VA releases 2024 National Veteran Suicide Prevention Annual Report—VA News. https://news.va.gov/137221/va-2024-suicide-prevention-annual-report/

Veterans Affairs. (2022, April). Joint Longitudinal Viewer (JLV) 3.0.0.0.2. https://www.va.gov/vdl/documents/Clinical/Joint_Longitudinal_Viewer_%28JLV%29/jlv_3_0_0_0_2_aws_cloud_pom.pdf

Wisco, B. E., Nomamiukor, F. O., Marx, B. P., Krystal, J. H., Southwick, S. M., & Pietrzak, R. H. (2022). Posttraumatic Stress Disorder in US Military Veterans: Results From the 2019-2020 National Health and Resilience in Veterans Study. The Journal of Clinical Psychiatry, 83(2), 20m14029. https://doi.org/10.4088/JCP.20m14029

Zhang, Y., Wei, Y., Wang, Y., Xiao, Y., Poropatich, C. Ret. R. K., Haas, G. L., Zhang, Y., Weng, C., Liu, J., Brenner, L. A., Bjork, J. M., & Peng, Y. (2025). Machine learning applications related to suicide in military and Veterans: A scoping literature review. Journal of Biomedical Informatics, 167, 104848. https://doi.org/10.1016/j.jbi.2025.104848

Zuromski, K. L., Low, D. M., Jones, N. C., Kuzma, R., Kessler, D., Zhou, L., Kastman, E. K., Epstein, J., Madden, C., Ghosh, S. S., Gowel, D., & Nock, M. K. (2024). Detecting suicide risk among U.S. servicemembers and veterans: A deep learning approach using social media data. Psychological Medicine, 54(12), 3379–3388. https://doi.org/10.1017/S0033291724001557

Downloads

Views

0

Downloads

0