Review Article

Stochastic Modeling for Wind–Solar Power Forecasting: Uncertainty‑Driven Risk Decisions in Modern Grids

Authors

  • Bukunmi Odunlami Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

    odunlamibukunmi@gmail.com

  • Clinton Arthur Department of Chemistry, Eastern New Mexico University, Portales, NM, USA
  • Alichi Kelechi Udeagha Department of Computer Science, Monroe University, NY, USA

Abstract

The rapid rise of wind and solar capacity has transformed power generation but introduced severe forecasting uncertainty. Variable renewable production can swing from minutes to days, creating operational and economic risks for grids built around predictable dispatch. This narrative review surveys stochastic modeling techniques for wind and solar power forecasting published between 2015 and 2025, covering time‑series, spatial–temporal, hybrid, and deep learning approaches. Comparative evidence shows that autoregressive and Kalman‑filter models provide interpretable benchmarks yet struggle with non‑linearities; copula and vine‑copula schemes better capture spatial dependence; hybrid schemes that fuse numerical weather prediction with machine learning significantly reduce forecast errors; and emerging non‑stationary Gaussian processes and generative models further improve probabilistic accuracy. Persistent gaps include limited cross‑regional validation, short training periods, and inconsistent evaluation metrics. The review suggests that risk‑aware scheduling can leverage these probabilistic forecasts for chance‑constrained reserves and conditional‑value‑at‑risk unit commitment, enabling more reliable and economical integration of wind and solar power.

Keywords:

Power Forecasting Power Generation Stochastic Modeling Wind–Solar

Article information

Journal

Scientific Journal of Engineering, and Technology

Volume (Issue)

2(2), (2025)

Pages

107-113

Published

18-09-2025

How to Cite

Odunlami, B., Arthur, C., & Udeagha, A. K. (2025). Stochastic Modeling for Wind–Solar Power Forecasting: Uncertainty‑Driven Risk Decisions in Modern Grids. Scientific Journal of Engineering, and Technology, 2(2), 107-113. https://doi.org/10.69739/sjet.v2i2.1014

References

Ahmed, U., Muhammad, R., Abbas, S. S., Aziz, I., & Mahmood, A. (2024). Short-term wind power forecasting using integrated boosting approach. Frontiers in Energy Research, 12. https://doi.org/10.3389/fenrg.2024.1401978 DOI: https://doi.org/10.3389/fenrg.2024.1401978

Ait Mouloud, L., Kheldoun, A., Oussidhoum, S., Alharbi, H., Alotaibi, S., Alzahrani, T., & Agajie, T. F. (2025). Seasonal quantile forecasting of solar photovoltaic power using Q-CNN-GRU. Scientific Reports, 15, 27270. https://doi.org/10.1038/s41598-025-12797-8 DOI: https://doi.org/10.1038/s41598-025-12797-8

Arnold, S., Walz, E.-M., Ziegel, J., & Gneiting, T. (2023). Decompositions of the mean continuous ranked probability score (No. arXiv:2311.14122). arXiv. https://doi.org/10.48550/arXiv.2311.14122 DOI: https://doi.org/10.1214/24-EJS2316

Bienstock, D., Chertkov, M., & Harnett, S. (2014). Chance-constrained optimal power flow: Risk-aware network control under uncertainty. Siam Review, 56(3), 461-495. https://doi.org/10.1137/130910312 DOI: https://doi.org/10.1137/130910312

Chen, X., Han, J., Zheng, T., Zhang, P., Duan, S., & Miao, S. (2019). A Vine-Copula Based Voltage State Assessment with Wind Power Integration. Energies, 12(10), Article 10. https://doi.org/10.3390/en12102019 DOI: https://doi.org/10.3390/en12102019

Cheng, J., Chen, R. L.-Y., Najm, H. N., Pinar, A., Safta, C., & Watson, J.-P. (2018). Chance-constrained economic dispatch with renewable energy and storage. Computational Optimization and Applications, 70(2), 479–502. DOI: https://doi.org/10.1007/s10589-018-0006-2

Deng, Z., Zhang, X., Li, Z., Yang, J., Lv, X., Wu, Q., & Zhu, B. (2024). Probabilistic prediction of wind power based on improved Bayesian neural network. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1309778 DOI: https://doi.org/10.3389/fenrg.2023.1309778

Ember. (2024). Report Global Electricity Review 2024. https://ember-energy.org/app/uploads/2024/05/Report-Global-Electricity-Review-2024.pdf

Ezzat, A. A., Jun, M., & Ding, Y. (2019). Spatio-temporal short-term wind forecast: a calibrated regime-switching method. The Annals of Applied Statistics, 13(3), 1484. https://doi.org/10.1214/19-aoas1243 DOI: https://doi.org/10.1214/19-AOAS1243

Gijón, A., Pujana-Goitia, A., Perea, E., Molina-Solana, M., & Gómez-Romero, J. (2023). Prediction of wind turbines power with physics-informed neural networks and evidential uncertainty quantification (No. arXiv:2307.14675). arXiv. https://doi.org/10.48550/arXiv.2307.14675

Gneiting, T., & Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association, 102(477), 359–378. https://doi.org/10.1198/016214506000001437 DOI: https://doi.org/10.1198/016214506000001437

Hatalis, K., Lamadrid, A. J., Scheinberg, K., & Kishore, S. (2017). Smooth Pinball Neural Network for Probabilistic Forecasting of Wind Power (No. arXiv:1710.01720). arXiv. https://doi.org/10.48550/arXiv.1710.01720

Henze, J., Siefert, M., Bremicker-Trübelhorn, S., Asanalieva, N., & Sick, B. (2020). Probabilistic upscaling and aggregation of wind power forecasts. Energy, Sustainability and Society, 10(1), 15. https://doi.org/10.1186/s13705-020-00247-4 DOI: https://doi.org/10.1186/s13705-020-00247-4

Hong, T., Pinson, P., & Fan, S. (2014). Global Energy Forecasting Competition 2012. International Journal of Forecasting, 30(2), 357–363. https://doi.org/10.1016/j.ijforecast.2013.07.001 DOI: https://doi.org/10.1016/j.ijforecast.2013.07.001

Idema, R., Papaefthymiou, G., Lahaye, D., Vuik, C., & van der Sluis, L. (2013). Towards Faster Solution of Large Power Flow Problems. IEEE Transactions on Power Systems, 28(4), 4918–4925. https://doi.org/10.1109/TPWRS.2013.2252631 DOI: https://doi.org/10.1109/TPWRS.2013.2252631

Ladopoulou, D., Hong, D. M., & Dellaportas, P. (2025). Probabilistic Wind Power Forecasting via Non-Stationary Gaussian Processes (No. arXiv:2505.09026; Version 1). arXiv. https://doi.org/10.48550/arXiv.2505.09026

Leutbecher, M. (2023). Ensemble Verification II.

Lew, D., & Milligan, M. (2011). The Value of Wind Power Forecasting.

Liu, Y., Zheng, Z., Cheng, J., Tsung, F., Zhao, D., Rong, Y., & Li, J. (2025). CirT: Global Subseasonal-to-Seasonal Forecasting with Geometry-inspired Transformer (No. arXiv:2502.19750). arXiv. https://doi.org/10.48550/arXiv.2502.19750

Nowotarski, J., & Weron, R. (2018). Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81, 1548–1568. https://doi.org/10.1016/j.rser.2017.05.234 DOI: https://doi.org/10.1016/j.rser.2017.05.234

Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Cañizares, C. A., Iravani, R., Kazerani, M., Hajimiragha, A. H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., Jiménez-Estévez, G. A., & Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905–1919. https://doi.org/10.1109/TSG.2013.2295514 DOI: https://doi.org/10.1109/TSG.2013.2295514

Pacific Northwest National Laboratory. (n.d.). GridLAB-DTM. Pacific Northwest National Laboratory. Retrieved July 31, 2025, from https://www.pnnl.gov/available-technologies/gridlab-dtm

Roald, L., Misra, S., Chertkov, M., Backhaus, S., & Andersson, G. (2016). Chance Constrained Optimal Power Flow with Curtailment and Reserves from Wind Power Plants (No. arXiv:1601.04321). arXiv. https://doi.org/10.48550/arXiv.1601.04321

Springenberg, M., Otero, N., Xue, Y., & Ma, J. (2025). DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models (No. arXiv:2503.23893). arXiv. https://doi.org/10.48550/arXiv.2503.23893 DOI: https://doi.org/10.5194/egusphere-egu25-1650

Tyass, I., Bellat, A., Raihani, A., Mansouri, K., & Khalili, T. (2022). Wind Speed Prediction Based on Seasonal ARIMA model. E3S Web of Conferences, 336, 00034. https://doi.org/10.1051/e3sconf/202233600034 DOI: https://doi.org/10.1051/e3sconf/202233600034

Wang, H. (2023). Extreme learning Kalman filter for short-term wind speed prediction. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.1047381 DOI: https://doi.org/10.3389/fenrg.2022.1047381

Xie, Y., Li, C., Li, M., Liu, F., & Taukenova, M. (2022). An overview of deterministic and probabilistic forecasting methods of wind energy. iScience, 26(1), 105804. https://doi.org/10.1016/j.isci.2022.105804 DOI: https://doi.org/10.1016/j.isci.2022.105804

Yuan, R., Wang, B., Mao, Z., & Watada, J. (2021). Multi-objective wind power scenario forecasting based on PG-GAN. Energy, 226(C). https://ideas.repec.org//a/eee/energy/v226y2021ics0360544221006289.html DOI: https://doi.org/10.1016/j.energy.2021.120379

Zhang, Y., & Giannakis, G. B. (2013). Robust Optimal Power Flow with Wind Integration Using Conditional Value-at-Risk (No. arXiv:1310.7292). arXiv. https://doi.org/10.48550/arXiv.1310.7292 DOI: https://doi.org/10.1109/SmartGridComm.2013.6688033

Zhu, Z., Xu, Y., Wu, J., Liu, Y., Guo, J., & Zang, H. (2022). Wind power probabilistic forecasting based on combined decomposition and deep learning quantile regression. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.937240 DOI: https://doi.org/10.3389/fenrg.2022.937240

Downloads

Views

17

Downloads

9