Research Article

SABViT: A Pilot Feasibility Study of a Self-Attention-Based Vision Transformer for Binary Brain Tumor Detection in MRI

Authors

  • Clive Asuai Department of Computer Science, Delta State Polytechnic, Otefe-Oghara, Nigeria https://orcid.org/0000-0002-0225-1423

    clive.asuai@delsu.edu.ng

  • Andrew Mayor Department of statistics, Delta State Polytechnic, Otefe-Oghara, Nigeria
  • Daniel Ezekiel Ogheneochuko Department of Computer Science, Delta State Polytechnic, Otefe-Oghara, Nigeria
  • Ayigbe Prince Arinomor Department of Computer Science, Delta State Polytechnic, Otefe-Oghara, Nigeria
  • Ugu Sunday Department of Computer Science, Delta State Polytechnic, Otefe-Oghara, Nigeria

Abstract

The accurate and timely identification of brain tumors is crucial for effective diagnosis and treatment planning; however, the manual interpretation of MRI scans continues to be difficult and susceptible to errors. Although convolutional neural networks (CNNs) have made strides in automated classification, their dependence on local feature processing can restrict overall effectiveness. As an initial exploration, this pilot study introduces a Vision Transformer (ViT) model that utilizes self-attention mechanisms to capture both long-range global contexts and detailed local dependencies within image data, facilitating a more thorough feature representation that is vital for detecting subtle pathological patterns. Trained and assessed on a pilot dataset comprising 3,000 MRI images with significant augmentation, the proposed ViT model attained a promising preliminary accuracy of 99.73%, surpassing established CNN-based architectures such as ResNet-50, VGG-16, and EfficientNet-B0 across all evaluation metrics within the constraints of this binary classification task. These feasibility results not only highlight the potential of ViTs for brain tumor classification but also effectively validate the fundamental data processing and model fine-tuning pipeline. The study points out critical limitations, including dataset scale and model explainability, which directly influence the design of a forthcoming large-scale, multi-institutional research initiative. This pilot research lays a foundational framework for the integration of transformer-based models into medical imaging workflows to enhance diagnostic accuracy.

Keywords:

Brain Tumor Classification Data Augmentation Deep Learning Medical Imaging Self-Attention Vision Transformer

Article information

Journal

Scientific Journal of Engineering, and Technology

Volume (Issue)

2(2), (2025)

Pages

119-127

Published

12-10-2025

How to Cite

Asuai, C., Mayor, A., Ogheneochuko, D. E., Arinomor, A. P., & Sunday, U. (2025). SABViT: A Pilot Feasibility Study of a Self-Attention-Based Vision Transformer for Binary Brain Tumor Detection in MRI. Scientific Journal of Engineering, and Technology, 2(2), 119-127. https://doi.org/10.69739/sjet.v2i2.1041

References

Aamir, M., Rahman, Z., Bhatti, U. A., Khan, J. A., Shah, M. A., Zeeshan, M., & He, Z. (2025). An automated deep learning framework for brain tumor classification using MRI imagery. Scientific Reports, 15(1), 17593. https://doi.org/10.1038/s41598-025-02209-2 DOI: https://doi.org/10.1038/s41598-025-02209-2

Abdusalomov, A. B., Mukhiddinov, M., & Whangbo, T. K. (2023). Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers, 15(16), 4172. https://doi.org/10.3390/cancers15164172 DOI: https://doi.org/10.3390/cancers15164172

Akazue, M. I., Debekeme, I. A., Edje, A. E., Asuai, C., & Osame, U. J. (2023). Unmasking fraudsters: Ensemble features selection to enhance random forest fraud detection. Journal of Computer and Theoretical Applications, 1(2), 201–211. https://doi.org/10.33633/jcta.v1i2.9462 DOI: https://doi.org/10.33633/jcta.v1i2.9462

Asuai, C., Arinomor, A. P., Atumah, C. T., Kowhoro, I. F., Ogheneochuko, D. E. (2025). Hybrid CNN-LSTM Architectures for Deepfake Audio Detection Using Mel Frequency Cepstral Coefficients and Spectogram Analysis. American Journal of Mathematical and Computer Modelling, 10(3), 98-109. https://doi.org/10.11648/j.ajmcm.20251003.12 DOI: https://doi.org/10.11648/j.ajmcm.20251003.12

Asuai, C., Mayor, A., Ezzeh, P. O., Hosni, H., Agajere Joseph-Brown, A., Merit, I. A., & Debekeme, I. (2025). Enhancing DDoS detection via 3ConFA feature fusion and 1D convolutional neural networks. Journal of Future Artificial Intelligence and Technologies, 2(1), 145–162. https://doi.org/10.62411/faith.3048-3719-105 DOI: https://doi.org/10.62411/faith.3048-3719-105

Asuai, C. E., & Giroh, G. Y. (2023). Enhanced brain tumor image classification using convolutional neural network with attention mechanism. International Journal of Trend in Research and Development, 10(6), 178–184.

Aswani, K., & Menaka, D. (2021). A dual autoencoder and singular value decomposition based feature optimization for the segmentation of brain tumor from MRI images. BMC Medical Imaging, 21(1), 82. https://doi.org/10.1186/s12880-021-00614-3 DOI: https://doi.org/10.1186/s12880-021-00614-3

Clive, A., & Gideon, G. (2023). Enhanced brain tumor image classification using convolutional neural network with attention mechanism. International Journal of Trend in Research and Development (IJTRD), 10(6), 5.

Clive, A., Atumah, C. T., & Agajere Joseph-Brown, A. (2025). An improved framework for predictive maintenance in Industry 4.0 and 5.0 using synthetic IoT sensor data and boosting regressor for oil and gas operations. International Journal of Latest Technology in Engineering, Management & Applied Science, 14(4), 383–395. https://doi.org/10.51583/IJLTEMAS.2025.140400041 DOI: https://doi.org/10.51583/IJLTEMAS.2025.140400041

Clive, A., Nana, O. K., & Destiny, I. E. (2024). Optimizing credit card fraud detection: A multi-algorithm approach with artificial neural networks and gradient boosting model. International Research Journal of Modern Engineering Technology and Science, 6(12), 2582–5208.

Dong, T. H. K., Canas, L. S., Donovan, J., Beasley, D., Thuong-Thuong, N. T., Phu, N. H., … Modat, M. (2025). Convolutional neural network using magnetic resonance brain imaging to predict outcome from tuberculosis meningitis. PLOS ONE, 20(5), e0321655. https://doi.org/10.1371/journal.pone.0321655 DOI: https://doi.org/10.1371/journal.pone.0321655

Gao, P., Shan, W., Guo, Y., Wang, Y., Sun, R., Cai, J., Li, H., Chan, R. C. K., Qi, L., Zhang, L., Wang, J., & Zhou, J. (2022). Development and validation of a deep learning model for brain tumor diagnosis and classification using magnetic resonance imaging. JAMA Network Open, 5(8), e2225608. https://doi.org/10.1001/jamanetworkopen.2022.25608 DOI: https://doi.org/10.1001/jamanetworkopen.2022.25608

Gasmi, K., Ben Aoun, N., Alsalem, K., Ben Ltaifa, I., Alrashdi, I., Ben Ammar, L., Mrabet, M., & Shehab, A. (2024). Enhanced brain tumor diagnosis using combined deep learning models and weight selection technique. Frontiers in Neuroinformatics, 18, 1444650. https://doi.org/10.3389/fninf.2024.1444650 DOI: https://doi.org/10.3389/fninf.2024.1444650

Gunasekaran, S., Mercy Bai, P. S., Mathivanan, S. K., Rajadurai, H., Shivahare, B. D., & Shah, M. A. (2024). Automated brain tumor diagnostics: Empowering neuro-oncology with deep learning-based MRI image analysis. PLoS ONE, 19(8), e0306493. https://doi.org/10.1371/journal.pone.0306493 DOI: https://doi.org/10.1371/journal.pone.0306493

Jamshidi, B., & Rostamy-MalKhalifeh, M. (2024). Diagnosing, classifying, and predicting brain tumors from MRI images using VGG-19 and ANN transfer learning. Series of Internal Medicine, 1(1).

Joshi, S., Pandey, M. K., Solanki, B., Rajput, P. K., Singh, M. S., Praveen, H., & Gurav, M. (2024). Magnetic Resonance Imaging (MRI) Insights into Brain Morphology and Connectivity Disruptions in Schizophrenia. International Neuropsychiatric Disease Journal, 21(3), 6-10. https://doi.org/10.9734/indj/2024/v21i3431 DOI: https://doi.org/10.9734/indj/2024/v21i3431

Khaliki, M. Z., & Başarslan, M. S. (2024). Brain tumor detection from images and comparison with transfer learning methods and 3-layer CNN. Scientific Reports, 14(1), 2664. https://doi.org/10.1038/s41598-024-53197-4 DOI: https://doi.org/10.1038/s41598-024-52823-9

Kumar, K., Jyoti, K., & Kumar, K. (2024). Machine learning for brain tumor classification: Evaluating feature extraction and algorithm efficiency. Discover Artificial Intelligence, 4(1), 112. https://doi.org/10.1007/s44163-024-00214-4 DOI: https://doi.org/10.1007/s44163-024-00214-4

Lakshmi, K., Amaran, S., Subbulakshmi, G., Padmini, S., Joshi, G. P., & Cho, W. (2025). Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images. Scientific Reports, 15(1), 690. https://doi.org/10.1038/s41598-024-84692-7 DOI: https://doi.org/10.1038/s41598-024-84692-7

Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., ... & Ellison, D. W. (2021). The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncology, 23(8), 1231-1251. https://doi.org/10.1093/neuonc/noab106. DOI: https://doi.org/10.1093/neuonc/noab106

Naceur, M. B., Saouli, R., Akil, M., & Kachouri, R. (2018). Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Computer Methods and Programs in Biomedicine, 166, 39–49. https://doi.org/10.1016/j.cmpb.2018.09.007 DOI: https://doi.org/10.1016/j.cmpb.2018.09.007

Nayak, D. R., Padhy, N., Mallick, P. K., Zymbler, M., & Kumar, S. (2022). Brain tumor classification using dense Efficient-Net. Axioms, 11(1), Article 34. https://doi.org/10.3390/axioms11010034 DOI: https://doi.org/10.3390/axioms11010034

Nikmah, T. L., Syafei, R. M., Anisa, D. N., Juanara, E., & Mahrus, Z. (2024). Inception ResNet v2 for early detection of breast cancer in ultrasound images. Journal of Information System Exploration and Research, 2(2). https://doi.org/10.52465/joiser.v2i2. DOI: https://doi.org/10.52465/joiser.v2i2.439

Ragab, M., Katib, I., Sharaf, S. A., Alshmrany, S., Al-Johani, H., & Alyami, J. (2024). Automated brain tumor recognition using equilibrium optimizer with deep learning approach on MRI images. Scientific Reports, 14(1), 29448. https://doi.org/10.1038/s41598-024-80888-z DOI: https://doi.org/10.1038/s41598-024-80888-z

Raghuvanshi, S., & Dhariwal, S. (2023). The VGG16 method is a powerful tool for detecting brain tumors using deep learning techniques. Engineering Proceedings, 59(1), Article 46. https://doi.org/10.3390/engproc2023059046 DOI: https://doi.org/10.3390/engproc2023059046

Rasool, N., Wani, N. A., Bhat, J. I., Saharan, S., Sharma, V. K., Alsulami, B. S., Alsharif, H., & Lytras, M. D. (2025). CNN-TumorNet: Leveraging explainability in deep learning for precise brain tumor diagnosis on MRI images. Frontiers in Oncology, 15, 1554559. https://doi.org/10.3389/fonc.2025.1554559 DOI: https://doi.org/10.3389/fonc.2025.1554559

Rastogi, D., Johri, P., Donelli, M., Kumar, L., Bindewari, S., Raghav, A., & Khatri, S. K. (2025). Brain tumor detection and prediction in MRI images utilizing a fine-tuned transfer learning model integrated within deep learning frameworks. Life, 15(3), 327. https://doi.org/10.3390/life15030327 DOI: https://doi.org/10.3390/life15030327

Rath, A., Mishra, B. S. P., & Bagal, D. K. (2025). ResNet50-based deep learning model for accurate brain tumor detection in MRI scans. Next Research, 2(1), Article 100104. https://doi.org/10.1016/j.nexres.2024.100104 DOI: https://doi.org/10.1016/j.nexres.2024.100104

Saeedi, S., Rezayi, S., Keshavarz, H., & Niakan Kalhori, S. R. (2023). MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 23(1), 16. https://doi.org/10.1186/s12911-023-02114-6 DOI: https://doi.org/10.1186/s12911-023-02114-6

Salakapuri, R., Terlapu, P. V., Kalidindi, K. R., Kumar, A. S., Pamula, R., & Polasi, L. (2025). Intelligent brain tumor detection using hybrid finetuned deep transfer features and ensemble machine learning algorithms. Scientific Reports, 15(1), 23899. https://doi.org/10.1038/s41598-025-08689-6 DOI: https://doi.org/10.1038/s41598-025-08689-6

Srikanth, S. P., Prakash Babu, G., Likhitha, V., Manu, C. K., Meghana, M. R., & Muskan. (2025). Brain tumor detection using deep convolutional neural network. Middle East Research Journal of Engineering and Technology, 5(1).

Yakkundi, A., Gupta, R., Ramesh, K., Verma, A., Khan, U., & Ansari, M. A. (2024). Implications of convolutional neural network for brain MRI image classification to identify Alzheimer’s disease. Parkinson’s Disease, 2024, 6111483. https://doi.org/10.1155/2024/6111483 DOI: https://doi.org/10.1155/2024/6111483

Zubair Rahman, A. M. J., Gupta, M., Aarathi, S., Raj, R. J. D., & Goyal, L. M. (2024). Advanced AI-driven approach for enhanced brain tumor detection from MRI images utilizing EfficientNetB2 with equalization and homomorphic filtering. BMC Medical Informatics and Decision Making, 24(1), 113. DOI: https://doi.org/10.1186/s12911-024-02519-x

Downloads

Views

0

Downloads

0