Research Article

Finite Element Analysis and Factorial Optimization of Heat Treatment Flaws in CNG Pressure Vessels: Implications for Structural Integrity and Safety

Authors

  • Elisha B. Jugu Department of Mechanical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
  • Ifeanyichukwu U. Onyenanu Department of Mechanical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria

    iu.onyenanu@coou.edu.ng

  • Chiedozie C. Nwobi-Okoye Department of Mechanical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria

Abstract

This study investigates the critical impact of heat treatment flaws on the structural integrity and safety of compressed natural gas (CNG) pressure vessels made from Al 6061 and AISI 4130 steel through finite element analysis (FEA) in SolidWorks 2023 and factorial design optimization via Design Expert 13. Simulations were conducted under pressures of 20, 25, and 30 N/mm² with varying flaw severities (none, minor, major), revealing that AISI 4130 steel at 25 N/mm² exhibited a maximum stress of 2.998E+10 N/m², deformation of 15.14 mm, and a safety factor of 0.01534, while Al 6061 at 20 N/mm² showed 1.412E+4 N/mm² stress, 14.70 mm deformation, and a safety factor of 0.01948. At 30 N/mm², AISI 4130 steel demonstrated increased risk with stress reaching 1.814E+4 N/mm², deformation of 18.30 mm, and a safety factor of 0.01516, accompanied by a strain of 1.511E-01. ANOVA results indicated that pressure significantly influenced deformation (p = 0.0382) and safety factor (p = 0.0051), while heat treatment flaws impacted stress (p = 0.0381). Fatigue life varied from 8.00E+05 cycles (AISI 4130 steel, 30 N/mm², minor flaws) to 3.1E+06 cycles (Al 6061, 25 N/mm², no flaws), with all factors showing high significance (p < 0.0001). The optimal configuration—Al 6061, no flaws, and 30 N/mm²—yielded a stress of 3.41E+10 Pa, fatigue life of 2.5E+06 cycles, deformation of 32.366 mm, and a desirability score of 1.000. These findings underscore the importance of minimizing heat treatment flaws and controlling operational pressures below 30 N/mm² to enhance vessel safety and durability, offering valuable insights for design optimization and regulatory standards in sustainable energy applications.

Keywords:

CNG Pressure Vessels Finite Element Analysis Heat Treatment Material Durability Optimization Residual Stress Analysis

Article information

Journal

Scientific Journal of Engineering, and Technology

Volume (Issue)

2(1), (2025)

Pages

67-78

Published

01-05-2025

How to Cite

Jugu, E. B., Onyenanu, I. U., & Nwobi-Okoye, C. C. (2025). Finite Element Analysis and Factorial Optimization of Heat Treatment Flaws in CNG Pressure Vessels: Implications for Structural Integrity and Safety. Scientific Journal of Engineering, and Technology, 2(1), 67-78. https://doi.org/10.69739/sjet.v2i1.487

References

Aluminum: Get to Know Its Properties and Uses—Gabrian. (2020). https://www.gabrian.com/6061-aluminum-properties/

Abdalla, H. M. A., Casagrande, D., De Bona, F., De Monte, T., Sortino, M., & Totis, G. (2021). An optimized pressure vessel obtained by metal additive manufacturing: Preliminary results. International Journal of Pressure Vessels and Piping, 192, 104434.

Aliakbari, K., Abbasnia, S. K., & Shariati, M. (2025a). Evaluation of the ratcheting behavior of Cr-Mo steel used in CNG tanks.

Aliakbari, K., Abbasnia, S. K., & Shariati, M. (2025b). Evaluation of the ratcheting behavior of Cr-Mo steel used in CNG tanks. Results in Engineering, 104218.

Cavallo, C. (2020). 6061 Aluminum vs. 5052 Aluminum – Differences in Properties, Strength and Uses. https://www.thomasnet.com/articles/metals-metal-products/6061-aluminum-vs-5052-aluminum/

Dean, M. (2023). 4130 Carbon Steel: Uses, Composition, Properties. https://www.xometry.com/resources/materials/4130-carbon-steel/

Dhimole, V. K., & Cho, C. (2023, November 1). Special Issue: Numerical Simulation and Thermo-Mechanical Investigation of Composite Structures. EBSCOhost. https://doi.org/10.3390/app132111757

eFunda: Properties of Alloy Steel AISI 4130. (n.d.). Retrieved April 8, 2025, from https://www.efunda.com/materials/alloys/alloy_steels/show_alloy.cfm?ID=AISI_4130&Page_Title=AISI+4130&show_prop=all

Ezechukwu, V. C., Braide, T. K., Onyenanu, I. U., Ayadinuno G., Agwaziam, J. O., & Ojinekeya, C. O. (2025). Structural Simulation Analysis of the Developed Hybrid of Aluminum Composites and Carbon Nanotube Brake Disc. International Journal of Applied and Natural Sciences, 3(1), 18–28. https://doi.org/10.61424/ijans.v3i1.195

Ezechukwu, V. C., Oghenekaro P. O., Onyenanu, I. U., Ayadinuno, G., & Agwaziam, J. O. (2025). Mathematical Modelling and Optimization of Plantain Chip Drying: A Parametric Study on Air Frying Conditions. IPS Journal of Engineering and Technology, 1(1), 42–52. https://doi.org/10.54117/ijet.v1i1.13

Ezechukwu, V. C., Onyenanu, I. U., Ayadinuno, G., & Agwaziam, J. O. (2025). Structural simulation analysis of the developed hybrid of Momordica angustisepala fiber and Breadfruit seed-shell particles composites, Bolted Flanges. IPS Journal of Engineering and Technology, 1(1), 13–20. https://doi.org/10.54117/ijet.v1i1.2

He, J. (2023, May 30). 4130 Alloy Steel: What You Need to Know About This Versatile Alloy. Otai Special Steel. https://www.astmsteel.com/steel-knowledge/4130-alloy-steel/

Jr, W. D. C., & Rethwisch, D. G. (2020). Materials Science and Engineering: An Introduction. John Wiley & Sons.

Kashyzadeh, K. R., Rahimian Koloor, S. S., Omidi Bidgoli, M., Petrů, M., & Amiri Asfarjani, A. (2021). An Optimum Fatigue Design of Polymer Composite Compressed Natural Gas Tank Using Hybrid Finite Element-Response Surface Methods. Polymers, 13(4), 483. https://doi.org/10.3390/polym13040483

Kim, E. S. (2019). Structural integrity evaluation of CNG pressure vessel with defects caused by heat treatment using numerical analysis. Journal of Mechanical Science and Technology, 33(11), 5297–5302. https://doi.org/10.1007/s12206-019-1021-7

Lee, H. (2022). All About 4130 Steel (Properties, Strength, and Uses). Fushun Special Steel. https://www.fushunspecialsteel.com/all-about-4130-steel-properties-strength-and-uses/

Lichtig, A. (2024). All About 6061 Aluminum Alloy. https://www.xometry.com/resources/materials/6061-aluminum-alloy/

Łukaszek-Sołek, A., Śleboda, T., Lisiecki, Ł., & Krawczyk, J. (2022). Hot Deformation Behavior of 4130 High-Strength Steel. Materials, 15(21), 7817. https://doi.org/10.3390/ma15217817

Madukasi, A. H., Onyenanu, I. U., Oghenekaro, P. O., Nzenwa, C. C., & Madu, K. E. (2025). Optimization of the Drying Parameters for Plantain Chips using a Locally Made Tray Dryer: A Study on Drying Efficiency and Drying Rate Modelling using RSM. Journal of Food Technology & Nutrition Sciences, 7(2), 1-10. https://doi.org/10.47363/JFTNS/2025(7)206

Omenai, S. A. (2024). Finite Element Analysis of a Pressure Vessel Subjected to Uniform Internal Pressure.

Onyenanu, I. U., Ofili, I., & Owuama, K. C. (2024). Eco-Friendly Brake Pad Formulation Using Agro-Waste Derived Fillers: Bush Mango Nutshell and Palm Fruit Fiber Reinforced Composites. International Journal of Applied and Natural Sciences, 2(2), 27–39. https://doi.org/10.61424/ijans.v2i2.152

Sharma, P., Chugh, P., & Neogi, S. (2021). Study to methodize the design of a safe Type-4 CNG storage vessel using finite element analysis with experimental validation. International Journal of Pressure Vessels and Piping, 192, 104425. https://doi.org/10.1016/j.ijpvp.2021.104425

Soo Kim, E. (2019). Evaluation of Rupture Characteristics of CNG Vehicle Container by Heat Treatment using AUTODYN. IOP Conference Series: Materials Science and Engineering, 673(1), 012107. https://doi.org/10.1088/1757-899X/673/1/012107

Team, G. (2018). 6061 Aluminum: Get to Know Its Properties and Uses. Gabrian. https://www.gabrian.com/6061-aluminum-properties/

Thamaraiselvi, K., & Vishnuvardhan, S. (2020). Fracture studies on reactor pressure vessel subjected to pressurised thermal shock: A review. Nuclear Engineering and Design, 360, 110471. https://doi.org/10.1016/j.nucengdes.2019.110471

Toudehdehghan, A., & Hong, T. W. (2019). A critical review and analysis of pressure vessel structures. IOP Conference Series: Materials Science and Engineering, 469(1), 012009. https://doi.org/10.1088/1757-899X/469/1/012009

Tsonos, A. (2017). Structural design of CNG storing composite pressure vessels for marine applications. https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/46054/Tsonos_Angelos_Thesis.pdf?sequence=1

Willden, C., & Jensen, W. A. (2020). Optimal designs with axial values. Journal of Quality Technology, 52(3), 235-248. https://www.tandfonline.com/doi/abs/10.1080/00224065.2019.1571346

Downloads

Views

33

Downloads

12