Article section
Performance Optimization of Wet Turning of Aluminum Alloy 6351 Eggshell Reinforced Composite Using Response Surface Methodology
Abstract
The limited understanding of key input parameters and material machinability has hindered the industry's full utilization of machining processes. These limitations make it challenging to meet machining response requirements and address various related issues. This study employs Response Surface Methodology (RSM) to explore the interaction between input parameters and responses during the wet turning of aluminum alloy eggshell reinforced composite (AAERC). Numerical optimization was used to determine the optimal combinations of process parameters, achieving the best results in terms of Material Removal Rate (MRR) and Surface Roughness (Ra). The AAERCs consisted of 85% aluminum alloy and 15% eggshell. To enhance wettability, 2% of equal-sized crushed magnesium powder was added to the molten metal. Improved wettability decreases surface tension, increases surface energy, and reduces the energy at the matrix-reinforcement interface. The developed regression equation model can predict Ra and MRR when input variables such as cutting speed (VC), feed rate (Fr), and depth of cut (DC) are known. The fit statistics for MRR and Ra indicate that the R² and adjusted R² values are 0.9461 and 0.8490 for Ra, and 0.9745 and 0.9286 for MRR, respectively. These values demonstrate that the models provide a strong fit for both responses. The parameters VC, Fr and DC, with P-values of 0.0003, 0.0017, and 0.0008 respectively, significantly influence MRR. Similarly, VC and Fr, with P-values of 0.0006 and 0.0583 respectively, significantly impact Ra. The optimization process results indicate that the optimal values for Ra and MRR are 1.0689µm and 1793.93mm³/min, respectively. These results are achieved when turning operations on AAERC are conducted using the input variables VC, DC, and Fr at 369.822rpm, 0.333554mm/min, and 0.235944mm, respectively.
Keywords:
Material Removal Rate Numerical Optimization Regression Equation Response Surface Methodology Surface Roughness
Article information
Journal
Scientific Journal of Engineering, and Technology
Volume (Issue)
2(1), (2025)
Pages
112-125
Published
Copyright
Copyright (c) 2025 Bethel Mba, S. C. Nwoziri, Franklin Onwuka, Uchenna Alozie, L. J. King, Onyekachi Monday Okafor (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Abellán-Nebot, J. V., Vila Pastor, C., & Siller, H. R. (2024). A Review of the Factors Influencing Surface Roughness in Machining and Their Impact on Sustainability. Sustainability, 16(5), 1917. https://doi.org/10.3390/su16051917.
Admase, A. T., Eshetie, B. G., Asrade, E. D., & Gesese, T. N. (2025). Evaluation of Sustainable Composite Materials Using Eggshell: Development and Characterization (pp. 73–82). https://doi.org/10.1007/978-3-031-81730-4_6
Ashmawy, M., Elsheikh, A., & Elkassas, A. (2023). A review of cooling and lubrication techniques for machining difficult-to-cut material. Journal of Engineering Research, 7(1), 21–31. https://doi.org/10.21608/ERJENG.2023.183248.1134.
Azarhoushang, B., & Kitzig-Frank, H. (2022). Principles of grinding processes. In Tribology and Fundamentals of Abrasive Machining Processes (pp. 351–468). Elsevier. https://doi.org/10.1016/B978-0-12-823777-9.00001-X.
Bhardwaj, A. R., Vaidya, A. M., & Shekhawat, S. P. (2020). Machining of Aluminium Metal Matrix Composite: A Review. Materials Today: Proceedings, 21, 1396–1402. https://doi.org/10.1016/j.matpr.2020.01.179
Bijanzad, A., Munir, T., & Abdulhamid, F. (2022). Heat-assisted machining of superalloys: a review. The International Journal of Advanced Manufacturing Technology, 118(11–12), 3531–3557. https://doi.org/10.1007/s00170-021-08059-2.
Chen, J.-P., Gu, L., & He, G.-J. (2020). A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites. Advances in Manufacturing, 8(3), 279–315. https://doi.org/10.1007/s40436-020-00313-2.
Cica, D., & Kramar, D. (2019). Multi-objective optimization of high-pressure jet-assisted turning of Inconel 718. The International Journal of Advanced Manufacturing Technology, 105(11), 4731–4745. https://doi.org/10.1007/s00170-019-04513-4.
Cunha, T. P., Siqueira, F. B., & Holanda, J. N. F. (2019). Development of Sustainable Eggshell Waste-Polyester Resin Composite Material for Using as Artificial Rock. Materials Research, 22(suppl 1). https://doi.org/10.1590/1980-5373-mr-2018-0865
Deresse, N. C., Deshpande, V., & Taifa, I. W. R. (2020). Experimental investigation of the effects of process parameters on material removal rate using Taguchi method in external cylindrical grinding operation. Engineering Science and Technology, an International Journal, 23(2), 405–420. https://doi.org/10.1016/j.jestch.2019.06.001.
Edh Mirzaei, N., Hilletofth, P., & Pal, R. (2021). Challenges to competitive manufacturing in high-cost environments: checklist and insights from Swedish manufacturing firms. Operations Management Research, 14(3–4), 272–292. https://doi.org/10.1007/s12063-021-00193-0.
Gairola, S., Sinha, S., & Singh, I. (2023). Thermal and Flame Retardancy Behavior of Eggshell Filler Reinforced Polypropylene Composites (pp. 201–206). https://doi.org/10.1007/978-981-99-1971-0_30
Gasha, S. B., Trautmann, M., & Wagner, G. (2024). Effect of Milling Time and Reinforcement Volume Fraction on Microstructure and Mechanical Properties of SiCp-Reinforced AA2017 Composite Powder Produced by High-Energy Ball Milling. Materials, 17(2), 435. https://doi.org/10.3390/ma17020435.
Guemmour, M. B., Sahli, A., Kebdani, S., & Sahli, S. (2015). Simulation of the Chip Formation and Temperature Distribution by the Fem. Journal of Applied Sciences, 15(9), 1138–1148. https://doi.org/10.3923/jas.2015.1138.1148
Guleria, V., Kumar, V., & Singh, P. K. (2023). Recent Trends in the Amelioration and Prediction of Surface Roughness in Turning Process: A Bibliometric Analysis (pp. 77–90). https://doi.org/10.1007/978-981-19-4208-2_7.
Hassen, A. A., Dizbay-Onat, M., Bansal, D., Bayush, T., & Vaidya, U. (2015). Utilization of Chicken Eggshell Waste as a Bio-Filler for Thermoplastic Polymers: Thermal and Mechanical Characterization of Polypropylene Filled with Naturally Derived CaCo 3. Polymers and Polymer Composites, 23(9), 653–662. https://doi.org/10.1177/096739111502300908
Jain, A., Kumar, C. S., & Shrivastava, Y. (2023). Machining of Composite Materials Using Different Conventional and Unconventional Machining Processes: A Short Review (pp. 75–83). https://doi.org/10.1007/978-981-19-1618-2_8.
Jain, P., Soni, S., & Baredar, P. (2014). Review on Machining of Aluminium Metal Matrix Composites. Material Science Research India, 11(2), 114–120. https://doi.org/10.13005/msri/110204
Jia, S., Wang, S., Lv, J., Cai, W., Zhang, N., Zhang, Z., & Bai, S. (2021). Multi-Objective Optimization of CNC Turning Process Parameters Considering Transient-Steady State Energy Consumption. Sustainability, 13(24), 13803. https://doi.org/10.3390/su132413803.
Jiang, X., Lu, W., & Zhang, Z. (2018). An approach for improving the machining efficiency and quality of aerospace curved thin-walled parts during five-axis NC machining. The International Journal of Advanced Manufacturing Technology, 97(5–8), 2477–2488. https://doi.org/10.1007/s00170-018-2129-0.
Jiang, Z., Chen, D., Sun, K., Pan, R., Fan, J., & Tang, Y. (2024). A systematic review of micro-texture formation based on milling: from mechanism, existing techniques, characterization to typical applications. The International Journal of Advanced Manufacturing Technology, 134, 2151–2177. https://doi.org/10.1007/s00170-024-14177-4.
Joshi, V., & Kumar, H. (2021). Optimization of CNC Lathe Turning: A Review of Technique, Parameter and Outcome (pp. 963–973). https://doi.org/10.1007/978-981-15-8542-5_85.
Kaniapan, K., Ali, M. A. M., Sulaiman, M. A., Minhat, M., & Aziz, M. S. A. (2022). Review on Turning Process Parameters, Responses and Experimental Method of AISI 1045 Carbon Steel (pp. 467–476). https://doi.org/10.1007/978-981-16-8954-3_44.
Karmiris-Obratanski, P., Thangaraj, M., Leszczyńska-Madej, B., & Markopoulos, A. P. (2024). Advanced Machining Technology for Modern Engineering Materials. Materials, 17(9), 2064. https://doi.org/10.3390/ma17092064.
Khan, F., Hossain, N., Mim, J. J., Rahman, S. M., Iqbal, Md. J., Billah, M., & Chowdhury, M. A. (2024). Advances of composite materials in automobile applications – A review. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2024.02.017.
Kotteda, T. K., Kumar, M., Kumar, P., & Chekuri, R. B. R. (2022). Metal matrix nanocomposites: future scope in the fabrication and machining techniques. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-022-09847-0.
Krajčoviech, S., Holubjak, J., Richtarik, M., & Czánová, T. (2021). Identification of process Prime A turning when machining steel C56E2 and monitoring of cutting forces. Transportation Research Procedia, 55, 605–612. https://doi.org/10.1016/j.trpro.2021.07.027.
Kumar, A., Singh, V. P., Singh, R. C., Chaudhary, R., Kumar, D., & Mourad, A.-H. I. (2024). A review of aluminum metal matrix composites: fabrication route, reinforcements, microstructural, mechanical, and corrosion properties. Journal of Materials Science, 59(7), 2644–2711. https://doi.org/10.1007/s10853-024-09398-7
Kumar, R., Channi, A. S., Kaur, R., Sharma, S., Grewal, J. S., Singh, S., Verma, A., & Haber, R. (2023). Exploring the intricacies of machine learning-based optimization of electric discharge machining on squeeze cast TiB2/AA6061 composites: Insights from morphological, and microstructural aspects in the surface structure analysis of recast layer formation and worn-out analysis. Journal of Materials Research and Technology, 26, 8569–8603. https://doi.org/10.1016/j.jmrt.2023.09.127.
Kumar, S., & Singh, B. (2020). Stable Cutting Zone with Improved Metal Removal Rate in Turning Process. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 44(1), 129–147. https://doi.org/10.1007/s40997-018-0253-y.
Kuram, E., Bagherzadeh, A., & Budak, E. (2024). Application of cutting fluids in micro-milling — A review. The International Journal of Advanced Manufacturing Technology, 133(1–2), 25–58. https://doi.org/10.1007/s00170-024-13752-z.
Li, H., Zhao, W., Gao, X., Shi, W., & He, N. (2024). Influence of cutting parameters on PCD tool wear during milling tungsten carbide. The International Journal of Advanced Manufacturing Technology, 130(3–4), 1165–1180. https://doi.org/10.1007/s00170-023-12775-2.
Li, X. F., Doh, S. I., Ramadhansyah, P. J., Hainin, M. R., & Mohd Haziman, W. I. (2021). Effect of Eggshell Powder on the Mechanical and Durability Properties of Cement Mortar (pp. 153–163). https://doi.org/10.1007/978-981-16-2187-1_14
Lin, Y.-C., Wu, K.-D., Shih, W.-C., Hsu, P.-K., & Hung, J.-P. (2020). Prediction of Surface Roughness Based on Cutting Parameters and Machining Vibration in End Milling Using Regression Method and Artificial Neural Network. Applied Sciences, 10(11), 3941. https://doi.org/10.3390/app10113941.
Lu, X., Zhang, H., Jia, Z., Feng, Y., & Liang, S. Y. (2018). Cutting parameters optimization for MRR under the constraints of surface roughness and cutter breakage in micro-milling process. Journal of Mechanical Science and Technology, 32(7), 3379–3388. https://doi.org/10.1007/s12206-018-0641-7.
Lv, J., Jia, S., Wang, H., Ding, K., & Chan, F. T. S. (2021). Comparison of different approaches for predicting material removal power in milling process. The International Journal of Advanced Manufacturing Technology, 116(1–2), 213–227. https://doi.org/10.1007/s00170-021-07257-2.
Maurya, R. K., & Niranjan, M. S. (2024). Optimization of Residual Stresses, Tool Wear, and Material Removal Rate of Tempered EN-36C Alloy Steel in CNC Turning Using Response Surface Methodology. Journal of Materials Engineering and Performance, 33(8), 3871–3884. https://doi.org/10.1007/s11665-023-09053-3.
Mba, B., Nweze, N. C., Alozie, U., Onwuka, F., Omonini, C., & Nwoziri, S. C. (2024). The Performance Evaluation of Aluminum Alloy 356 Cow-Horn Composite as a Turning Machining Material Using Response Surface Methodology. Journal of Basic and Applied Research International, 30(5), 1–17. https://doi.org/10.56557/jobari/2024/v30i58842
Mishra, D., & Tulasi, T. (2020). Experimental Investigation on Stir Casting Processing and Properties of Al 6082/SiC Metal Matrix Composites (pp. 159–168). https://doi.org/10.1007/978-981-15-1124-0_14.
Mohanta, D. K., Sahoo, B., & Mohanty, A. M. (2024). Experimental analysis for optimization of process parameters in machining using coated tools. Journal of Engineering and Applied Science, 71(1), 38. https://doi.org/10.1186/s44147-024-00370-5.
Nwobi-Okoye, C. C., & Uzochukwu, C. U. (2020). RSM and ANN modeling for production of Al 6351/ egg shell reinforced composite: Multi objective optimization using genetic algorithm. Materials Today Communications, 22, 100674. https://doi.org/10.1016/j.mtcomm.2019.100674.
Nwobi-Okoye, C. C., Ochieze, B. Q., & Okiy, S. (2019). Multi-objective optimization and modeling of age hardening process using ANN, ANFIS and genetic algorithm: Results from aluminum alloy A356/cow horn particulate composite. Journal of Materials Research and Technology, 8(3), 3054–3075. https://doi.org/10.1016/j.jmrt.2019.01.031
Nwoziri, S. C., Mba, B., Onwuka, F., Agbonko, E. B., Alozie, U., Omonini, C., & Ogban-Ekpe, G. A. (2024). Assessment of Aluminum Alloy 6351 Eggshell Reinforced Composite in Dry Turning Using Response Surface Methodology. Journal of Basic and Applied Research International, 30(4), 43–60. https://doi.org/10.56557/jobari/2024/v30i48840
O’Toole, L., Kang, C.-W., & Fang, F.-Z. (2021). Precision micro-milling process: state of the art. Advances in Manufacturing, 9(2), 173–205. https://doi.org/10.1007/s40436-020-00323-0.
Ononiwu, N. H., Ozoegwu, C. G., Madushele, N., & Akinlabi, E. T. (2021). Machinability Studies and Optimization of AA 6082/Fly Ash/Carbonized Eggshell Matrix Composite. Revue Des Composites et Des Matériaux Avancés, 31(4), 207–216. https://doi.org/10.18280/rcma.310404
Pang, S., Zhao, W., Qiu, T., Liu, W., Yan, P., Jiao, L., & Wang, X. (2023). Effect of Cutting Fluid on Milled Surface Quality and Tool Life of Aluminum Alloy. Materials, 16(6), 2198. https://doi.org/10.3390/ma16062198.
Pawanr, S., & Gupta, K. (2024). Dry Machining Techniques for Sustainability in Metal Cutting: A Review. Processes, 12(2), 417. https://doi.org/10.3390/pr12020417.
Pola, A., Tocci, M., & Kapranos, P. (2018). Microstructure and Properties of Semi-Solid Aluminum Alloys: A Literature Review. Metals, 8(3), 181. https://doi.org/10.3390/met8030181.
Prakash, R., & Krishnaraj, V. (2021). Cutting Tools for Machining Composites (pp. 485–515). https://doi.org/10.1007/978-3-030-71438-3_18
Raja, V. K. B., & Gupta, M. (2021). Joining of Metal Matrix Composites. In Encyclopedia of Materials: Composites (pp. 502–511). Elsevier. https://doi.org/10.1016/B978-0-12-819724-0.00004-5.
Ren, J.-Y., Ji, G.-C., Guo, H.-R., Zhou, Y.-M., Tan, X., Zheng, W.-F., Xing, Q., Zhang, J.-Y., Sun, J.-R., Yang, H.-Y., Qiu, F., & Jiang, Q.-C. (2024). Nano-Enhanced Phase Reinforced Magnesium Matrix Composites: A Review of the Matrix, Reinforcement, Interface Design, Properties and Potential Applications. Materials, 17(10), 2454. https://doi.org/10.3390/ma17102454.
Seenath, A. A., & Sarhan, A. A. D. (2024). A State-of-the-Art Review on Cutting Tool Materials and Coatings in Enhancing the Tool Performance in Machining the Superior Nickel-Based Superalloys. Arabian Journal for Science and Engineering, 49(8), 10203–10236. https://doi.org/10.1007/s13369-024-08745-9.
Singh, A. K., Soni, S., & Rana, R. S. (2022). Recent Trends on Furnace Design and Stirrer Blade Geometry Used in Stir Caster: A Focused Review (pp. 147–159). https://doi.org/10.1007/978-981-16-5371-1_14.
Soni, D. L., Jagadish, & Neigapula, V. S. N. (2024). Tool surface texturing in machining performance: state of art and recent developments. International Journal on Interactive Design and Manufacturing (IJIDeM), 19, 1503-1531. https://doi.org/10.1007/s12008-024-01861-8.
Subbiah, S. (2014). Science of Machining. In Handbook of Manufacturing Engineering and Technology (pp. 1–21). Springer London. https://doi.org/10.1007/978-1-4471-4976-7_1-1.
Sun, W., Zhang, D., & Luo, M. (2021). Machining process monitoring and application: a review. Journal of Advanced Manufacturing Science and Technology, 1(2), 2021001–2021001. https://doi.org/10.51393/j.jamst.2021001.
Tefera, A. G., Sinha, D. K., & Gupta, G. (2023). Experimental investigation and optimization of cutting parameters during dry turning process of copper alloy. Journal of Engineering and Applied Science, 70(1), 145. https://doi.org/10.1186/s44147-023-00314-5.
Thanh, P. D., Long, B. T., & Hoa, P. T. (2024). Research on Cutting Parameters Affecting Material Removal Efficiency and Surface Roughness When Turning of C3604 Copper (pp. 115–122). https://doi.org/10.1007/978-3-031-39090-6_13.
Tian, C., Jiang, H., Yuan, S., Deng, J., & Yue, X. (2024). Research on cutting performance and processing surface quality of micro-structured composite-coated tool: a comprehensive review. The International Journal of Advanced Manufacturing Technology, 133(5–6), 2709–2743. https://doi.org/10.1007/s00170-024-13908-x.
Tiwari, S., & Yadav, R. K. (2024). Mechanical and Tribological Properties of Aluminum Metal Matrix Composites—A Review (pp. 147–156). https://doi.org/10.1007/978-981-97-4947-8_13
Truong, H.-S., Nguyen, T.-T., & Bui, T.-A. (2025). Evaluating the Impact of Cutting Speed and Feed Rate on Surface Roughness Utilizing a Four-Insert Carbide Face Milling Cutter on CNC Machines (pp. 347–356). https://doi.org/10.1007/978-981-97-7083-0_34
Udaya Prakash, J., Sarala Rubi, C., Palani, S., Jebarose Juliyana, S., & Divya Sadhana, A. (2022). Optimization of machining parameters in drilling of LM6/B 4 C/Fly ash hybrid composites. Manufacturing Review, 9, 28. https://doi.org/10.1051/mfreview/2022026.
Wang, J., Gao, Q., Lu, J., Zheng, Q., Xi, X., Zhang, Y., & Zhao, W. (2024). Fast ED-milling of high-volume fraction Al/SiCp metal matrix composites. CIRP Annals, 73(1), 121–124. https://doi.org/10.1016/j.cirp.2024.03.014.
Wang, R., Yang, D., Wang, W., Wei, F., Lu, Y., & Li, Y. (2022). Tool Wear in Nickel-Based Superalloy Machining: An Overview. Processes, 10(11), 2380. https://doi.org/10.3390/pr10112380.
Wong, W. L. E., & Seetharaman, S. (2021). Metal Matrix Composites (pp. 129–158). https://doi.org/10.1007/978-3-030-71438-3_6.
Xu, K., & Tang, K. (2014). Five-axis tool path and feed rate optimization based on the cutting force–area quotient potential field. The International Journal of Advanced Manufacturing Technology, 75(9–12), 1661–1679. https://doi.org/10.1007/s00170-014-6221-9
Yan, P., Rong, Y., & Wang, G. (2016). The effect of cutting fluids applied in metal cutting process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(1), 19–37. https://doi.org/10.1177/0954405415590993.
Yan, T., Qiu, B., Yuan, J., Pavesi, G., Zhao, F., & Wang, H. (2023). Flow State at Impeller Inlet: Optimization of Conical Frustum Section of Elbow Inlet Conduit in Large Low-Lift Pump Station. Journal of Fluids Engineering, 145(4). https://doi.org/10.1115/1.4056452.
Yu, X., Li, Z., Sheng, W., & Zhang, C. (2024). A new surface roughness measurement method based on QR-SVM. The International Journal of Advanced Manufacturing Technology, 133(7–8), 3987–3997. https://doi.org/10.1007/s00170-024-13898-w.
Zheng, L., Chen, W., & Huo, D. (2020). Review of vibration devices for vibration-assisted machining. The International Journal of Advanced Manufacturing Technology, 108(5–6), 1631–1651. https://doi.org/10.1007/s00170-020-05483-8.
Zhou, Y., Liu, C., Yu, X., Liu, B., & Quan, Y. (2022). Tool wear mechanism, monitoring and remaining useful life (RUL) technology based on big data: a review. SN Applied Sciences, 4(8), 232. https://doi.org/10.1007/s42452-022-05114-9.
Zhou, Y., Zhu, H., Zhang, W., Zuo, X., Li, Y., & Yang, J. (2015). Influence of surface roughness on the friction property of textured surface. Advances in Mechanical Engineering, 7(2), 168781401456850. https://doi.org/10.1177/1687814014568500.
Zlámal, T., Hajnyš, J., Petrů, J., & Mrkvica, I. (2018). Effect of the Cutting Tool Geometry on the Tool Wear Resistance when Machining Inconel 625. Advances in Science and Technology Research Journal, 12(1), 236–243. https://doi.org/10.12913/22998624/86262