Article section
A Systematic Review of Big Data Analytics in Aviation Operations and Decision-Making
Abstract
This systematic review examines the impact of Big Data Analytics (BDA) on airline operations and decision-making, with an emphasis on its applications, problems, and future prospects. The aviation sector generates massive and complicated datasets from various sources, including flight operations, maintenance logs, passenger records, and air traffic control systems. BDA allows greater operating efficiency, predictive maintenance, increased safety, and data-driven decision-making in a variety of aviation disciplines. Key applications investigated include route profitability analysis, air traffic flow optimization, supply chain resilience, and real-time monitoring via the integration of the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML). A systematic review technique was used to maintain academic rigor. A qualitative analysis was performed on 19 peer-reviewed research chosen from over 200 papers obtained from major academic databases such as Scopus, Web of Science, IEEE Xplore, and ScienceDirect. The inclusion criteria were aviation-specific BDA applications published between 2010 and 2024. Thematic analysis was performed to extract insights and organize the findings into important areas of effect. The findings show that BDA adoption has tremendous benefits, but it also faces continuing challenges such as data complexity, high implementation costs, ethical concerns, and a need for qualified people. This review establishes a platform for future research and practical implementation strategies in aviation analytics.
Keywords:
Air Traffic Management Aviation Operations Big Data Analytics Data-Driven Decision-Making Predictive Maintenance
Article information
Journal
Scientific Journal of Engineering, and Technology
Volume (Issue)
2(2), (2025)
Pages
31-37
Published
Copyright
Copyright (c) 2025 Jonah O. Gonzalo (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Adrian, C., Abdullah, R., Atan, R., & Jusoh, Y. (2018). Conceptual Model Development of Big Data Analytics Implementation Assessment Effect on Decision-Making. International Journal of Interactive Multimedia and Artificial Intelligence, 5(1), 101-106. https://doi.org/10.9781/ijimai.2018.5114 DOI: https://doi.org/10.9781/ijimai.2018.03.001
Badea, V. E., Zamfiroiu, A., & Boncea, R. (2018). Big data in the aerospace industry. Informatica Economica, 22(1), 17–24. https://doi.org/10.12948/issn14531305/22.1.2018.02 DOI: https://doi.org/10.12948/issn14531305/22.1.2018.02
Belhadi, A., Kamble, S., Jabbour, C. J. C., Gunasekaran, A., Ndubisi, N. O., & Venkatesh, M. (2021). Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries. Technological Forecasting and Social Change, 163, 120447. https://doi.org/10.1016/j.techfore.2020.120447 DOI: https://doi.org/10.1016/j.techfore.2020.120447
Char, D. S., & Burgart, A. (2020). Machine-Learning Implementation in Clinical Anesthesia: Opportunities and Challenges. Anesthesia & Analgesia, 130(6), 1709-1712. https://doi.org/10.1213/ANE.0000000000004656 DOI: https://doi.org/10.1213/ANE.0000000000004656
Dou, X. (2020). Big data and smart aviation information management system. Cogent Business & Management, 7(1). https://doi.org/10.1080/23311975.2020.1766736 DOI: https://doi.org/10.1080/23311975.2020.1766736
Elgendy, N., & Elragal, A. (2016). Big data analytics in support of the decision-making process. Procedia Computer Science, 100, 1071–1084. https://doi.org/10.1016/j.procs.2016.09.251 DOI: https://doi.org/10.1016/j.procs.2016.09.251
Gui, G., Zhou, Z., Wang, J., Liu, F., & Sun, J. (2020). Machine Learning Aided Air Traffic Flow Analysis Based on Aviation Big Data. https://doi.org/10.36227/techrxiv.11697873.v1 DOI: https://doi.org/10.36227/techrxiv.11697873
Ienca, M., & Vayena, E. (2020). On the responsible use of digital data to tackle the COVID-19 pandemic. Nature Medicine, 26, 463–464. https://doi.org/10.1038/s41591-020-0832-5 DOI: https://doi.org/10.1038/s41591-020-0832-5
Kasturi, E., Devi, S. P., Kiran, S. V., & Manivannan, S. (2016). Airline Route Profitability Analysis and Optimization Using BIG DATA Analyticson Aviation Data Sets under Heuristic Techniques. Procedia Computer Science, 87, 86–92. https://doi.org/10.1016/j.procs.2016.05.131 DOI: https://doi.org/10.1016/j.procs.2016.05.131
Khosravi, H., Shum, S. B., Chen, G., Conati, C., Tsai, Y., Kay, J., Knight, S., Martinez-Maldonado, R., Sadiq, S., & Gašević, D. (2022). Explainable Artificial Intelligence in education. Computers and Education Artificial Intelligence, 3, 100074. https://doi.org/10.1016/j.caeai.2022.100074 DOI: https://doi.org/10.1016/j.caeai.2022.100074
Liu, Z., Meyendorf, N., & Mrad, N. (2018). The role of data fusion in predictive maintenance using digital twin. AIP Conference Proceedings, 1949(1), 020023. https://doi.org/10.1063/1.5031520 DOI: https://doi.org/10.1063/1.5031520
Munawar, H. S., Qayyum, S., Ullah, F., & Sepasgozar, S. M. E. (2020). Big Data and its applications in smart Real Estate and the Disaster Management Life Cycle: A Systematic analysis. Big Data and Cognitive Computing, 4(2), 4. https://doi.org/10.3390/bdcc4020004 DOI: https://doi.org/10.3390/bdcc4020004
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Papineni, S. L., V., Yarlagadda, S., Akkineni, H., & Reddy, A. M. (2021). Big Data Analytics Applying the Fusion Approach of Multicriteria Decision Making with Deep Learning Algorithms. https://doi.org/10.48550/arxiv.2102.02637 DOI: https://doi.org/10.14445/22315381/IJETT-V69I1P204
Sazu, M., & Jahan, S. (2022). Can big data analytics improve the quality of decision-making in businesses? Iberoamerican Business Journal, 6(1), 4-27. https://doi.org/10.22451/5817.ibj2022.vol6.1.11063 DOI: https://doi.org/10.22451/5817.ibj2022.vol6.1.11063
Shahbaz, M., Gao, C., Zhai, L., Shahzad, F., & Hu, Y. (2019). Investigating the adoption of big data analytics in healthcare: the moderating role of resistance to change. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0170-y DOI: https://doi.org/10.1186/s40537-019-0170-y
Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001 DOI: https://doi.org/10.1016/j.jbusres.2016.08.001
Thirathon, U., Wieder, B., Matolcsy, Z., & Ossimitz, M. (2017). Big Data, Analytic Culture and Analytic-Based Decision Making Evidence from Australia. Procedia Computer Science, 121, 775–783. https://doi.org/10.1016/j.procs.2017.11.100 DOI: https://doi.org/10.1016/j.procs.2017.11.100
Ushakov, D., Dudukalov, E., Kozlova, E., & Shatila, K. (2022). The Internet of Things impact on smart public transportation. Transportation Research Procedia, 63, 2392–2400. https://doi.org/10.1016/j.trpro.2022.06.275 DOI: https://doi.org/10.1016/j.trpro.2022.06.275
Yeung, K. (2017). ‘Hypernudge’: Big Data as a mode of regulation by design. Information, Communication & Society, 20(1), 1-19. https://doi.org/10.1080/1369118X.2016.1186713 DOI: https://doi.org/10.1080/1369118X.2016.1186713