Article section
Biodiesel Beyond Fuel: A Review of Expanding Applications and Embracing Circularity
Abstract
Biodiesel, which is traditionally viewed as a cleaner alternative to fossil fuels, is also gaining new applications outside of energy. In this review, 182 peer-reviewed articles and patents retrieved via Google Scholar, Semantic Scholar, MDPI, ResearchGate, Scopus, ScienceDirect, among others were systematically synthesized concerning 2012-2025 as of August 2025. These 94 studies represent the percentage of traditional fuel applications, the 47 studies non-fuel applications (with 18 studies on green solvents, 16 on biodegradable lubricants, and 13 on specialty polymers), 28 studies into glycerol valorization into chemicals, e.g. of 1,2-propanediol, organic monomers and polymer additives, and 13 studies on circular economy strategies. Results demonstrate that biodiesel can be utilized as a raw material to develop quality and environmental-friendly products. Critical issues such as the cost of production, quality control, and regulatory gaps are also highlighted. Researchers, industry practitioners, and policymakers can use this review as a source of actionable insights by focusing on recent research, patents, and industrial developments significant to obtain a sustainable and circular bioeconomy.
Keywords:
Bio-Based Materials Biodiesel Circular-Economy Glycerol Non-Fuel Applications
Article information
Journal
Scientific Journal of Engineering, and Technology
Volume (Issue)
2(2), (2025)
Pages
71-86
Published
Copyright
Copyright (c) 2025 Okpo, Samson Onoriode (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Adeoti, M. O., Jamiru, T., Adegbola, T. A., Abdullahi, M., Sulaiman, I., & Aramide, B. P. (2024). Comparative study on lubrication properties of biodiesel and bio-lubricant trans-esterified from desert seed oil with conventional lubricants. Frontiers in Chemical Engineering, 6, 1451187. DOI: https://doi.org/10.3389/fceng.2024.1451187
Aderibigbe, F. A., Shiru, S., Saka, H. B., Amosa, M. K., Mustapha, S. I., Alhassan, M., Adejumo, A. L., Abdulraheem, M., & Owolabi, R. U. (2021). Heterogeneous Catalysis of Second Generation Oil for Biodiesel Production: A Review. ChemBioEng Reviews. Heterogeneous catalysis of second generation oil for biodiesel production: a review. ChemBioEng Reviews, 8(2), 78-89. DOI: https://doi.org/10.1002/cben.202000035
Ahmad, M., Alruqi, M., & Zafar, M. (2022). Cleaner production of biodiesel from novel and non-edible seed oil of Chamaerops humilis using recyclable cobalt oxide nanoparticles: a contribution to resilient and sustainable world. Journal of Cleaner Production, 369, 133378. DOI: https://doi.org/10.1016/j.jclepro.2022.133378
Ahmed, A., Elkatatny, S., & Al-Afnan, S. (2021). Applications of biodiesel in drilling fluids. Geofluids, 2021, 1-11. https://doi.org/10.1155/2021/5565897 DOI: https://doi.org/10.1155/2021/5565897
Akpan, I. O., Edeh, I., & Uyigue, L (2023). A Review on Biodiesel Production. Petro Chem Indus Intern, 6(2), 131-141.
Akram, F., Shoaib, E., Fatima, T., Shabbir, I., & Haq, I. U. (2025). Evolution of biofuels: Unraveling diverse applications and emerging horizons. Energy Exploration & Exploitation, 43(2), 834-864. DOI: https://doi.org/10.1177/01445987241305460
Al-Samaraae, R. R., Atabani, A., Bogrekci, I., Atelge, M. R., Hansu, T. A., Kaya, M., Kıvrak, H. D., Yıldız, Y. S., Akansu, S. O., Ünalan, S., & Demircioglu, P. (2025). Valorization of spent coffee grounds: a multi-solvent extraction approach and blending with waste cooking oil for sustainable biodiesel production. Biofuels, 1-22. DOI: https://doi.org/10.1080/17597269.2025.2487732
Araujo, K., Mahajan, D., Kerr, R., & da Silva, M. (2017). Global biofuels at the crossroads: an overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture, 7(4), 32. DOI: https://doi.org/10.3390/agriculture7040032
Athar, M., & Zaidi, S. (2020). A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. Journal of Environmental Chemical Engineering, 8(6), 104523. DOI: https://doi.org/10.1016/j.jece.2020.104523
Awogbemi, O., & Desai, D. A. (2025). Recent advances in purification technologies for biodiesel-derived crude glycerol. International Journal of Ambient Energy, 46(1), 2533373. https://doi.org/10.1080/01430750.2025.2533373 DOI: https://doi.org/10.1080/01430750.2025.2533373
Babadi, A. A., Rahmati, S., Fakhlaei, R., Barati, B., Wang, S., Doherty, W., & Ostrikov, K. K. (2022). Emerging technologies for biodiesel production: processes, challenges, and opportunities. Biomass and Bioenergy, 163, 106521. DOI: https://doi.org/10.1016/j.biombioe.2022.106521
Bashir, M. A., Wu, S., Zhu, J., Krosuri, A., Khan, M. U., & Aka, R. J. N. (2022). Recent development of advanced processing technologies for biodiesel production: A critical review. Fuel Processing Technology, 227, 107120. DOI: https://doi.org/10.1016/j.fuproc.2021.107120
Benti, N.E., Aneseyee, A.B., Geffe, C.A., Woldegiyorgis, T.A., Gurmesa, G.S., Bibiso, M., Asfaw, A.A., Milki, A.W., & Mekonnen, Y.S. (2023). Biodiesel production in Ethiopia: Current status and future prospects. Scientific African, 19(2023), e01531. DOI: https://doi.org/10.1016/j.sciaf.2022.e01531
Beyene, D., Abdulkadir, M., & Befekadu, A. (2022). Production of biodiesel from mixed castor seed and microalgae oils: optimization of the production and fuel quality assessment. International Journal of Chemical Engineering, 2022(1), 1536160. DOI: https://doi.org/10.1155/2022/1536160
Bhatia, S. K., Otari, S. V., Jeon, J. M., Gurav, R., Choi, Y. K., Bhatia, R. K., Pugazhendhi , A., Kumar, V., Banu, J.R., Yoon, J.J., Choi, K.Y., & Yang,Y.H (2021). Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresource Technology, 326, 124733. DOI: https://doi.org/10.1016/j.biortech.2021.124733
Bidir, M. G., Millerjothi, N. K., Adaramola, M. S., Hagos, F. Y., & Singh, R. C. (2021). Assessment of Biofuel Resource Potential, Prospects, Challenges and Utilization in Ethiopia: Sourcing Strategies for Renewable Energies-A Review. In IOP Conference Series: Materials Science and Engineering (Vol. 1104, No. 1, p. 012003). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/1104/1/012003
Cabette, M., Micaelo, R., & Pais, J. (2023). The use of bio-oil from biodiesel production for enhancing the bitumen healing. Construction and Building Materials, 409, 134033. DOI: https://doi.org/10.1016/j.conbuildmat.2023.134033
Chandrashekar, L. A., Mahesh, N. S., Gowda, B., & Hall, W. (2012). Life cycle assessment of biodiesel production from pongamia oil in rural Karnataka. Agricultural Engineering International: CIGR Journal, 14(3), 67-77.
Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International journal of molecular sciences, 13(7), 8615-8627. DOI: https://doi.org/10.3390/ijms13078615
Chilakamarry, C. R., Sakinah, A. M., & Zularisam, A. W. (2022). Opportunities of biodiesel industry waste conversion into value-added products. Materials Today: Proceedings, 57, 1014-1020. DOI: https://doi.org/10.1016/j.matpr.2021.08.248
Chuah, L. F., Klemeš, J. J., Yusup, S., Bokhari, A., & Akbar, M. M. (2017). A review of cleaner intensification technologies in biodiesel production. Journal of cleaner production, 146, 181-193. DOI: https://doi.org/10.1016/j.jclepro.2016.05.017
Chung, C. C., Zhang, Y., Liu, L., Wang, Y., & Wei, Z. (2020). The evolution of biodiesel policies in China over the period 2000–2019. Processes, 8(8), 948. DOI: https://doi.org/10.3390/pr8080948
CONTEC. (2022-2024). Linear economy vs circular economy: Key differences and how to make the change. https://contec.tech/linear-economy-vs-circular-economy-differences-how-to-make-the-change/#
Corral-Bobadilla, M., Lostado-Lorza, R., Somovilla-Gómez, F., & Íñiguez-Macedo, S. (2022). Life cycle assessment multi-objective optimization for eco-efficient biodiesel production using waste cooking oil. Journal of Cleaner Production, 359, 132113. DOI: https://doi.org/10.1016/j.jclepro.2022.132113
Damian, C. S., Devarajan, Y., & Jayabal, R. (2024). A comprehensive review of the resource efficiency and sustainability in biofuel production from industrial and agricultural waste. Journal of Material Cycles and Waste Management, 26(3), 1264-1276. DOI: https://doi.org/10.1007/s10163-024-01918-6
da Silva, C. A., dos Santos, R. N., Oliveira, G. G., de Souza Ferreira, T. P., de Souza, N. L. G. D., Soares, A. S., ... & Campos, F. S. (2022). Biodiesel and bioplastic production from waste-cooking-oil transesterification: An environmentally friendly approach. Energies, 15(3), 1073. DOI: https://doi.org/10.3390/en15031073
da Silva, J. A. C., Habert, A. C., & Freire, D. M. G. (2013). A potential biodegradable lubricant from castor biodiesel esters. Lubrication Science, 25(1), 53-61. DOI: https://doi.org/10.1002/ls.1205
de Carvalho Freitas, E. S., Xavier, L. H., Oliveira, L. B., & Guarieiro, L. L. N. (2022). System dynamics applied to second generation biofuel in Brazil: A circular economy approach. Sustainable Energy Technologies and Assessments, 52, 102288. DOI: https://doi.org/10.1016/j.seta.2022.102288
Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, S108–S117. doi:10.1016/j.apenergy.2009.04.036. DOI: https://doi.org/10.1016/j.apenergy.2009.04.036
Econocom. (2022). Linear economy vs Circular economy. https://www.econocom.co.uk/newsroom/linear-economy-vs-circular-economy.
Edeh, I. (2020). Biodiesel production as a renewable resource for the potential displacement of the petroleum diesel. In Biorefinery Concepts, Energy and Products. IntechOpen. https://doi.org/10.5772/intechopen.93013 DOI: https://doi.org/10.5772/intechopen.93013
EEA-European Environment Agency. (2016). Circular economy in Europe — developing the knowledge base, EEA Report No 2/2016. European Environment Agency. https://www.eea.europa.eu/publications/circular-economy-in-europe
EEA-European Environment Agency. (2023). The benefits to biodiversity of a strong circular economy. https://www.eea.europa.eu/publications/the-benefits-to-biodiversity
El-Araby, R. (2024). Biofuel production: exploring renewable energy solutions for a greener future. Biotechnology for Biofuels and Bioproducts, 17(1), 129. DOI: https://doi.org/10.1186/s13068-024-02571-9
Elgharbawy, A. S., Farghali, M., Osman, A. I., Hanafy, M. A., & Al-Muhtaseb, A. A. H. (2025). Innovative biodiesel production for sustainable energy: Advances in feedstocks, transesterification, and cost efficiency. Biomass and Bioenergy, 201, 108114. DOI: https://doi.org/10.1016/j.biombioe.2025.108114
Ellen MacArthur Foundation. (2015). Towards the circular economy: Economic and business rationale for an accelerated transition. https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf
Elsayed, M., Eraky, M., Osman, A. I., Wang, J., Farghali, M., Rashwan, A. K., Yacoub, I. H., Hanelt, D., & Abomohra, A. (2024). Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: a review. Environmental Chemistry Letters, 22(2), 609-634. DOI: https://doi.org/10.1007/s10311-023-01671-6
Ennetta, R., Soyhan, H. S., Koyunoğlu, C., & Demir, V. G. (2022). Current technologies and future trends for biodiesel production: a review. Arabian Journal for Science and Engineering, 47(12), 15133-15151. DOI: https://doi.org/10.1007/s13369-022-07121-9
Fernandez-Alvarez, P., Vila, J., Garrido, J. M., Grifoll, M., Feijoo, G., & Lema, J. M. (2007). Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige. Journal of Hazardous Materials, 147(3), 914–922. doi:10.1016/j.jhazmat.2007.01.135 DOI: https://doi.org/10.1016/j.jhazmat.2007.01.135
Gadore, V., Mishra, S. R., Yadav, N., Yadav, G., & Ahmaruzzaman, M. (2023). Metal oxide-based heterogeneous catalysts for biodiesel production. Next Sustainability, 2, 100012. DOI: https://doi.org/10.1016/j.nxsust.2023.100012
Gao, Y., Li, H., Song, Y., Zhang, F., Yang, Z., Yang, Y., & Grohmann, T. (2022). Response of glutathione pools to cadmium stress and the strategy to translocate cadmium from roots to leaves (Daucus carota L.). Science of The Total Environment, 823, 153575. DOI: https://doi.org/10.1016/j.scitotenv.2022.153575
Garg, R., Sabouni, R., & Ahmadipour, M. (2023). From waste to fuel: Challenging aspects in sustainable biodiesel production from lignocellulosic biomass feedstocks and role of metal organic framework as innovative heterogeneous catalysts. Industrial Crops and Products, 206, 117554. DOI: https://doi.org/10.1016/j.indcrop.2023.117554
Gebremariam, S. N., & Marchetti, J. M. (2021). Biodiesel production process using solid acid catalyst: influence of market variables on the process's economic feasibility. Biofuels, Bioproducts and Biorefining, 15(3), 815-824. DOI: https://doi.org/10.1002/bbb.2203
Geissdoerfer, M., Savaget, P., Bocken, N., & Hultink, E. J. (2017) ‘The Circular Economy – A new sustainability paradigm?’. Journal of Cleaner Production, 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048. DOI: https://doi.org/10.1016/j.jclepro.2016.12.048
Grigoryan, A., & Borodavkina, N. (2017). The Baltics on their way towards a circular economy. Baltic region, 9, 4-14. https://doi.org/10.5922/2079-8555-2017-3-1 DOI: https://doi.org/10.5922/2079-8555-2017-3-1
Hosseinzadeh-Bandbafha, H., Nizami, A. S., Kalogirou, S. A., Gupta, V. K., Park, Y., Fallahi, A., Sulaiman, A., Ranjbari, M., Rahnama, H., Aghbashlo, M., Peng, W., & Tabatabaei, M. (2022). Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renewable and Sustainable Energy Reviews, 161, 112411. DOI: https://doi.org/10.1016/j.rser.2022.112411
Hu, J., Du, Z., Li, C., & Min, E. (2005). Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel, 84(12-13), 1601-1606. DOI: https://doi.org/10.1016/j.fuel.2005.02.009
IFS. (2020). Biodiesel guide – sources, production, uses, & regulations. Retrieved January 3, 2024, from https://ifsolutions.com/how-is-biodiesel-made-sources uses/#:~:text=Biodiesel%20is%20synthesized%20by%20a,either%20ethyl%20or%20methyl%20alcohol.
Ismaeel, H. K., Albayati, T. M., Dhahad, H. A., Al-Sudani, F. T., Salih, I. K., Saady, N. M. C., & Zendehboudi, S. (2024). Strategies for biodiesel production with the role of reactor technologies: A comprehensive review. Chemical Engineering and Processing-Process Intensification, 200, 109767. DOI: https://doi.org/10.1016/j.cep.2024.109767
Jan, S., Mishra, A. K., Bhat, M. A., Bhat, M. A., Qyyum, M. A., Rahman, S., & Jan, A. T. (2025). Biodiesel in circular economy: A perspective study on recent trends and environmental challenges in sustainable energy production. Renewable Energy, 123840. DOI: https://doi.org/10.1016/j.renene.2025.123840
Kafuku, G., & Mbarawa, M. (2010). Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel, 89(9), 2556-2560. DOI: https://doi.org/10.1016/j.fuel.2010.03.039
Karis, D., Cain, R., Young, K., Shand, A., Holm, T., & Springer, E. (2022). Non‐fuel uses for fatty acid methyl esters. Biofuels, Bioproducts and Biorefining, 16(6), 1893-1908. DOI: https://doi.org/10.1002/bbb.2422
Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221–232. https://doi.org/10.1016/j.resconrec.2017.09.005 DOI: https://doi.org/10.1016/j.resconrec.2017.09.005
Kosuru, S. M. Y., Delhiwala, Y., Koorla, P. B., & Mekala, M. (2024). A review on the biodiesel production: Selection of catalyst, pre-treatment, post treatment methods. Green Technologies and Sustainability, 2(1), 100061. DOI: https://doi.org/10.1016/j.grets.2023.100061
Kristia, K., & Rabbi, M. F. (2023). Exploring the synergy of renewable energy in the circular economy framework: a bibliometric study. Sustainability, 15(17), 13165. DOI: https://doi.org/10.3390/su151713165
Kumar, M., Singh, V., Kumar, S., Tathod, A. P., Arumugam, S., & Viswanadham, N. (2024). Biodiesel-derived waste glycerol as a green template for creating mesopores in the ZSM-5 catalyst for aromatics production applications. Langmuir, 40(5), 2686-2697. DOI: https://doi.org/10.1021/acs.langmuir.3c03210
Kumar, P., Kalpna, S. H., Chand, M., & Panwar, H. (2024). A Review of Chemical and Physical Parameters of Biodiesel vs. Diesel: Their Environmental and Economic Impact. Renewable Energy Innovations: Biofuels, Solar, and Other Technologies, 329-344. DOI: https://doi.org/10.1002/9781119785712.ch12
Kumar Metal Industries. (2024). Biodiesel: Applications. https://kumarmetal.com/biodiesel-applications-replace-petroleum-based-diesel
Kumba, H., Makepa, D. C., Charamba, A. N., & Olanrewaju, O. A. (2024). Towards circular economy: integrating waste management for renewable energy optimization in Zimbabwe. Sustainability, 16(12), 5014. DOI: https://doi.org/10.3390/su16125014
Li, F., Liu, Z., Ni, Z., & Wang, H. (2019). Effect of biodiesel components on its lubrication performance. Journal of Materials Research and Technology, 8(5), 3681-3687. DOI: https://doi.org/10.1016/j.jmrt.2019.06.011
Li, W., Zhao, X., Ji, Y., Peng, H., Li, Y., Liu, L., & Han, X. (2016). An investigation on environmentally friendly biodiesel-based invert emulsion drilling fluid. Journal of Petroleum Exploration and Production Technology, 6, 505-517. DOI: https://doi.org/10.1007/s13202-015-0205-7
Li, Z., Smith, K. H., & Stevens, G. W. (2016). The use of environmentally sustainable bio-derived solvents in solvent extraction applications—A review. Chinese Journal of Chemical Engineering, 24(2), 215–220. doi:10.1016/j.cjche.2015.07.021 DOI: https://doi.org/10.1016/j.cjche.2015.07.021
Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., & Xu, J. (2021). State-of-the-art technologies for biofuel production from triglycerides: A review. Renewable and Sustainable Energy Reviews, 148, 111269. DOI: https://doi.org/10.1016/j.rser.2021.111269
Longo, S., Cellura, M., Luu, L. Q., Nguyen, T. Q., Rincione, R., & Guarino, F. (2024). Circular economy and life cycle thinking applied to the biomass supply chain: A review. Renewable Energy, 220, 119598. DOI: https://doi.org/10.1016/j.renene.2023.119598
Luka, L., Mahmoud, S., & Saidu, S.A. (2024). Optimization of Transesterification Process for Biodiesel Production using Jatropha Oil. Newport International Journal Of Research In Medical Sciences, 5(2), 78–83. https://doi.org/10.59298/nijrms/2024/5.2.07883 DOI: https://doi.org/10.59298/NIJRMS/2024/5.2.07883
Manickam, P., & Duraisamy, G. (2019). 3Rs and circular economy. Circular Economy in Textiles and Apparel (pp. 77–93). https://doi.org/10.1016/b978-0-08-102630-4.00004-2 DOI: https://doi.org/10.1016/B978-0-08-102630-4.00004-2
Mehejabin, F., Musharrat, A., Ahmed, S. F., Kabir, Z., Khan, T. Y., & Saleel, C. A. (2024). Sustainable biofuel production utilizing nanotechnology: challenges and potential solutions. GCB Bioenergy, 16(10), e70001. DOI: https://doi.org/10.1111/gcbb.70001
Mehra, K. S., & Goel, V. (2025). Unveiling next-generation biodiesel Technologies: Techno-Economic and energy breakthroughs for sustainable production. Biomass and Bioenergy, 199, 107910. DOI: https://doi.org/10.1016/j.biombioe.2025.107910
Mhetras, N., & Gokhale, D. (2025). Sustainable biodiesel production: importance of feedstock resources and production methods. RSC advances, 15(33), 26739-26754. DOI: https://doi.org/10.1039/D5RA03084F
Mim, T. J., Ahmad, I., Al Noman, A., Jain, D., & Singh, K. (2025). Coconut Husk for Second-generation Biofuel Production to Advance a Circular Economy. Current Green Chemistry. DOI: https://doi.org/10.2174/0122133461376861250625225817
Min, M., Jinzhen, Z., & Peng, R. (2015). Development and application of fatty acid methyl ester serving as environment-friendly solvent in pesticide preparations (CN104823969A). Chinese Patent Office. https://patents.google.com/patent/CN104823969A/it/
Mohsin, S. N. M., Raman, I. A., Hasan, Z. A. A., & Idris, Z. (2017). Palm-based methyl esters as carrier solvents in pesticide formulations. Palm Oil Dev, 66, 32-38.
Mukonza, C., & Nhamo, G. (2016). Institutional and regulatory framework for biodiesel production: International perspectives and lessons for South Africa. African Journal of Science, Technology, Innovation and Development, 8(1), 1-11. DOI: https://doi.org/10.1080/20421338.2015.1097233
Nabgan, W., Jalil, A.A., Nabgan, B., Jadhav, A.H., Ikram, M., Ul-hamid, A., Ali, M.W., & Hassan, N.S. (. (2022). Sustainable biodiesel generation through catalytic transesterification of waste sources: a literature review and bibliometric survey. RSC advances, 12(3), 1604-1627. DOI: https://doi.org/10.1039/D1RA07338A
Nogales-Delgado, S. (2025). Biodiesel Production and Life Cycle Assessment: Status and Prospects. Energies, 18(13), 3338. DOI: https://doi.org/10.3390/en18133338
Noor, C. M., Noor, M. M., & Mamat, R. (2018). Biodiesel as alternative fuel for marine diesel engine applications: A review. Renewable and sustainable energy reviews, 94, 127-142. DOI: https://doi.org/10.1016/j.rser.2018.05.031
Oh, P. P., Lau, H. L. N., Chen, J., Chong, M. F., & Choo, Y. M. (2012). A review on conventional technologies and emerging process intensification (PI) methods for biodiesel production. Renewable and Sustainable Energy Reviews, 16(7), 5131-5145. DOI: https://doi.org/10.1016/j.rser.2012.05.014
Okpo, S. O., & Edafiadhe, E. D. (2024). Unlocking the power of waste cooking oils for sustainable energy production and circular economy: A review. ABUAD Journal of Engineering Research and Development (AJERD), 7(1), 41-55. DOI: https://doi.org/10.53982/ajerd.2024.0701.05-j
Pachauri, N., & He, B. (2006). Value-added utilization of crude glycerol from biodiesel production: a survey of current research activities. In Proceedings of the ASABE annual international meeting (Vol. 9, pp. 1-16). Portland: American Society of Agricultural and Biological Engineers.
Patel, K., & Singh, S. K. (2024). Sustainable biodiesel from used cooking oil: a comparative life cycle, energy, and uncertainty analysis. Environment, Development and Sustainability, 1-26. DOI: https://doi.org/10.1007/s10668-024-05692-1
Patel, S., & Brahmbhatt, P. K. (2022). Comprehensive review of biodiesel as an alternative fuel for diesel engines. International Journal of Design Engineering, 11(1), 61-76. DOI: https://doi.org/10.1504/IJDE.2022.127076
Paulauskiene, T., Bucas, M., & Laukinaite, A. (2019). Alternative fuels for marine applications: Biomethanol-biodiesel-diesel blends. Fuel, 248, 161-167. DOI: https://doi.org/10.1016/j.fuel.2019.03.082
Popovic, A., & Radivojevic, V. (2022). The circular economy: Principles, strategies and goals. Economics of sustainable development, 6(1), 45-56. DOI: https://doi.org/10.5937/ESD2201045P
Purkait, A., & Hazra, D. K. (2020). Biodiesel as a carrier for pesticide formulations: A green chemistry approach. International Journal of Pest Management, 66(4), 341-350. DOI: https://doi.org/10.1080/09670874.2019.1649740
Raman, N. A., Hainin, M. R., Hassan, N. A., & Ani, F. N. (2015). A review on the application of bio-oil as an additive for asphalt. Jurnal Teknologi, 72(5), 105-110. DOI: https://doi.org/10.11113/jt.v72.3948
Ramos, A., Monteiro, E., & Rouboa, A. (2022). Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods–a review. Energy Conversion and Management, 270, 116271. DOI: https://doi.org/10.1016/j.enconman.2022.116271
Randive, A. B., Gaikwad, S. K., Khadake, S. B., & HM, M. (2024). Biodiesel: a renewable source of fuel. IJARSCT, 3, 225-240. DOI: https://doi.org/10.48175/IJARSCT-22836
Rastegari, H., Jazini, H., Ghaziaskar, H. S., & Yalpani, M. (2019). Applications of biodiesel by-products. Biodiesel: From Production to Combustion, 101-125. DOI: https://doi.org/10.1007/978-3-030-00985-4_5
Richards, K., Alexander, J., Duntin, L., Bernard-Craigg, P., & Solomon, N. (2010). Uses of biofuel. https://kelva.webnode.page/uses-of-biofuel
Saleh, A. M., Alias, A. B., Saleh, N. M., Yassin, K. F., Ahmed, O. K., Abdulqader, M. A., & Mahdi, H. H. (2023). Production of first and second-generation biodiesel for diesel engine operation: A review. NTU Journal of Renewable Energy, 5(1), 8-23. DOI: https://doi.org/10.56286/ntujre.v5i1.512
Salehpour, S., & Dubé, M. A. (2008). Biodiesel: a green polymerization solvent. Green Chemistry, 10(3), 321. https://doi.org/10.1039/b715047d DOI: https://doi.org/10.1039/b715047d
Santander-Bossio, M., Silva-Ortega, J., Cantero-Rodelo, R., Torres-Salazar, P., Rivera-Alvarado, J., Moreno-Rocha, C., & Milánes-Batista, C. (2025). From Waste to Energy: Cooking Oil Recycling for Biodiesel in Barranquilla, Colombia. Sustainability, 17(14), 6560. DOI: https://doi.org/10.3390/su17146560
Seifield, N. (2025). Investigating the diverse uses of biodiesel in various industries. https://www.chemanalyst.com/NewsAndDeals/NewsDetails/investigating-the-diverse-uses-of-biodiesel-in-various-industries-37651
Sentanuhady, J., Hasan, W. H., & Muflikhun, M. A. (2022). Recent progress on the implementation of renewable biodiesel fuel for automotive and power plants: raw materials perspective. Advances in Materials Science and Engineering, 2022(1), 5452942. DOI: https://doi.org/10.1155/2022/5452942
SGBiofuels. (2016). Top 10 uses for biofuel. https://www.sgbiofuels.com/top-10-uses-for-biofuel
Shabbir, M., Anwar, M. N., Saif, H., Tahir, E., Tahir, A., Rehan, M., Tanveer, R., Aghbashlo, M., Tabatabaei, M. & Nizami, A. S. (2023). Policy and regulatory constraints in the biodiesel production and commercialization. In Sustainable Biodiesel (pp. 357-372). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-820361-3.00007-3
Shalfoh, E., Ahmad, M. I., Binhweel, F., Shaah, M. A., Senusi, W., Alsaadi, S., & Shakir, M. A. (2025). Biomass to biofuel: Optimizing sustainable biodiesel production from fish waste and thermodynamic‐kinetic analysis. Biofuels, Bioproducts and Biorefining, 19(3), 654-677 DOI: https://doi.org/10.1002/bbb.2724
Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., & Shapouri, H. (1998). An overview of biodiesel and petroleum diesel life cycles. Publication of National Renewable Energy Laboratory / A national laboratory of the U.S. Department of Energy Operated by Midwest Research Institute Under Contract No. DE-AC02-83CH10093.
Sia, C. B., Kansedo, J., Tan, Y. H., & Lee, K. T. (2020). Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatalysis and Agricultural Biotechnology, 24, 101514. https://doi.org/10.1016/j.bcab.2020.101514 DOI: https://doi.org/10.1016/j.bcab.2020.101514
Singh, N. K., Singh, Y., Kumar, V., & Singh, B. (2024). Biodiesel as a potential replacement fuel for CI engine to meet the sustainability criteria: A review. Materials Today: Proceedings, 102, 126-131. DOI: https://doi.org/10.1016/j.matpr.2023.04.056
Sowan, E., Mozumder, M. S., Taher, H., & Al‐Zuhair, S. (2023). Innovative Approaches to Enhanced Enzymatic Microalgae‐to Biodiesel Production. ChemBioEng Reviews, 10(6), 860-883. DOI: https://doi.org/10.1002/cben.202300009
Sreeharsha, R. V., Dubey, N., & Mohan, S. V. (2023). Orienting biodiesel production towards sustainability and circularity by tailoring the feedstock and processes. Journal of Cleaner Production, 414, 137526. DOI: https://doi.org/10.1016/j.jclepro.2023.137526
Suhara, A., Karyadi, Herawan, S.G., Tirta, A., Idris, M., Roslan, M.F., Putra, N.R., Hananto, A., & Veza, I. (2024). Biodiesel sustainability: review of progress and challenges of biodiesel as sustainable biofuel. Clean Technologies, 6(3), 886-906. DOI: https://doi.org/10.3390/cleantechnol6030045
Sulaiman, N. F., Gunasekaran, S. S., Zaman, H. B., Nashruddin, S. N. A. M., Nashruddin, S. N. A. M., Sofiah, A. G. N., Mubin, M. H. A., & Lee, S. L. (2025). Advances in catalysis for biodiesel production: Integrating AI-driven optimization and bibliometric insights into renewable energy technologies. Bioresource Technology, 437, 133088. https://doi.org/10.1016/j.biortech.2025.133088 DOI: https://doi.org/10.1016/j.biortech.2025.133088
Sun, Z., Yi, J., Huang, Y., Feng, D., & Guo, C. (2016). Investigation of the potential application of biodiesel by-product as asphalt modifier. Road Materials and Pavement Design, 17(3), 737-752. DOI: https://doi.org/10.1080/14680629.2015.1096819
Suzihaque, M. U. H., Alwi, H., Ibrahim, U. K., Abdullah, S., & Haron, N. (2022). Biodiesel production from waste cooking oil: A brief review. Materials Today: Proceedings, 63, S490-S495. DOI: https://doi.org/10.1016/j.matpr.2022.04.527
Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H. K. S., Mollahosseini, A., Hosseini, M., & Soufiyan, M. M. (2019). Reactor technologies for biodiesel production and processing: A review. Progress in Energy and Combustion Science, 74, 239-303. DOI: https://doi.org/10.1016/j.pecs.2019.06.001
Teixeira, E. C., Mattiuzi, C. D., Feltes, S., Wiegand, F., & Santana, E. R. (2012). Estimated atmospheric emissions from biodiesel and characterization of pollutants in the metropolitan area of Porto Alegre-RS. Anais da Academia Brasileira de Ciências, 84, 655-667. DOI: https://doi.org/10.1590/S0001-37652012000300008
Tesfa, B., Mishra, R., Gu, F., & Powles, N. (2010). Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renewable Energy, 35(12), 2752–2760. https://doi.org/10.1016/j.renene.2010.04.026 DOI: https://doi.org/10.1016/j.renene.2010.04.026
Thakur, V., & Chandel, M. (2021). Sustainability assessment of biodiesel produced from Jatropha curcas using life cycle assessment approach. DOI: https://doi.org/10.26434/chemrxiv-2021-j9v6d
Thompson, A. (2024). Developing a more efficient, environmentally friendly supply chain for renewable energy projects. DOI: https://doi.org/10.1063/10.0025378
Tobey, M. B., Binder, R. B., Chang, S., Yoshida, T., Yamagata, Y., & Yang, P. P. (2019). Urban systems design: A conceptual framework for planning smart communities. Smart Cities, 2(4), 522-537. DOI: https://doi.org/10.3390/smartcities2040032
Torres, H., & Macken, N. (2021). Methods of Dealing With Co-Products in a Life-Cycle Assessment of Biodiesel Fuel Produced From Waste Cooking Oil. In ASME International Mechanical Engineering Congress and Exposition (Vol. 85635, p. V08AT08A003). American Society of Mechanical Engineers. DOI: https://doi.org/10.1115/IMECE2021-69292
Torres, H., Camacho, K., & Macken, N. (2020). A life cycle assessment of biodiesel fuel produced from waste cooking oil. In ASME Power Conference (Vol. 83747, p. V001T08A006). American Society of Mechanical Engineers. DOI: https://doi.org/10.1115/POWER2020-16240
Tulashie, S. K., Alale, E. M., Agudah, P. Q., Osei, C. A., Munumkum, C. A., Gah, B. K., & Baidoo, E. B. (2025). A review on the production of biodiesel from waste cooking oil: a circular economy approach. Biofuels, 16(1), 99-119. DOI: https://doi.org/10.1080/17597269.2024.2384277
Vethathirri, R. S., Santillan, E., & Wuertz, S. (2021). Microbial community-based protein production from wastewater for animal feed applications. Bioresource Technology, 341, 125723. DOI: https://doi.org/10.1016/j.biortech.2021.125723
Vinayak, A. K., Ashokan, H., Sinha, S., Halkara, Y., & Gurumoorthy, A. V. (2024). Role of biomass gasification in achieving circular economy. Recent Innovations in Chemical Engineering, 17(3), 170-189. DOI: https://doi.org/10.2174/0124055204319671240515060552
Vivekanandhan, S., Zarrinbakhsh, N., Misra, M., & Mohanty, A. K. (2013). Coproducts of biofuel industries in value-added biomaterials uses: A move towards a sustainable bioeconomy. In Liquid, Gaseous and Solid Biofuels-Conversion Techniques. IntechOpen DOI: https://doi.org/10.5772/55382
Wagh, M.S., S, S., Nath, P.C., Chakraborty, A., Amrit, R., Mishra, B., Mishra, A.K., & Mohanta, Y.K. (2024). Valorisation of agro-industrial wastes: circular bioeconomy and biorefinery process–a sustainable symphony. Process safety and environmental protection, 183, 708-725. DOI: https://doi.org/10.1016/j.psep.2024.01.055
Wang, H., Li, H., Lee, C. K., Mat Nanyan, N. S., & Tay, G. S. (2024). A systematic review on utilization of biodiesel-derived crude glycerol in sustainable polymers preparation. International Journal of Biological Macromolecules, 261, 129536. https://doi.org/10.1016/j.ijbiomac.2024.129536 DOI: https://doi.org/10.1016/j.ijbiomac.2024.129536
Wang, M., Sun, M., Shang, H., Fan, S., Liu, M., & Liu, F. (2012, July). Biodiesel-based drilling fluids. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition? (pp. SPE-155578). SPE. https://doi.org/10.2118/155578-ms DOI: https://doi.org/10.2118/155578-MS
Xu, H., Ou, L., Li, Y., Hawkins, T.R., & Wang, M. (2022). Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States. Environmental Science & Technology, 56, 7512 - 7521. DOI: https://doi.org/10.1021/acs.est.2c00289
Yan, W. and Hoekman, S.K. (2012).Dust Suppression with Glycerin from Biodiesel Production: A Review. Journal of Environmental Protection, 3(2), 218-224. https://doi.org/10.4236/jep.2012.32027. DOI: https://doi.org/10.4236/jep.2012.32027
Yatim, F. E., Ait Belale, R., Abala, I., Chhiti, Y., Rujas, N. M., Aguilar, F., & Alaoui, F. E. M. H. (2024). Blending biomass-based liquid biofuels for a circular economy: Measuring and predicting density for biodiesel and hydrocarbon mixtures at high pressures and temperatures by machine learning approach. Renewable Energy, 234, 121146. DOI: https://doi.org/10.1016/j.renene.2024.121146
Yatish, K. V., Chandan, H. R., Shankar, S. M., & Omkaresh, B. R. (2025). Advancements in Reactor Technologies for Scalable and Sustainable Biodiesel Production. ChemBioEng Reviews, 12(2), e70001. DOI: https://doi.org/10.1002/cben.70001
Ye, Y., Guo, W., Ngo, H. H., Wei, W., Cheng, D., Bui, X. T., ... & Zhang, H. (2024). Biofuel production for circular bioeconomy: Present scenario and future scope. Science of The Total Environment, 935, 172863. DOI: https://doi.org/10.1016/j.scitotenv.2024.172863
Yue, M., Rokhum, S.L., Ma, X., Wang, T., Li, H., Zhao, Z., Wang, Y., & Li, H. (2024). Recent advances of biodiesel production enhanced by external field via heterogeneous catalytic transesterification system. Chemical Engineering and Processing-Process Intensification, 205, 109997. DOI: https://doi.org/10.1016/j.cep.2024.109997
Zhang, F., Yi, J., Pan, W., & Mei, G. (2024). A new process for the production of second-generation biodiesel from waste oils and fats. Biomass Conversion and Biorefinery, 14(8), 9013-9022. DOI: https://doi.org/10.1007/s13399-022-03149-x
Zhang, L., Loh, K. C., Kuroki, A., Dai, Y., & Tong, Y. W. (2021). Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: current status and prospects. Journal of Hazardous Materials, 402, 123543. DOI: https://doi.org/10.1016/j.jhazmat.2020.123543
Zhang, Y., Chang, C., Tan, B., Xu, D., Wang, Y., & Qi, T. (2019). Application of a Sustainable Bioderived Solvent (Biodiesel) for Phenol Extraction. ACS Omega, 4(6), 10431–10437. https://doi.org/10.1021/acsomega.9b00977 DOI: https://doi.org/10.1021/acsomega.9b00977
Zheng, F., & Cho, H. M. (2025). Study on Biodiesel Production: Feedstock Evolution, Catalyst Selection, and Influencing Factors Analysis. Energies, 18(10), 2533. DOI: https://doi.org/10.3390/en18102533
Zhou, C. H., Beltramini, J. N., Fan, Y. X., & Lu, G. Q. (2020). Recent developments in the catalytic glycerol hydrogenolysis to 1,2-propanediol. Catalysts, 10(6), 609. https://doi.org/10.3390/catal10060609
Zhu, C., Chiu, S., Nakas, J. P., & Nomura, C. T. (2013). Bioplastics from waste glycerol derived from biodiesel industry. Journal of Applied Polymer Science, 130(1), 1-13. DOI: https://doi.org/10.1002/app.39157
Zivkovic, S., Veljkovic, M., Banković-Ilic, I., Krstic, I. M., Konstantinovic, S., Ilic, S. B., Avramovic, J. M., Stamenkovic, O. S., & Veljkovic, V. B. (2017). Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable & Sustainable Energy Reviews, 79, 222-247. DOI: https://doi.org/10.1016/j.rser.2017.05.048
Zulqarnain, Ayoub, M., Yusoff, M. Z., Nazir, M. H., Zahid, I., Ameen, M., Sher, F., Floresyona, D., & Nursanto, E. B. (2021). A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies. Sustainability, 13(2), 788. DOI: https://doi.org/10.3390/su13020788
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline