Research Article

An Overview of High-Efficiency Perovskite and Perovskite-Based Tandem Solar Cells: Progress in 2025

Authors

Abstract

In 2025, perovskite-silicon tandem cells had attained verified efficiencies over 34%, and this paper outlines the major advancements in PSCs. Focusing on the materials and interface engineering solutions that have led to stability and efficiency improvements, we also take a look at how far we've come in making lead-free alternatives sellable.

Keywords:

Efficiency Perovskite-Based Tandem Devices Perovskite Solar Cells Solar Modules

Article information

Journal

Scientific Journal of Engineering, and Technology

Volume (Issue)

2(2), (2025)

Pages

114-118

Published

07-10-2025

How to Cite

Aziz, M. W., Ahmad, N. A., & Hamed, H. W. (2025). An Overview of High-Efficiency Perovskite and Perovskite-Based Tandem Solar Cells: Progress in 2025. Scientific Journal of Engineering, and Technology, 2(2), 114-118. https://doi.org/10.69739/sjet.v2i2.946

References

Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., ... & Albrecht, S. (2020). Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction. Science, 370(6522), 1300-1309. DOI: https://doi.org/10.1126/science.abd4016

Chen, J., & others. (2017). Recent progress in stabilizing hybrid perovskites for solar cell applications. Journal of Power Sources, 355, 98–133. https://doi.org/10.1016/j.jpowsour.2017.04.011 DOI: https://doi.org/10.1016/j.jpowsour.2017.04.025

Chin, X. Y., Turkay, D., Steele, J. A., Tabean, S., Eswara, S., Mensi, M., ... & Ballif, C. (2023). Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science, 381(6653), 59–63. https://doi.org/10.1126/science.adh7599 DOI: https://doi.org/10.1126/science.adg0091

Deng, Y., Van Brackle, C. H., Dai, X., Zhao, J., Chen, B., & Huang, J. (2019). Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Science advances, 5(12), eaax7537. https://doi.org/10.1126/sciadv.aax7537 DOI: https://doi.org/10.1126/sciadv.aax7537

Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2021). Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl, 29(1), 3-15. https://doi.org/10.1002/pip.3371 DOI: https://doi.org/10.1002/pip.3371

Gu, S., Lin, R., Han, Q., Gao, Y., Tan, H., & Zhu, J. (2020). Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Advanced Materials, 32(27), 1907392. https://doi.org/10.1002/adma.201907392 DOI: https://doi.org/10.1002/adma.201907392

Habibi, M., & others. (2016). Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells. Renewable and Sustainable Energy Reviews, 62, 1012–1031. https://doi.org/10.1016/j.rser.2016.05.041 DOI: https://doi.org/10.1016/j.rser.2016.05.042

Hamed, H., Aziz, M., & Ahmad, N. (2025). Changing the absorber layer with a compound FeSi2 to improve the efficiency of the solar cell using a simulation program. Advanced Physical Research, 7(2), 222–230. https://doi.org/10.62476/apr.72.222 DOI: https://doi.org/10.62476/apr.72.222

Jandary, B. M., & Saleh, A. N. (2019). Simulation of CZTS(Se)4 tandem solar cells by AFORS-HET software. Kirkuk University Journal for Scientific Studies, 14(4), 8–26. DOI: https://doi.org/10.32894/kujss.2019.14.4.2

Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., ... & You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 460-466. https://doi.org/10.1038/s41566-019-0398-2 DOI: https://doi.org/10.1038/s41566-019-0398-2

Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T. J., Yang, T. Y., ... & Seo, J. (2019). Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature, 567(7749), 511-515. https://doi.org/10.1038/s41586-019-1036-3 DOI: https://doi.org/10.1038/s41586-019-1036-3

Jung, H. S., & Park, N. G. (2015). Perovskite solar cells: From materials to devices. Small, 11(1), 10–25. https://doi.org/10.1002/smll.201402767 DOI: https://doi.org/10.1002/smll.201402767

Liang, H., Feng, J., Rodríguez-Gallegos, C. D., Krause, M., Wang, X., Alvianto, E., ... & Hou, Y. (2023). 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells. Joule, 7(12), 2859–2872. https://doi.org/10.1016/j.joule.2023.10.011 DOI: https://doi.org/10.1016/j.joule.2023.10.007

Luo, X., Wu, T., Wang, Y., Lin, X., Su, H., Han, Q., & Han, L. (2021). Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Science China Chemistry, 64(2), 218-227. https://doi.org/10.1007/s11426-020-9870-4 DOI: https://doi.org/10.1007/s11426-020-9870-4

Mariotti, S., Köhnen, E., Scheler, F., Sveinbjörnsson, K., Zimmermann, L., Piot, M., ... & Albrecht, S. (2023). Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science, 381(6653), 63–69. https://doi.org/10.1126/science.adj4386 DOI: https://doi.org/10.1126/science.adf5872

Mohammed, T. A., Aziz, M. W., Hamed, H. W., & Rzaij, J. M. (2024). Investigating the impact of MASnBr3 absorbent layer thickness on FTO/TiO2/MASnBr3/CuI perovskite solar cells characteristics. Digest Journal of Nanomaterials & Biostructures, 19(2). DOI: https://doi.org/10.15251/DJNB.2024.192.707

National Renewable Energy Laboratory. (2024). Best research-cell efficiency chart. NREL. https://www.nrel.gov/pv/cellefficiency.html

Sami, M. S. A., Sur, A., & Rahman, E. (2025). Design and analysis of plasmonic-nanorod-enhanced lead-free inorganic perovskite/silicon heterojunction tandem solar cell exceeding the Shockley–Queisser limit. arXiv preprint arXiv:2507.22803

Snaith, H. J., & others. (2014). Anomalous hysteresis in perovskite solar cells. The Journal of Physical Chemistry Letters, 5(9), 1511–1515. https://doi.org/10.1021/jz500113x DOI: https://doi.org/10.1021/jz500113x

Song, Z., Chen, C., Li, C., Awni, R. A., Zhao, D., & Yan, Y. (2019). Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semiconductor Science and Technology, 34(9), 093001. https://doi.org/10.1088/1361-6641/ab2cdb DOI: https://doi.org/10.1088/1361-6641/ab27f7

Subhani, M. S., Fatima, A., Kokab, A., Riaz, A., & Mubashar, S. (2025). Perovskite solar cells and their types. Kashf Journal of Multidisciplinary Research, 2(1), 45–90. DOI: https://doi.org/10.71146/kjmr202

Tonui, P., & others. (2018). Perovskites photovoltaic solar cells: An overview of current status. Renewable and Sustainable Energy Reviews, 91, 1025–1044. https://doi.org/10.1016/j.rser.2018.04.004 DOI: https://doi.org/10.1016/j.rser.2018.04.069

Wang, Y., Wu, T., Barbaud, J., Kong, W., Cui, D., Chen, H., ... & Han, L. (2019). Stabilizing heterostructures of soft perovskite semiconductors. Science, 365(6454), 687-691. https://doi.org/10.1126/science.aax8018 DOI: https://doi.org/10.1126/science.aax8018

Wu, T., Qin, Z., Wang, Y., Wu, Y., Chen, W., Zhang, S., ... & Han, L. (2021). The main progress of perovskite solar cells in 2020–2021. Nano-Micro Letters, 13(1), 152. https://doi.org/10.1007/s40820-021-00657-9 DOI: https://doi.org/10.1007/s40820-021-00672-w

Wu, T., Wang, Y., Dai, Z., Cui, D., Wang, T., Meng, X., ... & Han, L. (2019). Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Advanced materials, 31(24), 1900605. https://doi.org/10.1002/adma.201900605 DOI: https://doi.org/10.1002/adma.201900605

Xiao, K., Lin, R., Han, Q., Hou, Y., Qin, Z., Nguyen, H. T., ... & Tan, H. (2020). All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature energy, 5(11), 870-880. https://doi.org/10.1038/s41560-020-00705-5 DOI: https://doi.org/10.1038/s41560-020-00705-5

Downloads

Views

0

Downloads

0