Research Article

Utilization of Humic Substances by Bacteria Isolated From Humic Freshwater Sediment Ecosystem

Authors

  • Egbomuche, R. C. Department of Microbiology, Faculty of Natural and Applied Science, Obong University, ObongNtak, EtimEkpo LGA, AkwaIbom State, Nigeria

    chillipeepee@yahoo.com

  • Ekwenye, U. N. Department of Microbiology, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
  • Udofia, G. E. Department of Microbiology, Faculty of Science, University of Uyo, Uyo – Nigeria
  • Ikeh, C. E. Department of Microbiology, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
  • Angus Onwudiwe Ikeh Department of Crop Science, Faculty of Agriculture, University of Agriculture and Environmental Sciences, Umuagwo, Imo State, Nigeria

Abstract

A study on the utilization of humic substances by bacteria isolated from the sediment of humic freshwater, Eniong River ecosystem, a tributary of middle course of Cross River in Southern Nigeria was conducted using different microbiological and analytical techniques. Benthic sediments were collected from three sample stations known as upstream, midstream and downstream using an Eck sediment grab. The humic sediment of Eniong River contains diverse bacteria assemblages. The results showed that the heterotrophic bacterial counts ranged from 5.92 log10cfu/g downstream to 5.98 log10cfu/g upstream with mean count of 5.95±0.41 log10cfu/g while nitrogen-fixing bacteria ranged from 5.23 log10cfu/g midstream to 5.52 log10cfu/g downstream with a mean count of 5.36±0.67 log10cfu/g. Phosphate solubilizing bacteria counts on the other hand ranged from 4.30 log10cfu/g downstream to 4.54 log10cfu/g upstream with a mean count of 4.41±0.62 log10cfu/g. The characterization analysis studies of the isolates from the humic freshwater sediment ecosystem revealed 30 genera and 37 species of bacteria and 2 genera and 2 species of Actinomycetes. Growth profiles of the humic substance-utilizing bacteria on humic substance supplemented mineral salts medium revealed remarkable variations in species capabilities to utilize humic substances. The actual capability to utilize HS as a sole source of carbon and energy was indicated by increase in cell density overtime. Pseudomonas (log107.93cfu/g and log107.83cfu/g) exhibited the highest increase in cell density in HS of concentration 0.05%. However, the least cell density was observed by Bacillus subtilis (log102.48cfu/g) in HS of concentration 0.25%. The pH and the optical density of culture of isolates exposed to different concentrations of HS indicating growth of isolates showed that Pseudomonas aeruginosa (pH 4.99 OD 2.00) of HS concentration 0.05% showed the best growth. HS utilization by the test isolates was characterized by increase in viable cell numbers as well as concomitant increase in substrate acidity (low pH) and increase in attenuance levels of the optical density (OD) as concentration of HS decreases. 

Article information

Journal

Journal of Environment, Climate, and Ecology

Volume (Issue)

1 (1)

Pages

1-16

Published

25-05-2024

How to Cite

Egbomuche, R. C., Ekwenye, U. N., Udofia, G. E., Ikeh, C. E., & Ikeh, A. O. (2024). Utilization of Humic Substances by Bacteria Isolated From Humic Freshwater Sediment Ecosystem. Journal of Environment, Climate, and Ecology, 1(1), 1-16. https://journals.stecab.com/index.php/jece/article/view/22

References

Anderson, J. M. and Flanagan, P. (1989). Biological Processes Regulating Organic Matter Dynamics in Tropical Soils. In D.C. Coleman, J.M. Oades and G. Uheara, eds. Dynamics of Soil Organic Matter in Tropical Ecosystems, pp. 97–125. Niftal Project. University of Hawaii, USA

Allen, H. L. (1976). Dissolved Organic Matter in Lake Water. Characteristics of Molecular Weight Size Fraction and Ecological Implications. Oikos, 27,64-70.

Badis, A., Ferradji, F. Z., Boucherit, A., Fodil, D. and Boutoumi, D. (2009). Characterization and Biodegradation of Soil Humic Acid and Preliminary Identification of Decolourizing Actinomycetes at Mitidja Plain Soils (Algeria). African Journal of Microbiology Research, 3(13), 997 – 1007.

Balba, M. T., Al-Awadhi, N. and Al-Daher, R. (1998). Bioremediation of Oil Contaminated Soil: Microbiological Methods for Feasibility Assessment and Field Evaluation. Journal of Microbial Methods, 32, 155 – 164.

Bastida, F., Moreno, J. L., Hernandez, T. and Garcia, C. (2007). The Long Term Effects of the Management of a Forest Soil on its Carbon Content, Microbial Biomass and Activity Under a Semi-acid Climate. Applied Soil Ecology, 37, 53 – 62.

Bernier, N and Ponge, J. F. (1994). Humus form Dynamics during the sylvogenetic cycle in a Mountain Spruce Forest. Soil Biology and Biochemistry, 26, 183 – 220.

Bongiovanni, M. D. and Lobartini, J. C. (2006). Particulate Organic Matter, Carbohydrate, Humic Acid Contents in Soil Macro and Micro Aggregates as Affected by Cultivation. Geoderma, 136, 660 – 665.

Caeser-Tonthat, T. C. (2002). Soil Binding Properties of Mucilage Produced by a Basidiomycete Fungus in a Model System. Mycological Research, 106, 930 – 937.

Cheesebrough, (2006). District Laboratory Practice in Tropical Countries 7, 35-121.

Chertov, O. G., Kormarov, A. S., Crocker, G., Grace, P., Wir, J., Korschenes, M., Powton, P. R. and Richter, D. (1997). Simulating Trends of Soil Organic Carbon in Seven Long Term Experiments using the SOMM Model of the Humus types. Geoderma, 81, 121 – 135.

Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lia, W. A. and Young, C. C. (2006). Phosphate Solubilizing Bacteria from Subtropical Soils and their TricalciumPhophate Solubilization activities. Applied Soil Ecology, 34, 33-41

Chilom G., Bruns, A. S. and Rice J. A. (2000). A1 Natural Assemblages of Marine Proteobacteria and Members of the Cytophaga-Flavobacter Cluster Consuming Low Molecular Weight Dissolved Organic Matter. Applied Environmental Microbiology, 66(4),1692-1692.

Clarholm, M. (1994). The Microbial loop in Soil. In: Beyond the biomass. K. Ritz, J. Dighton and K. E. Giller (Eds.). Chichester, John Wiley and Sons. pp. 221-230.

Cooper, W. T., Stenson, A., Milligan, L., Chanton, J., Dittmar, T. and Filley, T. (2004). Ultra-high Resolution Mass Spectrometry of Aquatic Humic Substances: Recurring Molecular Themes and Polymeric Character. In: Martin-Neto, L., Milori, D. M. B. P. and da Silva, W. T. L. eds. Humic Substances and Soil and Water Environment. Embrapa. 257 – 260.

Cowan, S. T. (1985). Cowan and Steel Manual for Identification of Bacteria, (2nd Ed), Cambridge, London: Cambridge University Press.

De Macedo, J. R., Amaral Meneguelli, D. O., Ottoni, N., Araujo, T. B. and de Sousa Lima, J. (2002). Estimation of Field Capacity and Moisture Retention Based on Regression Analysis involving Chemical and Physical Properties in Alfisols of the State of Rio de Janeiro. Communications in Soil Science and Plant Analysis, 33, 2037 – 2055.

Eiler A., Langenheder, S., Bertilsson, and Tranvik, S. L. J. (2003).Heterotrophic Bacterial Growth Efficiency and Community Structure at Different Natural Organic Carbon Concentration. Applied Environmental Microbiology, 69(7), 2702-2708.

Elos, S., Maunuksela, L., Salkinoja-Salonen, M., Smolander, A. and Haahtela, K. (2006). Humus Bacteria of Norway Spruce Stands: Plant Growth Promoting Properties and Birch, Red Fescue and Alder Colonizing Capacity. FEMS Microbial Ecology, 31, 143 – 152.

De Haan, H. (1997). Effect of Benzoate on Microbial Decomposition of Fulvic Acids in Tjeukemer. Limnology and Oceanography, 22, 38-44.

De Haan, H. (1974). Effect of Fulvic Acid Fraction on the Growth of a Pseudomonas from Tjeukemer. Freshwater Biology, 4, 301-310.

Essien, J. P. & Udosene, E. D. (2000). Distribution of Actinomycetse in Oil Contaminated Utisols of the Niger Delta (Nigeria). Journal of Environmental Science, 12, 296-302.

Fenchel, T. & Blackburn, T. H. (1979). Bacteria and Mineral Cycling. Academia, 30, 65 – 70.

Geller, A. (1986). Comparison of Mechanisms Enhancing Biodegradability of Retracting Lake Water Constituents. Limnology and Oceanography, 31, 755-764.

Grinhut, T., Hadar, Y. and Chen, Y. (2007). Degradation and Transformation of Humic Substances by Saprotrophic Fungi. Biological Review, 21, 179-89.

Hargital, L. (1993). The Soil of Organic Matter Content and Humus Quality in the Maintenance of Soil Fertility and Environmental Protection. Landscape and Urban Planning, 27, 161-167.

Hatcher, P., Kim, S. and Sugiyama, Y. (2004). Intercomparison of Some New Approaches for Investigating the Molecular Weight Distribution of Dissolved Organic Matter. Humic Substances and Soil and Water Environment. Embrapa, pp. 241 – 243.

Head, I. M., Saunders, J. R. and Pickup, R. W. (1998). Microbial Evolution, Diversity, and Ecology: A Decade of Ribosomal RNA Analysis of Uncultivated Microorganisms. Microbial Ecology, 35, 1-21.

Hempfling, R., Schulten, H. R. and Hom, R. (1990). Relevance of Humus Composition to the Physical Mechanical Stability of Agricultural Soils: A Study by Direct Pyrolysis – Mass Spectrometry. Journal of Analytical and Applied Pyrolysis, 17, 275 – 281.

Hessen, D. O. (1985). The Relation between Bacterial Carbon and Dissolved Humic Compounds in Oligotrophic Lakes. Microbial Ecology, 31, 215-223.

Hogue, E., Wolf, M., Teichmann, G., Peller, E., Schimmack, W., Buckau, G. (2003). Influence of ionic Strength and Organic Modifier Concentrations of Characterization of Aquatic Fulvic and Humic Acids by High Performance Size-Exclusion Chromatography. Journal of Chromatography, 1017, 97 – 105.

Hoitink, H. A. & Farley, P. C. (1986). Basis for the Control of soil borne plant pathogens with composts. Annual Review of Phytopathology, 24, 93 – 114.

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T, and Williams, S.T. (1994). Bergey’s Manual of Determinative Bacteriology, 9 th Ed. Lippincott Williams and Wilkins, USA

Huang, Y., Zeng, W. and Liu, H. L. (2008). Degradation of lead contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environmental Science and Technology, 42, 4946 – 4951.

Jones, R. I. (2005). Limnology of Humic Waters: Special Theme or Universal Framework? Verhandlungen der Internationalen Vereinigung fur theoretische Undangewadte Limnologie, 29, 51-60.

Jones, R. I. (1998). Phytoplankton, Primary Production and Nutrient Cycling.Aquatic Humic Substances. Ecology and Biogeochemistry. Springer, Berlin, 145-175.

Jones, R. I. (1992). The Influence of Humic Substances Lacustrine Planktonic Food Chains. Hydrobiologia, 229, 73 – 91.

Jones, R. L. K., Salonen and De Haan H. (1988).Phosphorus Transformations in the Epilimnion of Humic Lakes. Fresh Water Biology, 19, 357-369.

Katsumata, H., Sada, M., Kaneco, S., Suzuki, T., Ohta, K. and Yobiko, K. (2008). Humic Acid Degradation in Aqueous Solution by the Photo-fenton process. Chemical Engineering Journal, 137, 225 – 230.

Kim, B. & Wetzel, R. G. (2002). The Effect of Dissolved Humic Substances on the Alkaline Phosphatase and the Growth of Microalgae. Limnology and Oceanography, 25, 129 – 132.

Lamotte, M. (1989). Place Des Animaux Détritivores et des Microorganismes Décomposeurs Dansles Flux D’énergie Des Savanes Africaines. Pedobiologia, 33, 17–35

Lavelle, P. and Spain, A. (2001). Soil ecology. Dordrecht. The Netherlands, Kluwer Academic, Publishers.

Lavelle, P., Blanchart, E., Martin, A., Martin, S., Spain, A.V., Toutain, F., Barois, I. and Schaefer, R. (1993). A Hierarchical Model for Decomposition in Terrestrial Ecosystems: Application to Soils of the Humid Tropics. Biotropica, 25(2), 130–150.

Lavelle, P. and Pashanasi, B. (1989). Soil macrofauna and Land Management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia, 33, 283–291

Lavelle, P. (1981). Strategies de Reproduction Chez Les Vers De Terre. Acta Oecol., 2, 117–133

Mackowiak, C. L., Grossl, P. R. and Bugbee, B. G. (2001). Beneficial Effects of Humic Acid on Micronutrients Availability to wheat. Soil Science Society of America Journal, 65, 1744 – 1750.

Malcolm, R. (1990). The Uniqueness of Humic Substances in each of Soil, Streams and Marine Environments. Analytical Chemistry, 232,19-30.

Marsh, K. L., Sims, G. K. and Mulvaney, R. L. (2005). Availability of Urea to Autotrophic Ammonia-oxidizing bacteria as related the fate of 14C- and 15N- labeled Urea added to Soil. Biology and fertility of Soils, 49(1), 51-60

Mcknight, D. M. (1990). Inorganic Acids in Aquatic Ecosystems (Eds. Perdue, E. M. and Gjessing, E. T.). Wiley, New York. pp 223 – 234.

Mcknight, D., Aiken, G. and Smith, R. (1991). Aquatic Fulvic Acids in Microbially based Ecosystems: Results from Two Desert Lakes in Antartica. Limnology and Oceanography 36, 998-1006.

Mishra, B. and Srivastava, L. L. (1986). Degradation of Humic Acid of a Forest Soil by Some Fungal Isolates. Plant and Soil, 96, 413 – 416.

Mopper, K. Z. and Kicber D. J. (2002). Photochemistry and the Cycling of Carbon, Sulphur, Nitrogen and Phosphorus, pp 455-507.

Moran, M. A. and Hodson, R. E. (1990a).Bacterial Production on Humic and Non-Humic Components of Dissolved Organic Carbon. Limnology and Oceanography, 35(8), 1744-1756.

Moran, M. A. and Hodson, R. E. (1989b). Formation and Bacterial Utilization of Dissolved Organic Carbon Derived from Detrital Lignocellulose. Limnology and Oceanography, 34,1034-1049.

Moran, M. A. and Hodson R. E. (1990).Contribution of Degrading SpartinaAlterniflora Lignocellulose to the Dissolved Organic Carbon Pool of Salt Marsh. Marine Ecology, 62,161-168.

Nardi, S., Ertani, A. and Francioso, O. (2017). Soil-root Cross-talking: The Role of Humic Substances. J. Plant Nutr. Soil Sci. 180, 5–13.

Nweke, C. O, Alisi CS, Okolo J. C and Nwanyanwu CE (2007). Toxicity of Zinc to Heterotrophic Bacteria from a Tropical River Sediment. Applied Ecology and Environmental Research. 5(1),123-132.

Obernoster, I. and Benner, R. (2004). Competition between Biological and Photochemical Processes in the Mineralization of Organic Carbon. Limnology and Oceanography, 49(1), 117-124.

Obernoster I., Reitner B. and Herndi G. J. (1999).Contrasting Effects of Solar Radiation on Dissolved Organic Matter and its Bioavailability of Marine Bacterio-Plankton. Limnology and Oceanography, 44,1645-1654.

Ogura, N. (1975). Further Studies on Decomposition of Dissolved Organic Matter in Coastal Seawater. Mar. Biol., 31,101-111.

Park, B., Bola, A., Megharaji, M. and Naidu, R. (2011).Bioremediation Approaches for Organic Pollutants.A Critical Perspective. Environment International, 37(8), 1362-1375.

Paerl, H. W., and Pinckney, J. L. (1996). A Mini-Review of Microbial Consortia: Their Roles in Aquatic Production and Biogeochemical Cycling. Microbial Ecology 31, 225-247

Satchell JE (1971) Measuring populations and energy flow in earthworms.

Phillipson J (Ed) Methods of Study in Soil Ecology, UNESCO, pp, 261-267.

Senesi, N., Miano, T. M., Provenzano, M. R. and Brunetti, G. (1991). Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci. 152, 259–271.

Seckbach, J. & Kluwer, J. (2000). Journey to Diverse Microbial Worlds; Academic Publishers: Dordrecht, the Netherlands.

Sederholm, H. A, Mauranen and montonen (1993). Some Observations on the Microbial Degradation of Humus Substances ein Water. Limnology Vereiniging, 18, 1301-1305.

Steinberg, C. E. W. (2003). Ecology of Humic Substance in Freshwater. Determinants from Geochemistry to Ecological Niches. Springer, Berlin. pp. 80 – 112.

Steinberg C. E. W. and Munster u. (1985).Geochemistry and Ecological Role of Humic Substances in Lake Water Humic Substances in Soil, Sediment, and Water. Geochemistry, Isolation and Characterization. Wiley, New York, pp 105-145.

Stevenson, F. J. (1994). Humus Chemistry: Genesis, Composition, Reaction, Second Edition, John Wiley and Sons, New York.

Stevenson, F. .J. (1982). Humus Chemistry-genesis Composition and Reactions. John Willey and sons, New York.

Sun, H. W. and Yan, Q. S. (2007). Influence of Fenton Oxidation on Soil Organic Matter and its Sorption and Desorption Pyrene. Journal of Hazardous Matter, 144: 164 – 170.

Swift, M.J., Heal, O.W. and Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. Oxford, UK, Blackwell Scientific Publications.

Szalay, A. (1964). Cation Exchange of Humic Acids and their Importance in the Geochemical Enrichment of H2O+ and other cations. Geochima et Cosmochemica Acta, 28, 1605 – 1614.

Thurman, E. M. (1985). Organic Geochemistry of Natural Waters. Springer, Berlin. pp 8 – 11.

Tranvik, L.J. and Bertilsson. (2001). Contrasting Effects of Solar UV Radiation on Dissolved Organic Sources for Bacterial Growth. Ecological Letters, 4, 455-463.

Tranvik, L. J. and Hofle. M.G. (1987). Bacterial Growth in Mixtures of Dissolved Organic Carbon from Humic and Clear Waters. Applied Enrivonmental Microbiology, 53, 482-488.

Tranvik, L J. (1988a). Availability of Dissolved Organic Carbon for Planktonic Bacteria in Oligotrophic Lakes of Differing Humic Content. Microbial Ecology, 16, 311-322.

Tranvik, L.J. and Sieburth J. M. C. N. (1989).Effects of Flocculated Humic Acids on Free and Attached Pelagic Microorganisms.Limnology and Oceanography, 34, 688-699.

Trump, J. I., Sun, Y. and Coates, J. D. (2006).Microbial Interactions with Humic Substances. Adv. Appl. Microbiol., 60.

Thurman, E. M. (1985). Organic geochemistry of natural waters. Springer, Berlin. Pp. 8 – 11.

Varnam, A. H. and Evans, M. G. (2000). Environmental Microbiology, ASM Press, Washington, DC, pp 8-84.

Villa, R. D. and Nogueira, R. F. (2006). Oxidation of P. P1 – DDT and P. P1 – DDE in highly and long term contaminated soil using Fenton reaction in a slurry system. Science Total Environmental, 371, 11 – 18

Visser, S. A. (1985).Effects of Humic Acids Numbers and Activities of Microorganisms within Physiological Groups.Organic Geochemistry, 8, 81 – 85.

Vreeken-Buijs, Hassink, M. J. and Brussel, L. (1998). Relationships of soil microathropod biomass with organic matter and pore size distribution in soil under different land use. Soil Biology and Biochemistry, 30, 97 – 106.

Wang, W. H., Bray, C. M. and Jones, M. N. (1999). The Fate of 14C Labeled Humic Substances in Rice Cell Cultures. Journal of Plant Physiology, 154, 203 – 211.

Wetzel, R. G. (2001). Limnology.Lake and River Ecosystems 3rd ed. Academic Press, San Diego, CA. p 81-98.

White lead, D. C. and Tinsley, J. (2006). The biochemistry of humus formation. Journal of the Science of Food and Agriculture, 14, 849 – 857.

William H, B. and Scott F. L. (2004).Evaluation of Humic Pesticide Interaction on the Toxicity of Selected Organophosphate and Carbonate Insecticides. Journal of Hazardous Matter, 44, 64 – 70.

Zhao, L., Ma, T., Gao, M., Gao, P., Cao, M., Zhu, X. and Li, G. (2012). Characterization of Microbial Diversity and Community in Water Flooding Oil Reservoirs in China. World Journal of Microbiology and Biotechnology, 28(10), 3039-3052.

Downloads

Views

81

Downloads

38

Keywords:

Humic Substances Fulvic Acids Humic Acids Assemblage Freshwater