Review Article

Explainable Hybrid Machine Learning for Mental Health Outcomes: Revealing Latent Patterns in Patient Data

Authors

Abstract

Mental health data is complex, multimodal, and grows by the terabyte each day. Clinicians require algorithms that can filter out noise and provide clear, concise explanations. Hybrid machine-learning frameworks have begun to close this interpretability gap by constraining or guiding data-driven models with clinical insight. Prior reviews emphasized performance; few mapped how explainable, hybrid designs convert latent digital patterns into actionable clinical signals. We surveyed peer-reviewed studies published between 2015 and 2025 that paired explanatory tools (e.g., SHAP, rule lists) with conventional classifiers or neural networks. Most hybrids achieved parity with black-box models in terms of accuracy, while also providing feature-level rationales that clinicians found trustworthy in small usability trials. Smartphone passively sensed behavior and multimodal EHR excerpts yielded the richest “latent patterns,” flagging relapse risk up to two weeks earlier than standard scales. Yet sample heterogeneity, tiny validation cohorts, and sparse reporting of explanation quality remain obstacles. This review maps the emerging design space and highlights the pragmatic trade-offs, accuracy, transparency, and workflow fit that will matter most as hybrid AI moves from proof-of-concept to clinical routine.

Keywords:

Algorithmic Fairness Clinical Decision Support Digital Phenotyping Explainable AI Hybrid Machine Learning Mental Health Informatics

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(2), (2025)

Pages

206-216

Published

12-10-2025

How to Cite

Uzoma, C. A. E., Agu, C. P., Chikezie, C. O., Abi, R., & Okoronkwo, U. I. (2025). Explainable Hybrid Machine Learning for Mental Health Outcomes: Revealing Latent Patterns in Patient Data. Journal of Medical Science, Biology, and Chemistry, 2(2), 206-216. https://doi.org/10.69739/jmsbc.v2i2.1018

References

Abgrall, G., Holder, A. L., Chelly Dagdia, Z., Zeitouni, K., & Monnet, X. (2024). Should AI models be explainable to clinicians? Critical Care, 28, 301. https://doi.org/10.1186/s13054-024-05005-y

Ahmed, U., Srivastava, G., Yun, U., & Lin, J. C.-W. (2022). EANDC: An explainable attention network based deep adaptive clustering model for mental health treatment. Future Generation Computer Systems, 130, 106–113. https://doi.org/10.1016/j.future.2021.12.008

Alba, D. (2014, November 20). How Smartphone Apps Can Treat Bipolar Disorder and Schizophrenia. Wired. https://www.wired.com/2014/11/mental-health-apps/

Al-Halawani, R., Charlton, P. H., Qassem, M., & Kyriacou, P. A. (2023). A review of the effect of skin pigmentation on pulse oximeter accuracy. Physiological Measurement, 44(5), 05TR01. https://doi.org/10.1088/1361-6579/acd51a

Atlam, E.-S., Rokaya, M., Masud, M., Meshref, H., Alotaibi, R., Almars, A. M., Assiri, M., & Gad, I. (2025). Explainable artificial intelligence systems for predicting mental health problems in autistics. Alexandria Engineering Journal, 117, 376–390. https://doi.org/10.1016/j.aej.2024.12.120

Auf, H., Svedberg, P., Nygren, J., Nair, M., & Lundgren, L. E. (2025). The Use of AI in Mental Health Services to Support Decision-Making: Scoping Review. Journal of Medical Internet Research, 27, e63548. https://doi.org/10.2196/63548

Ballhausen, H., Corradini, S., Belka, C., Bogdanov, D., Boldrini, L., Bono, F., Goelz, C., Landry, G., Panza, G., Parodi, K., Talviste, R., Tran, H. E., Gambacorta, M. A., & Marschner, S. (2024). Privacy-friendly evaluation of patient data with secure multiparty computation in a European pilot study. Npj Digital Medicine, 7(1), 280. https://doi.org/10.1038/s41746-024-01293-4

Bladon, S., Eisner, E., Bucci, S., Oluwatayo, A., Martin, G. P., Sperrin, M., Ainsworth, J., & Faulkner, S. (2025). A systematic review of passive data for remote monitoring in psychosis and schizophrenia. NPJ Digital Medicine, 8, 62. https://doi.org/10.1038/s41746-025-01451-2

Bouguettaya, A., Stuart, E. M., & Aboujaoude, E. (2025). Racial bias in AI-mediated psychiatric diagnosis and treatment: A qualitative comparison of four large language models. Npj Digital Medicine, 8(1), 332. https://doi.org/10.1038/s41746-025-01746-4

Center for Devices and Radiological Health. (2025). Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device

Chandler, C., Foltz, P. W., & Elvevåg, B. (2022). Improving the Applicability of AI for Psychiatric Applications through Human-in-the-loop Methodologies. Schizophrenia Bulletin, 48(5), 949–957. https://doi.org/10.1093/schbul/sbac038

Chen, R. J., Wang, J. J., Williamson, D. F. K., Chen, T. Y., Lipkova, J., Lu, M. Y., Sahai, S., & Mahmood, F. (2023). Algorithm fairness in artificial intelligence for medicine and healthcare. Nature Biomedical Engineering, 7(6), 719–742. https://doi.org/10.1038/s41551-023-01056-8

Cheong, B. C. (2024). Transparency and accountability in AI systems: Safeguarding wellbeing in the age of algorithmic decision-making. Frontiers in Human Dynamics, 6. https://doi.org/10.3389/fhumd.2024.1421273

Choi, A., Ooi, A., & Lottridge, D. (2024). Digital Phenotyping for Stress, Anxiety, and Mild Depression: Systematic Literature Review. JMIR mHealth and uHealth, 12(1), e40689. https://doi.org/10.2196/40689

Clark, J. (2025, July 28). AI Nutrition Labels—A Food-Inspired Approach To Trust—I. IMD. https://www.imd.org/ibyimd/artificial-intelligence/ai-nutrition-labels-a-food-inspired-approach-to-trust/

Clark, L. (2015, May 13). Fitbit data could help schizophrenia sufferers avoid relapse. Wired. https://www.wired.com/story/schizophrenia-relapse-alert-system-fitbit/

Colyer, A. (2020, February 18). The Way We Think About Data—ACM Queue. https://queue.acm.org/detail.cfm?id=3384393

Commissioner, O. of the. (2025, June 1). FDA Issues Comprehensive Draft Guidance for Developers of Artificial Intelligence-Enabled Medical Devices. FDA; FDA. https://www.fda.gov/news-events/press-announcements/fda-issues-comprehensive-draft-guidance-developers-artificial-intelligence-enabled-medical-devices

Cross, J. L., Choma, M. A., & Onofrey, J. A. (2024). Bias in medical AI: Implications for clinical decision-making. PLOS Digital Health, 3(11), e0000651. https://doi.org/10.1371/journal.pdig.0000651

Definitive Healthcare. (2020, May 26). How Does EHR Adoption Impact Data Sharing? https://www.definitivehc.com/blog/hospital-ehr-adoption

Destiny, A. (2025). Leveraging Explainable AI and Multimodal Data for Stress Level Prediction in Mental Health Diagnostics. International Journal of Research and Innovation in Applied Science, IX(XII), 416–425. https://doi.org/10.51584/IJRIAS.2024.912037

Ducharme, J. (2019, November 20). Artificial Intelligence Could Be a Solution to America’s Mental Health Crisis. TIME. https://time.com/5727535/artificial-intelligence-psychiatry/

Garbazza, C., Mangili, F., D’Onofrio, T. A., Malpetti, D., Riccardi, S., Cicolin, A., D’Agostino, A., Cirignotta, F., Manconi, M., & “Life-ON” study group. (2024). A machine learning model to predict the risk of perinatal depression: Psychosocial and sleep-related factors in the Life-ON study cohort. Psychiatry Research, 337, 115957. https://doi.org/10.1016/j.psychres.2024.115957

Gerke, S. (2023). “Nutrition Facts Labels” for Artificial Intelligence/Machine Learning-Based Medical Devices—The Urgent Need for Labeling Standards.

Gilbert, S., Mathias, R., Schönfelder, A., Wekenborg, M., Steinigen-Fuchs, J., Dillenseger, A., & Ziemssen, T. (n.d.). A roadmap for safe, regulation-compliant Living Labs for AI and digital health development. Science Advances, 11(20), eadv7719. https://doi.org/10.1126/sciadv.adv7719

Golden, G., Popescu, C., Israel, S., Perlman, K., Armstrong, C., Fratila, R., Tanguay-Sela, M., & Benrimoh, D. (2023). Applying Artificial Intelligence to Clinical Decision Support in Mental Health: What Have We Learned? (No. arXiv:2303.03511). arXiv. https://doi.org/10.48550/arXiv.2303.03511

Golden, G., Popescu, C., Israel, S., Perlman, K., Armstrong, C., Fratila, R., Tanguay-Sela, M., & Benrimoh, D. (2024). Applying artificial intelligence to clinical decision support in mental health: What have we learned? Health Policy and Technology, 13(2), 100844. https://doi.org/10.1016/j.hlpt.2024.100844

Gumley, A. I., Bradstreet, S., Ainsworth, J., Allan, S., Alvarez-Jimenez, M., Birchwood, M., Briggs, A., Bucci, S., Cotton, S., Engel, L., French, P., Lederman, R., Lewis, S., Machin, M., MacLennan, G., McLeod, H., McMeekin, N., Mihalopoulos, C., Morton, E., … Gleeson, J. (2022). Digital smartphone intervention to recognise and manage early warning signs in schizophrenia to prevent relapse: The EMPOWER feasibility cluster RCT. Health Technology Assessment (Winchester, England), 26(27), 1–174. https://doi.org/10.3310/HLZE0479

Higgins, O., & Wilson, R. L. (2025). Integrating Artificial Intelligence (AI) With Workforce Solutions for Sustainable Care: A Follow Up to Artificial Intelligence and Machine Learning (ML) Based Decision Support Systems in Mental Health. International Journal of Mental Health Nursing, 34(2), e70019. https://doi.org/10.1111/inm.70019

Huang, X., Zhang, L., Zhang, C., Li, J., & Li, C. (2025). Postpartum Depression Risk Prediction Using Explainable Machine Learning Algorithms. Frontiers in Medicine, 12. https://doi.org/10.3389/fmed.2025.1565374

Hudon, A. (2025). A hybrid fuzzy logic–Random Forest model to predict psychiatric treatment order outcomes: An interpretable tool for legal decision support. Frontiers in Artificial Intelligence, 8. https://doi.org/10.3389/frai.2025.1606250

Itani, S., & Rossignol, M. (2020). At the Crossroads Between Psychiatry and Machine Learning: Insights Into Paradigms and Challenges for Clinical Applicability. Frontiers in Psychiatry, 11, 552262. https://doi.org/10.3389/fpsyt.2020.552262

Kelland, K. (2018, October 10). Mental health crisis could cost the world $16 trillion by 2030. Reuters. https://www.reuters.com/article/world/mental-health-crisis-could-cost-the-world-16-trillion-by-2030-idUSKCN1MJ2SG/

Kerz, E., Zanwar, S., Qiao, Y., & Wiechmann, D. (2023). Toward explainable AI (XAI) for mental health detection based on language behavior. Frontiers in Psychiatry, 14. https://doi.org/10.3389/fpsyt.2023.1219479

Khalil, S. S., Tawfik, N. S., & Spruit, M. (2024). Federated learning for privacy-preserving depression detection with multilingual language models in social media posts. Patterns, 5(7), 100990. https://doi.org/10.1016/j.patter.2024.100990

Lee, E. E., Torous, J., De Choudhury, M., Depp, C. A., Graham, S. A., Kim, H.-C., Paulus, M. P., Krystal, J. H., & Jeste, D. V. (2021). Artificial Intelligence for Mental Healthcare: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 6(9), 856–864. https://doi.org/10.1016/j.bpsc.2021.02.001

Mendes, J. P. M., Moura, I. R., Van de Ven, P., Viana, D., Silva, F. J. S., Coutinho, L. R., Teixeira, S., Rodrigues, J. J. P. C., & Teles, A. S. (2022). Sensing Apps and Public Data Sets for Digital Phenotyping of Mental Health: Systematic Review. Journal of Medical Internet Research, 24(2), e28735. https://doi.org/10.2196/28735

Mitrea, T., & Borda, M. (2020). Mobile Security Threats: A Survey on Protection and Mitigation Strategies. International Conference Knowledge-Based Organization, 26(3), 131–135. https://doi.org/10.2478/kbo-2020-0127

Ni, Y., & Jia, F. (2025). A Scoping Review of AI-Driven Digital Interventions in Mental Health Care: Mapping Applications Across Screening, Support, Monitoring, Prevention, and Clinical Education. Healthcare, 13(10), 1205. https://doi.org/10.3390/healthcare13101205

Norori, N., Hu, Q., Aellen, F. M., Faraci, F. D., & Tzovara, A. (2021). Addressing bias in big data and AI for health care: A call for open science. Patterns, 2(10), 100347. https://doi.org/10.1016/j.patter.2021.100347

Oudin, A., Maatoug, R., Bourla, A., Ferreri, F., Bonnot, O., Millet, B., Schoeller, F., Mouchabac, S., & Adrien, V. (2023). Digital Phenotyping: Data-Driven Psychiatry to Redefine Mental Health. Journal of Medical Internet Research, 25, e44502. https://doi.org/10.2196/44502

Pacheco, J., Garvey, M. A., Sarampote, C. S., Cohen, E. D., Murphy, E. R., & Friedman-Hill, S. R. (2022). The Contributions of the RDoC Research Framework on Understanding the Neurodevelopmental Origins, Progression and Treatment of Mental Illnesses. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 63(4), 360–376. https://doi.org/10.1111/jcpp.13543

Pavez, J., & Allende, H. (2024). A Hybrid System Based on Bayesian Networks and Deep Learning for Explainable Mental Health Diagnosis. Applied Sciences, 14(18), Article 18. https://doi.org/10.3390/app14188283

Price, G. D., Heinz, M. V., Zhao, D., Nemesure, M., Ruan, F., & Jacobson, N. C. (2022). An unsupervised machine learning approach using passive movement data to understand depression and schizophrenia. Journal of Affective Disorders, 316, 132–139. https://doi.org/10.1016/j.jad.2022.08.013

Qiu, Y., Yao, H., Ren, P., Tian, X., & You, M. (2025). Regulatory sandbox expansion: Exploring the leap from fintech to medical artificial intelligence. Intelligent Oncology, 1(2), 120–127. https://doi.org/10.1016/j.intonc.2025.03.001

Rajashekar, N. (n.d.). Generative Artificial Intelligence In Clinical Decision Support—Quantitative And Qualitative Analyses.

Reddy, S. (2024). Generative AI in healthcare: An implementation science informed translational path on application, integration and governance. Implementation Science, 19(1), 27. https://doi.org/10.1186/s13012-024-01357-9

Ren, W., Liu, Z., Wu, Y., Zhang, Z., Hong, S., & Liu, H. (n.d.). Moving Beyond Medical Statistics: A Systematic Review on Missing Data Handling in Electronic Health Records. Health Data Science, 4, 0176. https://doi.org/10.34133/hds.0176

Rodriguez, T., MA, & LPC. (2025, June 13). Addressing Racial Bias in Pulse Oximeter Accuracy. The Cardiology Advisor. https://www.thecardiologyadvisor.com/features/pulse-oximeter-accuracy-racial-bias/

Sadeh-Sharvit, S., & Hollon, S. D. (2025). AI Integration in Behavioral Healthcare: A Practical Framework for Clinicians. Journal of Technology in Behavioral Science. https://doi.org/10.1007/s41347-025-00532-z

Shaik, T., Tao, X., Xie, H., Li, L., Higgins, N., & Velásquez, J. D. (2025). Towards Transparent Deep Learning in Medicine: Feature Contribution and Attention Mechanism-Based Explainability. Human-Centric Intelligent Systems, 5(2), 209–229. https://doi.org/10.1007/s44230-025-00104-7

Son, C., Hegde, S., Markert, C., Zahed, K., & Sasangohar, F. (2023). Use of a Mobile Biofeedback App to Provide Health Coaching for Stress Self-management: Pilot Quasi-Experiment. JMIR Formative Research, 7(1), e41018. https://doi.org/10.2196/41018

Spoelma, M. J., Serafimovska, A., & Parker, G. (2023). Differentiating melancholic and non-melancholic depression via biological markers: A review. The World Journal of Biological Psychiatry. https://www.tandfonline.com/doi/abs/10.1080/15622975.2023.2219725

Su, C., Xu, Z., Pathak, J., & Wang, F. (2020). Deep learning in mental health outcome research: A scoping review. Translational Psychiatry, 10(1), 116. https://doi.org/10.1038/s41398-020-0780-3

Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: Benefits, risks, and strategies for success. Npj Digital Medicine, 3(1), 17. https://doi.org/10.1038/s41746-020-0221-y

Ul Hussna, A., Immami Trisha, I., Jahan Ritun, I., & Rabiul Alam, Md. G. (2021). COVID-19 impact on students’ Mental Health: Explainable AI and Classifiers. 2021 International Conference on Decision Aid Sciences and Application (DASA), 847–851. https://doi.org/10.1109/DASA53625.2021.9682371

Vafaei Sadr, A., Li, J., Hwang, W., Yeasin, M., Wang, M., Lehmann, H., Zand, R., & Abedi, V. (2025). Flexible imputation toolkit for electronic health records. Scientific Reports, 15(1), 17176. https://doi.org/10.1038/s41598-025-02276-5

Van Der Donckt, J., Vandenbussche, N., Van Der Donckt, J., Chen, S., Stojchevska, M., De Brouwer, M., Steenwinckel, B., Paemeleire, K., Ongenae, F., & Van Hoecke, S. (2024). Mitigating data quality challenges in ambulatory wrist-worn wearable monitoring through analytical and practical approaches. Scientific Reports, 14(1), 17545. https://doi.org/10.1038/s41598-024-67767-3

Wang, G., Bennamoun, H., Kwok, W. H., Quimbayo, J. P. O., Kelly, B., Ratajczak, T., Marriott, R., Walker, R., & Kotz, J. (2025). Investigating Protective and Risk Factors and Predictive Insights for Aboriginal Perinatal Mental Health: Explainable Artificial Intelligence Approach. Journal of Medical Internet Research, 27(1), e68030. https://doi.org/10.2196/68030

Wen, L.-Y., Zhang, L., Zhu, L.-J., Song, J.-G., Wang, A.-S., Feng, Y., Tao, Y.-J., Zhu, Y., Jin, Y.-L., & Chang, W.-W. (2025). Latent class analysis on mental health and associated factors in medical and non-medical college students. Journal of Affective Disorders, 388, 119593. https://doi.org/10.1016/j.jad.2025.119593

WHO. (2025). Mental health. World Health Organization. https://www.who.int/health-topics/mental-health

Wim, V. (2025, June 27). The EU AI Act and Medical Devices: Navigating High-Risk Compliance, Wim Vandenberghe. Reed Smith LLP. https://viewpoints.reedsmith.com/post/102kq35/the-eu-ai-act-and-medical-devices-navigating-high-risk-compliance

Zhang, Y., Wang, J., Zong, H., Singla, R. K., Ullah, A., Liu, X., Wu, R., Ren, S., & Shen, B. (2025). The comprehensive clinical benefits of digital phenotyping: From broad adoption to full impact. Npj Digital Medicine, 8(1), 196. https://doi.org/10.1038/s41746-025-01602-5

Zhu, H., Bai, J., Li, N., Li, X., Liu, D., Buckeridge, D. L., & Li, Y. (2025). FedWeight: Mitigating covariate shift of federated learning on electronic health records data through patients re-weighting. Npj Digital Medicine, 8(1), 286. https://doi.org/10.1038/s41746-025-01661-8

Zulqarnain, M., Shah, H., Ghazali, R., Alqahtani, O., Sheikh, R., & Asadullah, M. (2023). Attention Aware Deep Learning Approaches for an Efficient Stress Classification Model. Brain Sciences, 13(7), 994. https://doi.org/10.3390/brainsci13070994

Downloads

Views

0

Downloads

0