Article section
Partial Purification of a Serum Ferroportin and Evaluation of its Pharmacological Modulation: Implications for Hemodialysis Patients
Abstract
Ferroportin (FPN1), encoded by the SLC40A1 gene, is the only known mammalian cellular iron exporter and plays a pivotal role in systemic iron regulation. In the present study, a protein suspected to be ferroportin (FPN1) was isolated and partially purified from healthy human serum using a sequential protocol involving ammonium sulfate precipitation (0–65%), dialysis, and gel filtration chromatography on Sephadex G-100. The purification process led to a substantial increase in specific activity, reaching 193.65 ng/mg protein after gel filtration, corresponding to a 21.3-fold purification relative to crude serum, with an overall recovery of 47.91%. The molecular weight of the isolated protein was estimated at approximately 64.6 ± 1 kDa, consistent with previously reported values for human ferroportin. The modulatory effects of selected medications on this suspected serum ferroportin were examined. The tested agents demonstrated divergent outcomes, ranging from strong activation to marked inhibition. Isosorbide dinitrate (+61.89%), darbepoetin alfa (+45.08%), and ascorbic acid (+35.71%) significantly increased protein activity, whereas doxycycline (–58.33%), heparin (–55.69%), and atorvastatin (–42.58%) strongly suppressed it. These findings suggest potential drug–protein interactions that may influence iron metabolism in clinical contexts. However, further confirmatory analyses, such as Western blotting or mass spectrometry, are required to definitively identify the isolated protein as FPN1. Such insights may inform future therapeutic strategies aimed at optimizing iron metabolism and alleviating anemia in patients with chronic kidney disease and those undergoing hemodialysis.
Keywords:
Ferroportin Gel Filtration Chromatography Hemodialysis Iron Metabolism Pharmacological Modulation Serum Purification
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(2), (2025)
Pages
217-223
Published
Copyright
Copyright (c) 2025 Osama Younis Hamid, Eman Adel Hadi (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Ahmad, J., & He, Q. (2021). Advances in protein precipitation and purification methods. International Journal of Biological Macromolecules, 186, 604–612. https://doi.org/10.1016/j.ijbiomac.2021.06.124
Al-Jarah, I. A. (2012). Partial separation and some kinetic studies of protease enzyme from human plasma. Rafidain Journal of Science, 23(3), 98–107. https://doi.org/10.33899/rjs.2012.44399
Altamura, S., & Muckenthaler, M. U. (2020). Iron toxicity in diseases of aging. Journal of Alzheimer’s Disease, 75(4), 1165–1182.
Anderson, E. R., & Shah, Y. M. (2023). Hepcidin regulation of iron metabolism: From molecular mechanisms to clinical applications. Blood Reviews, 58, 101020. https://doi.org/10.1016/j.blre.2022.101020
Arezes, J., & Nemeth, E. (2022). Hepcidin and iron disorders: New biology and clinical approaches. Best Practice & Research Clinical Haematology, 35(2), 101401. https://doi.org/10.1016/j.beha.2022.101401
Arezes, J., Foy, N., & McHugh, K. (2018). Erythroferrone inhibits the induction of hepcidin by BMP6. Blood, 132(14), 1473–1477. https://doi.org/10.1182/blood-2018-03-839639
Asperti, M., Poli, M., & Denardo, A. (2024). Sevuparin strongly reduces hepcidin expression by interfering with BMP/SMAD signaling. HemaSphere, 8(5), e70035.
Badura, M., Krawczyk, M., Białkowska, K., & Zbroch, E. (2024). Emerging insights into pharmacological modulation of the hepcidin–ferroportin axis in chronic kidney disease. Frontiers in Pharmacology, 15, 1376211.
Bird, A. J. (2015). Cellular sensing and transport of metal ions: Implications in micronutrient homeostasis. Biochemical Journal, 466(2), 195–206. https://doi.org/10.1042/BJ20141195
Bonaccorsi di Patti, M. C., Polticelli, F., Torti, F. M., & Torti, S. V. (2015). The ferroportin (SLC40A1) iron exporter: Molecular properties, regulation and associated pathologies. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1853(6), 1462–1471. https://doi.org/10.1016/j.bbamcr.2015.03.012
De Domenico, I., Ward, D. M., & Kaplan, J. (2007). Hepcidin regulation: Ironing out the details. Journal of Clinical Investigation, 117(7), 1755–1762. https://doi.org/10.1172/JCI31620
Duong-Ly, K. C., & Gabelli, S. B. (2014). Salting out of proteins using ammonium sulfate precipitation. Methods in Enzymology, 541, 85–94. https://doi.org/10.1016/B978-0-12-420119-4.00007-0
Ganz, T. (2023). Systemic iron homeostasis. Physiological Reviews, 103(1), 339–372. https://doi.org/10.1152/physrev.00007.2022
Hong, P., Koza, G., & Tuerk, C. (2021). Advances in protein size-exclusion chromatography for biopharmaceutical applications. Journal of Separation Science, 44(1), 192–206. https://doi.org/10.1002/jssc.202000497
Kautz, L., Jung, G., Valore, E. V., Rivella, S., Nemeth, E., & Ganz, T. (2014). Identification of erythroferrone as an erythroid regulator of iron metabolism. Nature Genetics, 46(7), 678–684. https://doi.org/10.1038/ng.2996
Knöpfel, T., Rissen, H., & Schmid-Grendelmeier, P. (2022). Effects of antibiotics on iron homeostasis: Regulation of iron transporters DMT1 and ferroportin in vitro. Journal of Antimicrobial Chemotherapy, 77(3), 745–756. https://doi.org/10.1093/jac/dkab467
Luo, Y., & Wang, F. (2023). Post-translational regulation of ferroportin and its role in iron homeostasis. Frontiers in Molecular Biosciences, 10, 1142035. https://doi.org/10.3389/fmolb.2023.1142035
Masajtis-Zagajewska, A., & Nowicki, M. (2018). Effect of atorvastatin on iron metabolism regulation in patients with chronic kidney disease: A randomized double-blind crossover study. Renal Failure, 40(1), 700–709. https://doi.org/10.1080/0886022X.2018.1505382
Mason, J. T., & Xu, L. (2020). Protein quantitation techniques for biomarker discovery. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(2), 140401. https://doi.org/10.1016/j.bbapap.2019.140401
May, A. (2025). Molecular insights into ferroportin variants. Trends in Molecular Medicine, 31(4), 355–364. https://doi.org/10.1016/j.molmed.2025.01.004
McKie, A. T., Barlow, D. J., & Bombick, D. W. (2001). The ferroportin (SLC40A1) iron exporter protein: Molecular properties and regulation. Journal of Biological Chemistry, 276(44), 39553–39558. https://doi.org/10.1074/jbc.M104728200
Motulsky, H. (2018). Intuitive biostatistics: A nonmathematical guide to statistical thinking (4th ed.). Oxford University Press.
Nemeth, E., & Ganz, T. (2021). Hepcidin–ferroportin interaction controls systemic iron homeostasis. International Journal of Molecular Sciences, 22(12), 6493. https://doi.org/10.3390/ijms22126493
Peukert, M., Sprenger, L., & Seidel-Morgenstern, A. (2022). Advances in size-exclusion chromatography: Materials, methods, and applications. Journal of Chromatography A, 1660, 462656. https://doi.org/10.1016/j.chroma.2021.462656
Pietrangelo, A. (2025). Ferroportin disease: Pathogenesis, diagnosis and treatment. Haematologica, 110(2), 321–330. https://doi.org/10.3324/haematol.2024.285421
Pilo, F., & Angelucci, E. (2024). Vamifeport: Monography of the first oral ferroportin inhibitor. Journal of Clinical Medicine, 13(18), 5524. https://doi.org/10.3390/jcm13185524
Pişkin, E., Savaş, S., & Kızılırmak, E. S. (2022). Iron absorption: Factors, limitations, and improvement methods. ACS Omega, 7(27), 23620–23632.
Rice, A. E., Mendez, M. J., Hokanson, C. A., Rees, D. C., & Björkman, P. J. (2009). Investigation of the biophysical and structural properties of ferroportin, an iron-exporter protein. Proceedings of the National Academy of Sciences, 106(10), 3533–3538. https://doi.org/10.1073/pnas.0811003106
Richard, F., van Lier, J. J., Roubert, B., Haboubi, T., Göhring, U.-M., & Dürrenberger, F. (2020). Oral ferroportin inhibitor VIT-2763: First-in-human, phase 1 study in healthy volunteers. American Journal of Hematology, 95(1), 68–77. https://doi.org/10.1002/ajh.25670
Ross, S. L., Biswas, K., Rottman, J., Allen, J. R., Long, J., Miranda, L. P., Winters, A., & Arvedson, T. L. (2017). Identification of antibody and small molecule antagonists of ferroportin–hepcidin interaction. Frontiers in Pharmacology, 8, 838. https://doi.org/10.3389/fphar.2017.00838
Sabelli, M., Montosi, G., Garuti, C., Caleffi, A., Oliveto, S., & Biffo, S. (2017). Human macrophage ferroportin biology and the basis for the ferroportin disease. Hepatology, 66(6), 2040–2050. https://doi.org/10.1002/hep.29338
Saduon, R. R., & Ahmad, T. Y. (2011). Isolation and studying cathepsin B enzyme from normal human serum. Rafidain Journal of Science, 22(6), 73–87. https://doi.org/10.33899/rjs.2011.6519
Sangkhae, V., & Nemeth, E. (2019). Hepcidin and iron homeostasis in health and disease. Annual Review of Medicine, 70, 347–360. https://doi.org/10.1146/annurev-med-051517-011628
Sawicki, K. T., Popov, V. L., & Campbell, H. M. (2021). Hepcidin-mediated regulation of iron metabolism in response to intravenous iron therapy. Kidney International, 100(2), 400–412.
Sebastiani, G., Wilkinson, N., & Pantopoulos, K. (2016). Pharmacological targeting of the hepcidin/ferroportin axis. Frontiers in Pharmacology, 7, 160. https://doi.org/10.3389/fphar.2016.00160
Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., & Provenzano, M. D. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7
Susantitaphong, P., Riella, C., & Jaber, B. L. (2012). Geriatric nephrology curriculum: Chronic kidney disease and management of mineral bone disorder. Clinical Journal of the American Society of Nephrology, 7(12), 2021–2030. https://doi.org/10.2215/CJN.01440212
Tsai, M. H., Leu, J. G., & Chang, Y. M. (2022). The effect of statins on anemia in chronic kidney disease: A systematic review and meta-analysis. Scientific Reports, 12, 13145. https://doi.org/10.1038/s41598-022-17342-1
Ueda, N., & Takasawa, K. (2018). Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease. Nutrients, 10(9), 1173. https://doi.org/10.3390/nu10091173
Ward, D. M., & Kaplan, J. (2012). Ferroportin-mediated iron transport: Expression and regulation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(9), 1426–1433. https://doi.org/10.1016/j.bbamcr.2012.03.004
Weiss, G., Ganz, T., & Goodnough, L. T. (2019). Anemia of inflammation. Blood, 133(1), 40–50. https://doi.org/10.1182/blood-2018-06-856500
Willemetz, A., Beatty, S., Richer, E., Rubio, A., Thibaudeau, O., Bothwell, T. H., et al. (2017). Divalent metal transporter 1 (DMT1) and ferroportin contribute to doxycycline-induced disturbances in cellular iron metabolism. Antimicrobial Agents and Chemotherapy, 61(8), e00527-17. https://doi.org/10.1128/AAC.00527-17
Yang, Y., Liu, H., & Zhang, Y. (2020). Recent advances in chromatographic techniques for protein purification. Biotechnology Journal, 15(6), e1900407. https://doi.org/10.1002/biot.201900407
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline
Join in Editorial Team