Research Article

Partial Purification of a Serum Ferroportin and Evaluation of its Pharmacological Modulation: Implications for Hemodialysis Patients

Authors

Abstract

Ferroportin (FPN1), encoded by the SLC40A1 gene, is the only known mammalian cellular iron exporter and plays a pivotal role in systemic iron regulation. In the present study, a protein suspected to be ferroportin (FPN1) was isolated and partially purified from healthy human serum using a sequential protocol involving ammonium sulfate precipitation (0–65%), dialysis, and gel filtration chromatography on Sephadex G-100. The purification process led to a substantial increase in specific activity, reaching 193.65 ng/mg protein after gel filtration, corresponding to a 21.3-fold purification relative to crude serum, with an overall recovery of 47.91%. The molecular weight of the isolated protein was estimated at approximately 64.6 ± 1 kDa, consistent with previously reported values for human ferroportin. The modulatory effects of selected medications on this suspected serum ferroportin were examined. The tested agents demonstrated divergent outcomes, ranging from strong activation to marked inhibition. Isosorbide dinitrate (+61.89%), darbepoetin alfa (+45.08%), and ascorbic acid (+35.71%) significantly increased protein activity, whereas doxycycline (–58.33%), heparin (–55.69%), and atorvastatin (–42.58%) strongly suppressed it. These findings suggest potential drug–protein interactions that may influence iron metabolism in clinical contexts. However, further confirmatory analyses, such as Western blotting or mass spectrometry, are required to definitively identify the isolated protein as FPN1. Such insights may inform future therapeutic strategies aimed at optimizing iron metabolism and alleviating anemia in patients with chronic kidney disease and those undergoing hemodialysis.

Keywords:

Ferroportin Gel Filtration Chromatography Hemodialysis Iron Metabolism Pharmacological Modulation Serum Purification

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(2), (2025)

Pages

217-223

Published

20-10-2025

How to Cite

Hamid, O. Y., & Hadi, E. A. (2025). Partial Purification of a Serum Ferroportin and Evaluation of its Pharmacological Modulation: Implications for Hemodialysis Patients. Journal of Medical Science, Biology, and Chemistry, 2(2), 217-223. https://doi.org/10.69739/jmsbc.v2i2.1047

References

Ahmad, J., & He, Q. (2021). Advances in protein precipitation and purification methods. International Journal of Biological Macromolecules, 186, 604–612. https://doi.org/10.1016/j.ijbiomac.2021.06.124

Al-Jarah, I. A. (2012). Partial separation and some kinetic studies of protease enzyme from human plasma. Rafidain Journal of Science, 23(3), 98–107. https://doi.org/10.33899/rjs.2012.44399

Altamura, S., & Muckenthaler, M. U. (2020). Iron toxicity in diseases of aging. Journal of Alzheimer’s Disease, 75(4), 1165–1182.

Anderson, E. R., & Shah, Y. M. (2023). Hepcidin regulation of iron metabolism: From molecular mechanisms to clinical applications. Blood Reviews, 58, 101020. https://doi.org/10.1016/j.blre.2022.101020

Arezes, J., & Nemeth, E. (2022). Hepcidin and iron disorders: New biology and clinical approaches. Best Practice & Research Clinical Haematology, 35(2), 101401. https://doi.org/10.1016/j.beha.2022.101401

Arezes, J., Foy, N., & McHugh, K. (2018). Erythroferrone inhibits the induction of hepcidin by BMP6. Blood, 132(14), 1473–1477. https://doi.org/10.1182/blood-2018-03-839639

Asperti, M., Poli, M., & Denardo, A. (2024). Sevuparin strongly reduces hepcidin expression by interfering with BMP/SMAD signaling. HemaSphere, 8(5), e70035.

Badura, M., Krawczyk, M., Białkowska, K., & Zbroch, E. (2024). Emerging insights into pharmacological modulation of the hepcidin–ferroportin axis in chronic kidney disease. Frontiers in Pharmacology, 15, 1376211.

Bird, A. J. (2015). Cellular sensing and transport of metal ions: Implications in micronutrient homeostasis. Biochemical Journal, 466(2), 195–206. https://doi.org/10.1042/BJ20141195

Bonaccorsi di Patti, M. C., Polticelli, F., Torti, F. M., & Torti, S. V. (2015). The ferroportin (SLC40A1) iron exporter: Molecular properties, regulation and associated pathologies. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1853(6), 1462–1471. https://doi.org/10.1016/j.bbamcr.2015.03.012

De Domenico, I., Ward, D. M., & Kaplan, J. (2007). Hepcidin regulation: Ironing out the details. Journal of Clinical Investigation, 117(7), 1755–1762. https://doi.org/10.1172/JCI31620

Duong-Ly, K. C., & Gabelli, S. B. (2014). Salting out of proteins using ammonium sulfate precipitation. Methods in Enzymology, 541, 85–94. https://doi.org/10.1016/B978-0-12-420119-4.00007-0

Ganz, T. (2023). Systemic iron homeostasis. Physiological Reviews, 103(1), 339–372. https://doi.org/10.1152/physrev.00007.2022

Hong, P., Koza, G., & Tuerk, C. (2021). Advances in protein size-exclusion chromatography for biopharmaceutical applications. Journal of Separation Science, 44(1), 192–206. https://doi.org/10.1002/jssc.202000497

Kautz, L., Jung, G., Valore, E. V., Rivella, S., Nemeth, E., & Ganz, T. (2014). Identification of erythroferrone as an erythroid regulator of iron metabolism. Nature Genetics, 46(7), 678–684. https://doi.org/10.1038/ng.2996

Knöpfel, T., Rissen, H., & Schmid-Grendelmeier, P. (2022). Effects of antibiotics on iron homeostasis: Regulation of iron transporters DMT1 and ferroportin in vitro. Journal of Antimicrobial Chemotherapy, 77(3), 745–756. https://doi.org/10.1093/jac/dkab467

Luo, Y., & Wang, F. (2023). Post-translational regulation of ferroportin and its role in iron homeostasis. Frontiers in Molecular Biosciences, 10, 1142035. https://doi.org/10.3389/fmolb.2023.1142035

Masajtis-Zagajewska, A., & Nowicki, M. (2018). Effect of atorvastatin on iron metabolism regulation in patients with chronic kidney disease: A randomized double-blind crossover study. Renal Failure, 40(1), 700–709. https://doi.org/10.1080/0886022X.2018.1505382

Mason, J. T., & Xu, L. (2020). Protein quantitation techniques for biomarker discovery. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(2), 140401. https://doi.org/10.1016/j.bbapap.2019.140401

May, A. (2025). Molecular insights into ferroportin variants. Trends in Molecular Medicine, 31(4), 355–364. https://doi.org/10.1016/j.molmed.2025.01.004

McKie, A. T., Barlow, D. J., & Bombick, D. W. (2001). The ferroportin (SLC40A1) iron exporter protein: Molecular properties and regulation. Journal of Biological Chemistry, 276(44), 39553–39558. https://doi.org/10.1074/jbc.M104728200

Motulsky, H. (2018). Intuitive biostatistics: A nonmathematical guide to statistical thinking (4th ed.). Oxford University Press.

Nemeth, E., & Ganz, T. (2021). Hepcidin–ferroportin interaction controls systemic iron homeostasis. International Journal of Molecular Sciences, 22(12), 6493. https://doi.org/10.3390/ijms22126493

Peukert, M., Sprenger, L., & Seidel-Morgenstern, A. (2022). Advances in size-exclusion chromatography: Materials, methods, and applications. Journal of Chromatography A, 1660, 462656. https://doi.org/10.1016/j.chroma.2021.462656

Pietrangelo, A. (2025). Ferroportin disease: Pathogenesis, diagnosis and treatment. Haematologica, 110(2), 321–330. https://doi.org/10.3324/haematol.2024.285421

Pilo, F., & Angelucci, E. (2024). Vamifeport: Monography of the first oral ferroportin inhibitor. Journal of Clinical Medicine, 13(18), 5524. https://doi.org/10.3390/jcm13185524

Pişkin, E., Savaş, S., & Kızılırmak, E. S. (2022). Iron absorption: Factors, limitations, and improvement methods. ACS Omega, 7(27), 23620–23632.

Rice, A. E., Mendez, M. J., Hokanson, C. A., Rees, D. C., & Björkman, P. J. (2009). Investigation of the biophysical and structural properties of ferroportin, an iron-exporter protein. Proceedings of the National Academy of Sciences, 106(10), 3533–3538. https://doi.org/10.1073/pnas.0811003106

Richard, F., van Lier, J. J., Roubert, B., Haboubi, T., Göhring, U.-M., & Dürrenberger, F. (2020). Oral ferroportin inhibitor VIT-2763: First-in-human, phase 1 study in healthy volunteers. American Journal of Hematology, 95(1), 68–77. https://doi.org/10.1002/ajh.25670

Ross, S. L., Biswas, K., Rottman, J., Allen, J. R., Long, J., Miranda, L. P., Winters, A., & Arvedson, T. L. (2017). Identification of antibody and small molecule antagonists of ferroportin–hepcidin interaction. Frontiers in Pharmacology, 8, 838. https://doi.org/10.3389/fphar.2017.00838

Sabelli, M., Montosi, G., Garuti, C., Caleffi, A., Oliveto, S., & Biffo, S. (2017). Human macrophage ferroportin biology and the basis for the ferroportin disease. Hepatology, 66(6), 2040–2050. https://doi.org/10.1002/hep.29338

Saduon, R. R., & Ahmad, T. Y. (2011). Isolation and studying cathepsin B enzyme from normal human serum. Rafidain Journal of Science, 22(6), 73–87. https://doi.org/10.33899/rjs.2011.6519

Sangkhae, V., & Nemeth, E. (2019). Hepcidin and iron homeostasis in health and disease. Annual Review of Medicine, 70, 347–360. https://doi.org/10.1146/annurev-med-051517-011628

Sawicki, K. T., Popov, V. L., & Campbell, H. M. (2021). Hepcidin-mediated regulation of iron metabolism in response to intravenous iron therapy. Kidney International, 100(2), 400–412.

Sebastiani, G., Wilkinson, N., & Pantopoulos, K. (2016). Pharmacological targeting of the hepcidin/ferroportin axis. Frontiers in Pharmacology, 7, 160. https://doi.org/10.3389/fphar.2016.00160

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., & Provenzano, M. D. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7

Susantitaphong, P., Riella, C., & Jaber, B. L. (2012). Geriatric nephrology curriculum: Chronic kidney disease and management of mineral bone disorder. Clinical Journal of the American Society of Nephrology, 7(12), 2021–2030. https://doi.org/10.2215/CJN.01440212

Tsai, M. H., Leu, J. G., & Chang, Y. M. (2022). The effect of statins on anemia in chronic kidney disease: A systematic review and meta-analysis. Scientific Reports, 12, 13145. https://doi.org/10.1038/s41598-022-17342-1

Ueda, N., & Takasawa, K. (2018). Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease. Nutrients, 10(9), 1173. https://doi.org/10.3390/nu10091173

Ward, D. M., & Kaplan, J. (2012). Ferroportin-mediated iron transport: Expression and regulation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(9), 1426–1433. https://doi.org/10.1016/j.bbamcr.2012.03.004

Weiss, G., Ganz, T., & Goodnough, L. T. (2019). Anemia of inflammation. Blood, 133(1), 40–50. https://doi.org/10.1182/blood-2018-06-856500

Willemetz, A., Beatty, S., Richer, E., Rubio, A., Thibaudeau, O., Bothwell, T. H., et al. (2017). Divalent metal transporter 1 (DMT1) and ferroportin contribute to doxycycline-induced disturbances in cellular iron metabolism. Antimicrobial Agents and Chemotherapy, 61(8), e00527-17. https://doi.org/10.1128/AAC.00527-17

Yang, Y., Liu, H., & Zhang, Y. (2020). Recent advances in chromatographic techniques for protein purification. Biotechnology Journal, 15(6), e1900407. https://doi.org/10.1002/biot.201900407

Downloads

Views

0

Downloads

0