Article section
One Health Surveillance of ESBL-Producing Escherichia coli and Klebsiella pneumoniae in Pig Farms in Yaounde, Cameroon
Abstract
A study was conducted to assess the prevalence and antimicrobial resistance pattern of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in human, animal, and environmental sources of four pig farms in Yaoundé, Cameroon using a One Health approach. There were 338 samples collected from farmers (n = 42), pigs (n = 168), and farms (n = 128) and ESBL Enterobacteriaceae were recovered in 55.3% of the samples with E. coli (49.1%) more prevalent than K. pneumoniae (29.6%). Among humans, the largest proportion of ESBL-producing isolates was encountered (90.5%), followed by pigs (58.3%) and the environment (39.8%). Farm 3 and the short dry season exhibited the highest frequencies of isolation, which suggests the occurrence of farm-level and climatic factors. The antibiotic susceptibility testing showed absolute resistance to third-generation cephalosporins (100%), monobactams (100%), and β-lactam/β-lactamase inhibitor combinations (100%) to confirm the ESBL phenotype. Co-resistance was high, particularly to tetracyclines, sulfonamides, and fluoroquinolones, and to carbapenems and aminoglycosides, the resistance was moderate to low. The prevalence of tetracycline and β-lactam resistance most likely reflects their frequent and poorly controlled use on the farms studied. Farmer self-treatment, poor biosecurity, and environmental contamination were recognized as potential explanations for multidrug resistance. This study provides useful evidence for multidrug-resistant ESBL-producing E. coli and K. pneumoniae that are circulating among humans, animals, and the environment in pig farms, with its major limitation being the absence of molecular characterization, which precludes verification of genetic relatedness and specific ESBL genes accountable. These findings highlight the urgent need for coordinated One Health interventions towards rational application of antibiotics, increased farm sanitation, and continued antimicrobial resistance surveillance towards counteracting public health threats resulting from the zoonotic transmission of resistant bacteria.
Keywords:
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(2), (2025)
Pages
224-234
Published
Copyright
Copyright (c) 2025 Germanie Delaisie Abomo, Gabriel Cedric Bessala, Isaac Dah, Blaise Pascal Bougnom (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
AbuOun, M., Jones, H., Stubberfield, E., Gilson, D., Shaw, L. P., Hubbard, A. T. M., Chau, K. K., Sebra, R., Peto, T. E. A., Crook, D. W., Read, D. S., Gweon, H. S., Walker, A. S., Stoesser, N., Smith, R. P., Anjum, M. F., & On Behalf of the REHAB Consortium. (2021). A genomic epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage. Microbial Genomics, 7(10), 000630. https://doi.org/10.1099/mgen.0.000630
Adesehinwa, A. O. K., Boladuro, B. A., Dunmade, A. S., Idowu, A. B., Moreki, J. C., & Wachira, A. M. (2024). Pig production in Africa: Current status, challenges, prospects, and opportunities. Animal Bioscience, 37(4), 730–741. https://doi.org/10.5713/ab.23.0342
Alarcón, L. V., Allepuz, A., & Mateu, E. (2021). Biosecurity in pig farms: A review. Porcine Health Management, 7(1), 5. https://doi.org/10.1186/s40813-020-00181-z
Atlas, R., Hyde, B., Maloy, S., Colwell, R., Rubin, C., & Daszak, P. (2010). One Health—Attaining optimal health for people, animals, and the environment. Microbe Magazine, 5(9), 383–389. https://doi.org/10.1128/microbe.5.383.1
Barathe, P., Kaur, K., Reddy, S., Shriram, V., & Kumar, V. (2024). Antibiotic pollution and associated antimicrobial resistance in the environment. Journal of Hazardous Materials Letters, 5, 100105. https://doi.org/10.1016/j.hazl.2024.100105
Bedekelabou, A. P., Talaki, E., Dzogbema, K. F., Dolou, M., Savadogo, M., Seko, M. O., & Alambedji, R. B. (2022). Assessing farm biosecurity and farmers’ knowledge and practices concerning antibiotics and antibiotic resistance in poultry and pig farms in Southern Togo. Veterinary World, 15(7), 1727–1737. https://doi.org/10.14202/vetworld.2022.1727-1737
Bennadi, D. (2013). Self-medication: A current challenge. Journal of Basic and Clinical Pharmacy, 5(1), 19–23. https://doi.org/10.4103/0976-0105.128253
Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M.-N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: The environmental framework. Nature Reviews Microbiology, 13(5), 310–317. https://doi.org/10.1038/nrmicro3439
Bush, K., & Jacoby, G. A. (2010). Updated functional classification of beta-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. https://doi.org/10.1128/AAC.01009-09
Carroll, A. C., & Wong, A. (2018). Plasmid persistence: Costs, benefits, and the plasmid paradox. Canadian Journal of Microbiology, 64(5), 293–304. https://doi.org/10.1139/cjm-2017-0609
De Angelis, G., Del Giacomo, P., Posteraro, B., Sanguinetti, M., & Tumbarello, M. (2020). Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. International Journal of Molecular Sciences, 21(14), 5090. https://doi.org/10.3390/ijms21145090
Dohmen, W., Liakopoulos, A., Bonten, M. J. M., Mevius, D. J., & Heederik, D. J. J. (2023). Longitudinal study of dynamic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli in pigs and humans living and/or working on pig farms. Microbiology Spectrum, 11(1), e02947-22. https://doi.org/10.1128/spectrum.02947-22
Founou, L. L., Founou, R. C., Ntshobeni, N., Govinden, U., Bester, L. A., Chenia, H. Y., Djoko, C. F., & Essack, S. Y. (2019). Emergence and spread of extended spectrum β-lactamase producing Enterobacteriaceae (ESBL-PE) in pigs and exposed workers: A multicentre comparative study between Cameroon and South Africa. Pathogens, 8(1), 10. https://doi.org/10.3390/pathogens8010010
Garcias, B., Martin, M., & Darwich, L. (2024). Characterization of antimicrobial resistance in Escherichia coli isolated from diarrheic and healthy weaned pigs in Catalonia. Animals, 14(3), 455. https://doi.org/10.3390/ani14030455
Kazemian, H., Heidari, H., Ghanavati, R., Ghafourian, S., Yazdani, F., Sadeghifard, N., Valadbeigi, H., Maleki, A., & Pakzad, I. (2019). Phenotypic and genotypic characterization of ESBL-, AmpC-, and carbapenemase-producing Klebsiella pneumoniae and Escherichia coli isolates. Medical Principles and Practice, 28(6), 547–551. https://doi.org/10.1159/000500311
Klein, E. Y., Impalli, I., Poleon, S., Denoel, P., Cipriano, M., Van Boeckel, T. P., Pecetta, S., Bloom, D. E., & Nandi, A. (2024). Global trends in antibiotic consumption during 2016–2023 and future projections through 2030. Proceedings of the National Academy of Sciences, 121(49), e2411919121. https://doi.org/10.1073/pnas.2411919121
Leangapichart, T., Lunha, K., Jiwakanon, J., Angkititrakul, S., Järhult, J. D., Magnusson, U., & Sunde, M. (2021). Characterization of Klebsiella pneumoniae complex isolates from pigs and humans in farms in Thailand: Population genomic structure, antibiotic resistance, and virulence genes. Journal of Antimicrobial Chemotherapy, 76(8), 2012–2016. https://doi.org/10.1093/jac/dkab118
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Matakone, M., Founou, R. C., Founou, L. L., Dimani, B. D., Koudoum, P. L., Fonkoua, M. C., Boum II, Y., Gonsu, H., & Noubom, M. (2024). Multi-drug resistant (MDR) and extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolated from slaughtered pigs and slaughterhouse workers in Yaoundé, Cameroon. One Health, 19, 100885. https://doi.org/10.1016/j.onehlt.2024.100885
Mouiche, M. M. M., Moffo, F., Akoachere, J.-F. T. K., Okah-Nnane, N. H., Mapiefou, N. P., Ndze, V. N., Wade, A., Djuikwo-Teukeng, F. F., Toghoua, D. G. T., Zambou, H. R., Feussom, J. M. K., LeBreton, M., & Awah-Ndukum, J. (2019). Antimicrobial resistance from a One Health perspective in Cameroon: A systematic review and meta-analysis. BMC Public Health, 19(1), 1135. https://doi.org/10.1186/s12889-019-7450-5
Mouiche, M. M. M., Moffo, F., Betsama, J. D. B., Mapiefou, N. P., Mbah, C. K., Mpouam, S. E., Penda, R. E., Ciake, S. A. C., Feussom, J. M. K., Kamnga, Z. F., & Awah-Ndukum, J. (2020). Challenges of antimicrobial consumption surveillance in food-producing animals in sub-Saharan Africa: Patterns of antimicrobials imported in Cameroon from 2014 to 2019. Journal of Global Antimicrobial Resistance, 22, 771–778. https://doi.org/10.1016/j.jgar.2020.06.021
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., ... Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Ohene Larbi, R., Adeapena, W., Ayim-Akonor, M., Ansa, E. D. O., Tweya, H., Terry, R. F., Labi, A. K., & Harries, A. D. (2022). Antimicrobial, multi-drug and colistin resistance in Enterobacteriaceae in healthy pigs in the Greater Accra Region of Ghana: A cross-sectional study. International Journal of Environmental Research and Public Health, 19(16), 10449. https://doi.org/10.3390/ijerph191610449
Peng, Z., Hu, Z., Li, Z., Zhang, X., Jia, C., Li, T., Dai, M., Tan, C., Xu, Z., Wu, B., Chen, H., & Wang, X. (2022). Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nature Communications, 13(1), 1116. https://doi.org/10.1038/s41467-022-28750-6
Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fèvre, E. M., Gilbert, M., Grace, D., Hay, S. I., Jiwakanon, J., Kakkar, M., Kariuki, S., Laxminarayan, R., Lubroth, J., Magnusson, U., Thi Ngoc, P., Van Boeckel, T. P., & Woolhouse, M. E. J. (2016). Antibiotic resistance is the quintessential One Health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(7), 377–380. https://doi.org/10.1093/trstmh/trw048
Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946
Scollo, A., Perrucci, A., Stella, M. C., Ferrari, P., Robino, P., & Nebbia, P. (2023). Biosecurity and hygiene procedures in pig farms: Effects of a tailor-made approach as monitored by environmental samples. Animals, 13(7), 1262. https://doi.org/10.3390/ani13071262
Tebug, S. F., Mouiche, M. M. M., Abia, W. A., Teno, G., Tiambo, C. K., Moffo, F., & Awah-Ndukum, J. (2021). Antimicrobial use and practices by animal health professionals in 20 sub-Saharan African countries. Preventive Veterinary Medicine, 186, 105212. https://doi.org/10.1016/j.prevetmed.2020.105212
Traoré, S. G., Fokou, G., Wognin, A. S., Dié, S. A. G., Amanzou, N. A. A., Heitz-Tokpa, K., Tetchi, S. M., Seko, M. O., Sanhoun, A. R., Traoré, A., Anoh, E. A., Tiembre, I., Koussemon-Camara, M., Akoua-Koffi, C., & Bonfoh, B. (2024). Assessment of handwashing impact on detection of SARS-CoV-2, Staphylococcus aureus, Escherichia coli on hands in rural and urban settings of Côte d’Ivoire during COVID-19 pandemic. BMC Public Health, 24(1), 1380. https://doi.org/10.1186/s12889-024-18838-7
World Health Organization. (2024). WHO bacterial priority pathogens list 2025: Bacterial pathogens of public health importance to guide research, development, and strategies to prevent and control antimicrobial resistance. https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf
Zaatout, N., Bouras, S., & Slimani, N. (2021). Prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in wastewater: A systematic review and meta-analysis. Journal of Water and Health, 19(5), 705–723. https://doi.org/10.2166/wh.2021.112
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline
Join in Editorial Team