Review Article

From Models to Management: A Framework for Predictive Analytics in Health Systems

Authors

  • Chizube Obinna Chikezie School of Computing Engineering and Intelligent Systems, Ulster University, York Street, Belfast BT15 1ED, UK https://orcid.org/0009-0008-3996-3978

    kezie.c.o@gmail.com

  • Chibuzo Okechukwu Onah College of Business, Georgia State University, Atlanta, USA https://orcid.org/0000-0001-6116-3661
  • Chukwudi Anthony Okolue Owen Graduate School of Management, Vanderbilt University, Nashville, USA
  • Mary-Jane Ezinne Ugbor Faculty of Pharmaceutical Sciences, University of Port Harcourt, Port Harcourt, Nigeria
  • Emmanuel Fagbenle Department of Decision Science, University of New Hampshire, Durham, USA https://orcid.org/0000-0003-1724-4557
  • Olukunle Akanbi Graduate School of Business & Leadership, National Louis University, Tampa, USA https://orcid.org/0000-0002-6276-5901

Abstract

Health systems increasingly deploy predictive analytics to improve patient outcomes and operational performance, yet many projects stall at the interface between model output and managerial action. This review looks at real-world deployments connecting clinical prediction with market and operational levers, staffing, bed flow, outreach, and scheduling, and distills an integration framework spanning data architecture, model selection, real-time pipelines, governance, and evaluation. Evidence emphasizes measurable effects on process and, in selected contexts, outcomes when models are embedded in event-driven workflows and governed with clear decision rights, calibration monitoring, and explainability support. Because much of the empirical literature originates in the United States, generalizability is assessed using compact international implementations (United Kingdom stroke AI, Singapore’s C3 command center, and India’s TB computer-aided CXR triage). The review argues that impact depends less on algorithmic novelty than on socio-technical integration: reliable data plumbing, execution discipline, and incentives aligned to net clinical and operational utility

Keywords:

Artificial Intelligence Healthcare Decision Support Systems Electronic Health Records Health Services Research Predictive Analytics in Healthcare

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(2), (2025)

Pages

252-261

Published

16-11-2025

How to Cite

Chikezie, C. O., Onah, C. O., Okolue, C. A., Ugbor, M.-J. E., Fagbenle, E., & Akanbi, O. (2025). From Models to Management: A Framework for Predictive Analytics in Health Systems. Journal of Medical Science, Biology, and Chemistry, 2(2), 252-261. https://doi.org/10.69739/jmsbc.v2i2.1149

References

Alkhanbouli, R., Matar Abdulla Almadhaani, H., Alhosani, F., & Simsekler, M. C. E. (2025). The role of explainable artificial intelligence in disease prediction: A systematic literature review and future research directions. BMC Medical Informatics and Decision Making, 25, 110. https://doi.org/10.1186/s12911-025-02944-6

Ancker, J. S., Edwards, A., Nosal, S., Hauser, D., Mauer, E., Kaushal, R., & with the HITEC Investigators. (2017). Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision support system. BMC Medical Informatics and Decision Making, 17(1), 36. https://doi.org/10.1186/s12911-017-0430-8

Argüello-González, G., Aquino-Esperanza, J., Salvador, D., Bretón-Romero, R., Del Río-Bermudez, C., Tello, J., & Menke, S. (2023). Negation recognition in clinical natural language processing using a combination of the NegEx algorithm and a convolutional neural network. BMC Medical Informatics and Decision Making, 23(1), 216. https://doi.org/10.1186/s12911-023-02301-5

Arnold, M., Bellamy, R. K. E., Hind, M., Houde, S., Mehta, S., Mojsilovic, A., Nair, R., Ramamurthy, K. N., Olteanu, A., Piorkowski, D., Reimer, D., Richards, J., Tsay, J., & Varshney, K. R. (2019). FactSheets: Increasing trust in AI services through supplier’s declarations of conformity. IBM Journal of Research and Development, 63(4/5), 6:1-6:13. https://doi.org/10.1147/JRD.2019.2942288

Baron, J. M., Huang, R., McEvoy, D., & Dighe, A. S. (2021). Use of machine learning to predict clinical decision support compliance, reduce alert burden, and evaluate duplicate laboratory test ordering alerts. JAMIA Open, 4(1). https://doi.org/10.1093/jamiaopen/ooab006

Ben-Miled, Z., Shebesh, J. A., Su, J., Dexter, P. R., Grout, R. W., & Boustani, M. A. (2025). Multi-Modal Fusion of Routine Care Electronic Health Records (EHR): A Scoping Review. Information, 16(1), 54. https://doi.org/10.3390/info16010054

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2024). Deep Neural Networks and Tabular Data: A Survey. IEEE Transactions on Neural Networks and Learning Systems, 35(6), 7499–7519. https://doi.org/10.1109/TNNLS.2022.3229161

Coalition for Health AI. (2024a, October 18). CHAI Advances Assurance Lab Certification and ‘Nutrition Label’ for Health AI | CHAI. Coalition for Health AI. https://www.chai.org/blog/chai-advances-assurance-lab-certification-and-nutrition-label-for-health-ai

Coalition for Health AI. (2024b, November 22). The CHAI Applied Model Card Complete Documentation. Coalition for Health AI. https://docs.google.com/document/d/10zXD1-8xbkH7WeplRY86-QEvJeGgzqHfvolhA07uYEs/edit?ouid=101975905259229057250&usp=docs_home&ths=true&usp=embed_facebook

Codlin, A. J., Dao, T. P., Vo, L. N. Q., Forse, R. J., Van Truong, V., Dang, H. M., Nguyen, L. H., Nguyen, H. B., Nguyen, N. V., Sidney-Annerstedt, K., Squire, B., Lönnroth, K., & Caws, M. (2021). Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis. Scientific Reports, 11(1), 23895. https://doi.org/10.1038/s41598-021-03265-0

Collins, G. S., Moons, K. G. M., Dhiman, P., Riley, R. D., Beam, A. L., Calster, B. V., Ghassemi, M., Liu, X., Reitsma, J. B., Smeden, M. van, Boulesteix, A.-L., Camaradou, J. C., Celi, L. A., Denaxas, S., Denniston, A. K., Glocker, B., Golub, R. M., Harvey, H., Heinze, G., … Logullo, P. (2024). TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ, 385, e078378. https://doi.org/10.1136/bmj-2023-078378

Davis, S. E., Greevy, R. A., Lasko, T. A., Walsh, C. G., & Matheny, M. E. (2020). Detection of calibration drift in clinical prediction models to inform model updating. Journal of Biomedical Informatics, 112, 103611. https://doi.org/10.1016/j.jbi.2020.103611

Department of Health and Human Services. (2024, January 9). Health Data, Technology, and Interoperability: Certification Program Updates, Algorithm Transparency, and Information Sharing. Federal Register. https://www.federalregister.gov/documents/2024/01/09/2023-28857/health-data-technology-and-interoperability-certification-program-updates-algorithm-transparency-and

Douthit, B. J., Musser, R. C., Lytle, K. S., & Richesson, R. L. (2020). A Closer Look at the “Right” Format for Clinical Decision Support: Methods for Evaluating a Storyboard BestPractice Advisory. Journal of Personalized Medicine, 10(4), 142. https://doi.org/10.3390/jpm10040142

Franklin, B. J., Yenduri, R., Parekh, V. I., Fogerty, R. L., Scheulen, J. J., High, H., Handley, K., Crow, L., & Goralnick, E. (2023). Hospital Capacity Command Centers: A Benchmarking Survey on an Emerging Mechanism to Manage Patient Flow. Joint Commission Journal on Quality and Patient Safety, 49(4), 189–198. https://doi.org/10.1016/j.jcjq.2023.01.007

Gold, R., Larson, A. E., Sperl-Hillen, J. M., Boston, D., Sheppler, C. R., Heintzman, J., McMullen, C., Middendorf, M., Appana, D., Thirumalai, V., Romer, A., Bava, J., Davis, J. V., Yosuf, N., Hauschildt, J., Scott, K., Moore, S., & O’Connor, P. J. (2022). Effect of Clinical Decision Support at Community Health Centers on the Risk of Cardiovascular Disease: A Cluster Randomized Clinical Trial. JAMA Network Open, 5(2), e2146519. https://doi.org/10.1001/jamanetworkopen.2021.46519

HL7 International. (2023, January 11). Subscriptions R5 Backport. HL7 International. https://hl7.org/fhir/uv/subscriptions-backport/STU1.1/?utm_source=chatgpt.com

HL7 International. (2024, June 17). Home—Subscriptions R5 Backport v1.2.0-ballot. Health Level Seven Internation. https://build.fhir.org/ig/HL7/fhir-subscription-backport-ig/

Huang, Y., Li, W., Macheret, F., Gabriel, R. A., & Ohno-Machado, L. (2020). A tutorial on calibration measurements and calibration models for clinical prediction models. Journal of the American Medical Informatics Association, 27(4), 621–633. https://doi.org/10.1093/jamia/ocz228

IBM. (2015, October 1). Using AI Factsheets for AI Governance—Docs. IBM Cloud Pak for Data; IBM Corporation. https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/factsheets-model-inventory.html

Jenkins, D. A., Martin, G. P., Sperrin, M., Riley, R. D., Debray, T. P. A., Collins, G. S., & Peek, N. (2021). Continual updating and monitoring of clinical prediction models: Time for dynamic prediction systems? Diagnostic and Prognostic Research, 5(1), 1. https://doi.org/10.1186/s41512-020-00090-3

Johnson, O. A., McCrorie, C., McInerney, C., Mebrahtu, T. F., Granger, J., Sheikh, N., Lawton, T., Habli, I., Randell, R., & Benn, J. (2024). Implementing an artificial intelligence command centre in the NHS: A mixed-methods study. Health and Social Care Delivery Research, 1–108. https://doi.org/10.3310/TATM3277

Jones, S. L., Ashton, C. M., Kiehne, L., Gigliotti, E., Bell-Gordon, C., Disbot, M., Masud, F., Shirkey, B. A., & Wray, N. P. (2015). Reductions in Sepsis Mortality and Costs After Design and Implementation of a Nurse-Based Early Recognition and Response Program. Joint Commission Journal on Quality and Patient Safety / Joint Commission Resources, 41(11), 483–491. https://doi.org/10.1016/s1553-7250(15)41063-3

Jordan, R. (2021, November 4). 10 Years of Hospital Readmissions Penalties. KFF. https://www.kff.org/affordable-care-act/slide/10-years-of-hospital-readmissions-penalties/

Kaissis, G. A., Makowski, M. R., Rückert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305–311. https://doi.org/10.1038/s42256-020-0186-1

Kawamoto, K., Finkelstein, J., & Fiol, G. D. (2023). Implementing Machine Learning in the Electronic Health Record: Checklist of Essential Considerations. Mayo Clinic Proceedings, 98(3), 366–369. https://doi.org/10.1016/j.mayocp.2023.01.013

Kowsar, I., Rabbani, S. B., Akhter, K. F. B., & Samad, M. D. (2023). Deep Clustering of Electronic Health Records Tabular Data for Clinical Interpretation. ... ... IEEE International Conference on Telecommunications and Photonics. IEEE International Conference on Telecommunications and Photonics, 2023, 10.1109/ictp60248.2023.10490723. https://doi.org/10.1109/ictp60248.2023.10490723

Krones, F., Marikkar, U., Parsons, G., Szmul, A., & Mahdi, A. (2025). Review of multimodal machine learning approaches in healthcare. Information Fusion, 114, 102690. https://doi.org/10.1016/j.inffus.2024.102690

Lewis, A. E., Weiskopf, N., Abrams, Z. B., Foraker, R., Lai, A. M., Payne, P. R. O., & Gupta, A. (2023). Electronic health record data quality assessment and tools: A systematic review. Journal of the American Medical Informatics Association, 30(10), 1730–1740. https://doi.org/10.1093/jamia/ocad120

Mebrahtu, T. F., McInerney, C. D., Benn, J., McCrorie, C., Granger, J., Lawton, T., Sheikh, N., Habli, I., Randell, R., & Johnson, O. (2023). The impact of hospital command centre on patient flow and data quality: Findings from the UK National Health Service. International Journal for Quality in Health Care, 35(4). https://doi.org/10.1093/intqhc/mzad072

Melnick, E. R., Nath, B., Dziura, J. D., Casey, M. F., Jeffery, M. M., Paek, H., Soares, W. E., Hoppe, J. A., Rajeevan, H., Li, F., Skains, R. M., Walter, L. A., Patel, M. D., Chari, S. V., Platts-Mills, T. F., Hess, E. P., & D’Onofrio, G. (2022). User centered clinical decision support to implement initiation of buprenorphine for opioid use disorder in the emergency department: EMBED pragmatic cluster randomized controlled trial. BMJ, 377, e069271. https://doi.org/10.1136/bmj-2021-069271

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, T. (2019). Model Cards for Model Reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency, 220–229. https://doi.org/10.1145/3287560.3287596

Nagaratnam, K., Neuhaus, A., Briggs, J. H., Ford, G. A., Woodhead, Z. V. J., Maharjan, D., & Harston, G. (2024). Artificial intelligence-based decision support software to improve the efficacy of acute stroke pathway in the NHS: An observational study. Frontiers in Neurology, 14, 1329643. https://doi.org/10.3389/fneur.2023.1329643

Nong, P., Adler-Milstein, J., Apathy, N. C., Holmgren, A. J., & Everson, J. (2025). Current Use And Evaluation Of Artificial Intelligence And Predictive Models In US Hospitals: Article examines uses and evaluation of artificial intelligence and predictive models in US hospitals. Health Affairs, 44(1), 90–98. https://doi.org/10.1377/hlthaff.2024.00842

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342

OECD. (2023). Health at a Glance 2023: OECD Indicators. OECD. https://doi.org/10.1787/7a7afb35-en

Olsen, E. (2024, October 18). CHAI releases draft framework for AI quality assurance labs | Healthcare Dive. Healthcare Dive. https://www.healthcaredive.com/news/coalition-health-ai-chai-quality-assurance-lab-nutrition-label-draft-frameworks/730225/

Patharkar, A., Cai, F., Al-Hindawi, F., & Wu, T. (2024). Predictive modeling of biomedical temporal data in healthcare applications: Review and future directions. Frontiers in Physiology, 15. https://doi.org/10.3389/fphys.2024.1386760

Pati, S., Kumar, S., Varma, A., Edwards, B., Lu, C., Qu, L., Wang, J. J., Lakshminarayanan, A., Wang, S., Sheller, M. J., Chang, K., Singh, P., Rubin, D. L., Kalpathy-Cramer, J., & Bakas, S. (2024). Privacy preservation for federated learning in health care. Patterns, 5(7), 100974. https://doi.org/10.1016/j.patter.2024.100974

Ridhi, S., Robert, D., Soren, P., Kumar, M., Pawar, S., & Reddy, B. (2024). Comparing the Output of an Artificial Intelligence Algorithm in Detecting Radiological Signs of Pulmonary Tuberculosis in Digital Chest X-Rays and Their Smartphone-Captured Photos of X-Ray Films: Retrospective Study. JMIR Formative Research, 8(1), e55641. https://doi.org/10.2196/55641

Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H. R., Albarqouni, S., Bakas, S., Galtier, M. N., Landman, B. A., Maier-Hein, K., Ourselin, S., Sheller, M., Summers, R. M., Trask, A., Xu, D., Baust, M., & Cardoso, M. J. (2020). The future of digital health with federated learning. Npj Digital Medicine, 3(1), 119. https://doi.org/10.1038/s41746-020-00323-1

Sadeghi, Z., Alizadehsani, R., Cifci, M. A., Kausar, S., Rehman, R., Mahanta, P., Bora, P. K., Almasri, A., Alkhawaldeh, R. S., Hussain, S., Alatas, B., Shoeibi, A., Moosaei, H., Hladík, M., Nahavandi, S., & Pardalos, P. M. (2024). A review of Explainable Artificial Intelligence in healthcare. Computers and Electrical Engineering, 118, 109370. https://doi.org/10.1016/j.compeleceng.2024.109370

Selvakumar, S., & Senthilkumar, B. (2025). A privacy preserving machine learning framework for medical image analysis using quantized fully connected neural networks with TFHE based inference. Scientific Reports, 15(1), 27880. https://doi.org/10.1038/s41598-025-07622-1

Shah, N. H., Halamka, J. D., Saria, S., Pencina, M., Tazbaz, T., Tripathi, M., Callahan, A., Hildahl, H., & Anderson, B. (2024). A Nationwide Network of Health AI Assurance Laboratories. JAMA, 331(3), 245–249. https://doi.org/10.1001/jama.2023.26930

Syed, R., Eden, R., Makasi, T., Chukwudi, I., Mamudu, A., Kamalpour, M., Kapugama Geeganage, D., Sadeghianasl, S., Leemans, S. J. J., Goel, K., Andrews, R., Wynn, M. T., ter Hofstede, A., & Myers, T. (2023). Digital Health Data Quality Issues: Systematic Review. Journal of Medical Internet Research, 25, e42615. https://doi.org/10.2196/42615

Tcheng, J. E., Bakken, S., Bates, D. W., Bonner, H., Gandhi, T. K., Josephs, M., Kawamoto, K., Lomotan, E. A., Mackay, E., Middleton, B., Teich, J. M., Weingarten, S., Lopez, M. H., The Learning Health System Series, & National Academy of Medicine. (2017). Optimizing Strategies for Clinical Decision Support: Summary of a Meeting Series (p. 27122). National Academies Press. https://doi.org/10.17226/27122

The Straits Times. (2022, December 2). AI platform helps NUHS ease hospital bed crunch by predicting availability up to 2 weeks in advance. The Straits Times. https://www.straitstimes.com/singapore/health/ai-platform-helps-nuhs-ease-hospital-bed-crunch-by-predicting-availability-up-to-2-weeks-in-advance

U.S. Centers for Medicare & Medicaid Services. (2012). Hosp. Readmission Reduction | CMS. CMS.Gov. https://www.cms.gov/medicare/quality/value-based-programs/hospital-readmissions

Van Calster, B., McLernon, D. J., van Smeden, M., Wynants, L., Steyerberg, E. W., Bossuyt, P., Collins, G. S., Macaskill, P., McLernon, D. J., Moons, K. G. M., Steyerberg, E. W., Van Calster, B., van Smeden, M., Vickers, A. J., & On behalf of Topic Group ‘Evaluating diagnostic tests and prediction models’ of the STRATOS initiative. (2019). Calibration: The Achilles heel of predictive analytics. BMC Medicine, 17(1), 230. https://doi.org/10.1186/s12916-019-1466-7

van Es, B., Reteig, L. C., Tan, S. C., Schraagen, M., Hemker, M. M., Arends, S. R. S., Rios, M. A. R., & Haitjema, S. (2023). Negation detection in Dutch clinical texts: An evaluation of rule-based and machine learning methods. BMC Bioinformatics, 24(1), 10. https://doi.org/10.1186/s12859-022-05130-x

Vickers, A. J., & Holland, F. (2021). Decision curve analysis to evaluate the clinical benefit of prediction models. The Spine Journal : Official Journal of the North American Spine Society, 21(10), 1643–1648. https://doi.org/10.1016/j.spinee.2021.02.024

Vickers, A. J., van Calster, B., & Steyerberg, E. W. (2019). A simple, step-by-step guide to interpreting decision curve analysis. Diagnostic and Prognostic Research, 3(1), 18. https://doi.org/10.1186/s41512-019-0064-7

Vijayan, S., Jondhale, V., Pande, T., Khan, A., Brouwer, M., Hegde, A., Gandhi, R., Roddawar, V., Jichkar, S., Kadu, A., Bharaswadkar, S., Sharma, M., Vasquez, N. A., Richardson, L., Robert, D., & Pawar, S. (2023). Implementing a chest X-ray artificial intelligence tool to enhance tuberculosis screening in India: Lessons learned. PLOS Digital Health, 2(12), e0000404. https://doi.org/10.1371/journal.pdig.0000404

Wang, Y., Yin, C., & Zhang, P. (2024). Multimodal risk prediction with physiological signals, medical images and clinical notes. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26772

WHO. (2025). Use of computer-aided detection so ware for tuberculosis screening. World Health Organization.

Wong, A., Otles, E., Donnelly, J. P., Krumm, A., McCullough, J., DeTroyer-Cooley, O., Pestrue, J., Phillips, M., Konye, J., Penoza, C., Ghous, M., & Singh, K. (2021). External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA Internal Medicine, 181(8), 1065–1070. https://doi.org/10.1001/jamainternmed.2021.2626

Ziller, A., Mueller, T. T., Stieger, S., Feiner, L. F., Brandt, J., Braren, R., Rueckert, D., & Kaissis, G. (2024). Reconciling privacy and accuracy in AI for medical imaging. Nature Machine Intelligence, 6(7), 764–774. https://doi.org/10.1038/s42256-024-00858-y

Downloads

Views

0

Downloads

0