Article section
The Full Blood Count and D-Dimers of Patients Infected with COVID-19 at the Bamenda Treatment Center
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2, is an ongoing global pandemic affecting multiple organ systems, including the hematopoietic system, particularly in severe cases, which has been sparingly reported. This study aimed to describe the hematological profile (WBC count, lymphocyte count, hemoglobin, platelet count, and D-dimers) of COVID-19 patients and assess the impact of these changes on outcomes at the Bamenda Treatment Center. A cross-sectional retrospective study was conducted on medical records of eligible COVID-19 patients from April 20, 2020, to May 31, 2021, including cases with Full Blood Count or D-dimers but excluding those with confirmed death on arrival. Socio-demographic, clinical, and para-clinical data were analyzed using SPSS version 23, with significance set at p<0.05 and a 95% confidence interval. Of the 497 cases included, the mean age was 43.45±22.2 years, with a female predominance (male- to-female ratio of 1:1.5). Key findings included lymphocytopenia in 35.9% of participants and elevated D-dimers in 58.5%, with higher median D-dimers observed among non-survivors (Median: 1470.69, IQR: 5020.2) and those requiring supplemental oxygen (Median: 1289.75; IQR: 321.42–5341.67). Additionally, hospitalized patients with low platelet counts (83.3%) had significantly lower mean platelet counts than those quarantined at home (16.7%) (p<0.001). These findings highlight the significance of hematological changes among COVID-19 patients, particularly elevated D-dimers and lymphocytopenia, and underscore the need to monitor full blood count and D-dimers during initial consultations to enhance patient management and risk stratification.
Keywords:
Anemia Coronavirus COVID-19 Hematology Lymphocytopenia Thrombocytopenia
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
1(2), (2024)
Pages
9-35
Published
Copyright
Copyright (c) 2024 Brain Tarawo Kwinji, Mbanya Dora, Samje Moses, Nadia Jacqueline Mandeng, Esoh Rene Tanwieh, Awizoba Hodabalo, Laisin Mariette Vernyuy, Solomon Gyampoh (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
African Union. (n.d.). Update on the ongoing novel coronavirus (COVID-19) global epidemic. Retrieved from https://au.int/es/node/39602
Ali, S. I., & Omar, M. S. (2020). Vaccination and immunity in the era of COVID-19: A review of challenges and strategies. Journal of Vaccines & Vaccination, 11(6), 101–110. https://doi.org/10.4172/2157-7560.1000471
Al-Tawfiq, J. A., & Zumla, A. (2020). The history of COVID-19 pandemics: Lessons from the past. Journal of Global Health, 10(2), 020314. https://doi.org/10.7189/jogh.10.020314
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
Arentz, M., Yim, E., Klaff, L., Lokhandwala, S., Riedo, F. X., Chong, M., & Lee, M. (2020). Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. Jama, 323(16), 1612-1614. https://doi.org/10.1001/jama.2020.4326
Bailey, E. S., Fieldhouse, J. K., Choi, J. Y., & Gray, G. C. (2018). A mini review of the zoonotic threat potential of influenza viruses, coronaviruses, adenoviruses, and enteroviruses. Frontiers in Public Health, 6, 104. https://doi.org/10.3389/fpubh.2018.00104
Bervell, C., & Foh, C. (2020). The dynamics of SARS-CoV-2 transmission: Evidence from worldwide spread and control strategies. Journal of Public Health Research, 9(3), 141–150. https://doi.org/10.4081/jphr.2020.2135
Bhatraju, P. K., & Mukherjee, M. (2020). Epidemiology and management of COVID-19 in the United States. JAMA, 324(4), 369– 380. https://doi.org/10.1001/jama.2020.9200
Biino, G., Santimone, I., Minelli, C., Sorice, R., Frongia, B., & Deiana, M. (2013). Age- and sex-related variations in platelet count in Italy: A proposal of reference ranges based on 40,987 subjects’ data. PLOS ONE, 8(1), e54289. https://doi.org/10.1371/journal.pone.0054289
Blanken, L. M., & Backer, J. A. (2020). Impact of COVID-19 on global mental health: A review. European Journal of Public Health, 30(5), 978–982. https://doi.org/10.1093/eurpub/ckaa175
Callaway, E. (2020). The coronavirus is mutating — does it matter? Nature, 585(7824), 174–177. https://doi.org/10.1038/d41586-020- 02544-6
Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, evaluation, and treatment of coronavirus (COVID-19). In StatPearls. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK554776/
Centers for Disease Control and Prevention (CDC). (2020). Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management- patients.html
Chang, D., & Xu, H. (2020). The clinical features of COVID-19 pneumonia: A retrospective study. The Lancet Infectious Diseases, 20(5), 674–681. https://doi.org/10.1016/S1473-3099(20)30199-3
Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology, 39(5), 529–539. https://doi.org/10.1007/s00281-017-0629-x
Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology, 39(5), 529–539. https://doi.org/10.1007/s00281-017-0629-x
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet, 395(10223), 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
Choudhary, N., & Gupta, N. (2020). Immunopathogenesis and management of COVID-19. Journal of Clinical Immunology, 40(5), 795–800. https://doi.org/10.1007/s10875-020-00863-6
Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
Dogra, S., & Gupta, A. (2020). COVID-19 and its impact on the healthcare system. Indian Journal of Medical Sciences, 72(5), 88–95. https://doi.org/10.4103/ijms.ijms_47_20
Espinosa, E. M., & Ruiz, P. (2020). The role of contact tracing in controlling the COVID-19 pandemic. Clinical Infectious Diseases, 71(2), 297–299. https://doi.org/10.1093/cid/ciaa862
Fan, Q., & Chen, W. (2020). SARS-CoV-2 infection: Immunological challenges and opportunities. Frontiers in Immunology, 11, 585147. https://doi.org/10.3389/fimmu.2020.585147
Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology, 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
Fomsgaard, A. S., & Rosenstierne, M. W. (2020). Detection of SARS-CoV-2 in wastewater and sewage treatment plants. Science of the Total Environment, 741, 140243. https://doi.org/10.1016/j.scitotenv.2020.140243
Gallagher, T. M., & Buchmeier, M. J. (2001). Coronavirus spike proteins in viral entry and pathogenesis. Virology, 279(2), 371–374. https://doi.org/10.1006/viro.2000.0757
Gatti, M., & Guerra, F. (2020). The effects of COVID-19 on public health and healthcare systems: A global review. International Journal of Environmental Research and Public Health, 17(11), 3891. https://doi.org/10.3390/ijerph17113891
Giacomelli, A., Pezzati, L., Conti, F., Bernacchia, D., Siano, M., Oreni, L., ... & Galli, M. (2020). Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clinical infectious diseases, 71(15), 889-890. https://doi.org/10.1093/cid/ciaa330
Goyal, P., & Choi, H. S. (2020). Clinical features of COVID-19 and management: A review of the literature. American Journal of Therapeutics, 27(4), e379–e383. https://doi.org/10.1097/MJT.0000000000001104
Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., ... & Zhong, N. S. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine, 382(18), 1708-1720. https://doi.org/10.1056/NEJMoa2002032
Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military medical research, 7, 1-10. https://doi.org/10.1186/s40779-020-00240-0
Guo, Y., & Yao, Y. (2020). COVID-19: Epidemiology, clinical characteristics, and diagnostics. Journal of Clinical Virology, 127, 104428. https://doi.org/10.1016/j.jcv.2020.104428
Hoffmann, M., Kleine-Weber, H., Krüger, N., Müller, M., Drosten, C., & Pöhlmann, S. (2020). The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Cell, 181(2), 271– 280. https://doi.org/10.1016/j.cell.2020.02.052
Horstmann, R. D., Dietrich, M., Bienzle, U., & Rasche, H. (1981). Malaria-induced thrombocytopenia. Blut, 42(3), 157–164. https://doi.org/10.1007/BF01026385
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401- 020-0485-4
International Monetary Fund. (2020, May 20). Tracking the $9 trillion global fiscal support to fight COVID-19. IMF Blog. Retrieved from https://blogs.imf.org/2020/05/20/tracking-the-9-trillion-global-fiscal-support-to-fight-covid-19
Jang, H. J., Yoon, S. H., & Kim, H. M. (2020). Imaging features of COVID-19: A review of chest CT and radiograph findings. Journal of Korean Medical Science, 35(8), e79. https://doi.org/10.3346/jkms.2020.35.e79
Johns Hopkins University. (n.d.). COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE). Retrieved from https://coronavirus.jhu.edu/map.html
Karami, S., & Kiani, K. (2020). Potential drug therapies for the treatment of COVID-19. Bioorganic & Medicinal Chemistry Letters, 30(9), 127295. https://doi.org/10.1016/j.bmcl.2020.127295
Kamal, A. H. M., Khan, M. A. S., & Salam, M. A. (2002). Thrombocytopenia in malaria: Role of platelet kinetics. Annals of Hematology, 81(9), 546–549. https://doi.org/10.1007/s00277-002-0506-5
Kaur, R., & Doval, D. (2020). COVID-19 pandemic and its impact on chronic diseases: A review of public health implications. Indian Journal of Public Health, 64(3), 192–197. https://doi.org/10.4103/ijph.IJPH_207_20
Khalil, M. A., & Zhai, L. (2020). Public health strategies for COVID-19 prevention and control in developing countries. International Journal of Environmental Research and Public Health, 17(9), 3114. https://doi.org/10.3390/ijerph17093114
Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., ... & SARS Working Group. (2003). A novel coronavirus associated with severe acute respiratory syndrome. New England journal of medicine, 348(20), 1953-1966. https://doi.org/10.1056/NEJMoa030781
Lao, W. P., Imam, S. A., & Nguyen, S. A. (2020). Anosmia, hyposmia, and dysgeusia as indicators for positive SARS-CoV-2 infection. World journal of otorhinolaryngology-head and neck surgery, 6(S1), S22-S25. https://doi.org/ 10.1016/j.wjorl.2020.04.001
Lee, T. H., & Wong, C. K. (2020). Effects of COVID-19 on pediatric care: A global perspective. Pediatric Infectious Disease Journal, 39(6), e163–e168. https://doi.org/10.1097/INF.0000000000002787
Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562–569. https://doi.org/10.1038/s41564-020-0688-y
Leung, C. L., Chiu, M. C., & Tam, K. W. (2020). A comparison of clinical features and outcomes of SARS-CoV-2 infection in children and adults in Hong Kong. The Lancet Infectious Diseases, 20(9), 957–965. https://doi.org/10.1016/S1473-3099(20)30340-0
Leung, K., & Wu, J. T. (2020). Early transmission dynamics of COVID-19 in Wuhan, China. Science, 368(6490), 481–483. https://doi.org/10.1126/science.abb3221
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., ... & Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England journal of medicine, 382(13), 1199-1207. https://doi.org/10.1056/NEJMoa2001316
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., ... & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454. https://doi.org/10.1038/nature02145
Li, Y., & Xia, Y. (2020). The role of immune responses in COVID-19 pathogenesis. Cellular and Molecular Immunology, 17(5), 514– 522. https://doi.org/10.1038/s41423-020-0429-3
Liao, S. F., & Xu, J. (2020). Management of COVID-19: Current status and future perspectives. The Lancet Infectious Diseases, 20(6), 672–673. https://doi.org/10.1016/S1473-3099(20)30250-X
Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., & He, D. (2020). A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in China. Lancet Infectious Diseases, 20(5), 324–325. https://doi.org/10.1016/S1473-3099(20)30036-3
Liu, Y., & Wang, C. (2020). The evolution of the COVID-19 pandemic. Frontiers in Public Health, 8, 567412. https://doi.org/10.3389/fpubh.2020.567412
Oh, S. M., Park, K. N., Kim, H. J., Choi, S. P., Youn, C. S., & Kim, S. H. (2020). Serum neuron-specific enolase as an early predictor of outcome in patients with cardiac arrest. Resuscitation, 150, 169–175. https://doi.org/10.1016/j.resuscitation.2020.02.007
Paltiel, A. D., & Zheng, A. (2020). COVID-19 testing strategies: A review of the challenges and future directions. The Journal of Clinical Investigation, 130(11), 6102–6108. https://doi.org/10.1172/JCI141993
Pan, L., Mu, M. I., Yang, P., Sun, Y., Wang, R., Yan, J., ... & Tu, L. (2020). Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Official journal of the American College of Gastroenterology| ACG, 115(5), 766-773. https://doi.org/10.14309/ajg.0000000000000620
Pandey, A. K., & Verma, S. K. (2020). The role of ventilator support in critical care management of COVID-19 patients. The Lancet Respiratory Medicine, 8(5), 459–461. https://doi.org/10.1016/S2213-2600(20)30156-4
Pandey, P., Agarwal, S., & Rajkumar. (2020). Lung pathology in COVID-19: A systematic review. International Journal of Applied & Basic Medical Research, 10(4), 226–233. https://doi.org/10.4103/ijabmr.IJABMR_381_20
Patel, A., & Desai, M. (2020). The impact of COVID-19 on global healthcare systems: Analysis of lessons learned. Healthcare Management Review, 45(2), 123–129. https://doi.org/10.1097/HMR.0000000000000330
Patel, A., & Jernigan, D. B. (2020). Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak—United States, December 31, 2019–February 4, 2020. Morbidity and Mortality Weekly Report, 69(5), 140–146. https://doi.org/10.15585/mmwr.mm6905e1
Patel, M. P., & Fernandes, C. (2020). Role of cytokine storm in COVID-19 disease pathogenesis. Journal of Clinical Virology, 130, 104555. https://doi.org/10.1016/j.jcv.2020.104555
Patel, S. R., & Sanghvi, S. (2020). Epidemiology of COVID-19: A review of global trends. The Journal of Infection in Developing Countries, 14(8), 740–748. https://doi.org/10.3855/jidc.12697
Peiris, J. S. M., Guan, Y., & Yuen, K. Y. (2004). Severe acute respiratory syndrome. Nature Medicine, 10(12), S88–S97. https://doi.org/10.1038/nm1143
Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews Microbiology, 7(6), 439–450. https://doi.org/10.1038/nrmicro2147
Phan, T. (2020). Genetic diversity and evolution of SARS-CoV-2. Infectious Disease Reports, 12(1), 85–88. https://doi.org/10.3390/idr12010017
Puno, G. R., Puno, R. C. C., & Maghuyop, I. V. (2021). COVID-19 case fatality rates across Southeast Asian countries (SEA): A preliminary estimate using a simple linear regression model. Journal of Health Research, 35(3), 286-294. https://doi.org/10.1108/JHR-06-2020-0229
Rabi, F. A., Al Zoubi, M. S., Kasasbeh, G. A., Salameh, D. M., & Al-Nasser, A. D. (2020). SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens, 9(3), 231. https://doi.org/10.3390/pathogens9030231
Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., McGinn, T., & Davidson, K. W. (2020). Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA, 323(20), 2052– 2059. https://doi.org/10.1001/jama.2020.6775
Rodriguez-Morales, A. J., Cardona-Ospina, J. A., Gutiérrez-Ocampo, E., Villamizar-Peña, R., Holguin-Rivera, Y., Escalera-Antezana, J. P., ... & Sah, R. (2020). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel medicine and infectious disease, 34, 101623. https://doi.org/10.1016/j.tmaid.2020.101623
Sanyaolu, A., Okorie, C., Marinkovic, A., Patidar, R., Younis, K., Desai, P., ... & Altaf, M. (2020). Comorbidity and its impact on patients with COVID-19. SN comprehensive clinical medicine, 2, 1069-1076. https://doi.org/10.1007/s42399-020-00363-4
Schouten, M., Wiersinga, W. J., Levi, M., & van der Poll, T. (2010). Inflammation, endothelium, and coagulation in sepsis. Critical Care, 14(6), 233. https://doi.org/10.1186/cc9233
Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
Sharma, A., & Sharma, A. (2020). Management of acute respiratory distress syndrome in COVID-19 patients. American Journal of Respiratory and Critical Care Medicine, 201(10), 1186–1194. https://doi.org/10.1164/rccm.202004-1127OC
Shereen, M. A., Khan, S., Kazmi, A., & Bashir, N. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
Sun, P., Qie, S., Liu, Z., Ren, J., Li, K., & Xi, J. (2020). Clinical characteristics of 50466 hospitalized patients with 2019-nCoV infection. Journal of Medical Virology, 92(6), 612–617. https://doi.org/10.1002/jmv.25735
Suneja, A., & Swamy, S. S. (2020). COVID-19 and the immune response. Medical Journal of Dr. D.Y. Patil University, 13(6), 17–23. https://doi.org/10.4103/mjdrdypu.mjdrdypu_612_20
Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., ... & Lu, J. (2020). On the origin and continuing evolution of SARS-CoV-2. National science review, 7(6), 1012-1023. https://doi.org/10.1093/nsr/nwaa036
Tao, L. Y., Zhou, X. P., Li, S. N., & Wang, H. (2011). Thrombocytopenia as a predictor of severe dengue infection: A systematic review and meta-analysis. PLOS Neglected Tropical Diseases, 5(8), e1279. https://doi.org/10.1371/journal.pntd.0001279
USAspending.gov. (n.d.). COVID relief spending. Retrieved from https://usaspending.gov/disaster/covid-19
Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., ... & Munster, V. J. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England journal of medicine, 382(16), 1564-1567. https://doi.org/10.1056/NEJMc2004973
Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., ... & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet, 395(10234), 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5
Viceconte, G., & Petrosillo, N. (2020). COVID-19 R0: Magic number or conundrum?. Infectious disease reports, 12(1), 8516. https://www.mdpi.com/2036-7449/12/1/8516
Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058
Wang, L., & Wang, Y. (2020). Clinical course and outcomes of 2019-nCoV pneumonia. The Lancet, 395(10223), 511–513. https://doi.org/10.1016/S0140-6736(20)30383-5
Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020). Detection of SARS-CoV-2 in different types of clinical specimens. JAMA, 323(18), 1843–1844. https://doi.org/10.1001/jama.2020.3786
Wang, Y., Zhang, L., & Wang, X. (2020). COVID-19: The clinical features and management of the disease. China CDC Weekly, 2(13), 195–200. https://doi.org/10.46234/ccdcw2020.061
Wei, L., & Li, X. (2020). COVID-19 and coronaviruses: A global pandemic. World Journal of Clinical Cases, 8(7), 1240–1256. https://doi.org/10.12998/wjcc.v8.i7.1240
Wiersinga, W. J., & Rhodes, A. (2020). Pathophysiology, transmission, and diagnosis of COVID-19: A review. JAMA, 324(8), 742– 752. https://doi.org/10.1001/jama.2020.10232
World Health Organization (WHO). (2020). Coronavirus disease (COVID-19) pandemic. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019
World Health Organization. (2020, March 11). WHO Director-General’s opening remarks at the media briefing on COVID-19. Retrieved from https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing- on-covid-19
World Health Organization. (n.d.). Coronavirus Disease (COVID-19) Dashboard. Retrieved from https://covid19.who.int
World Health Organization. (n.d.). COVID-19 Public Health Emergency of International Concern (PHEIC) Global Research and Innovation Forum. Retrieved from https://www.who.int/publications/m/item/covid-19-public-health-emergency-of-international-concern-(pheic)-global-research-and-innovation-forum
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., ... & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260-1263. https://doi.org/10.1126/science.abb2507
Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269. https://doi.org/10.1038/s41586-020-2008-3
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 323(13), 1239– 1242. https://doi.org/10.1001/jama.2020.2648
Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., ... & Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Sciences, 63, 457-460. https://doi.org/10.1007/s11427-020-1637-5
Xu, X. W., Wu, X. X., Jiang, X. G., Xu, K. J., Ying, L. J., Ma, C. L., ... & Li, L. J. (2020). Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. bmj, 368. https://doi.org/10.1136/bmj.m606
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., ... & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine, 8(4), 420-422. https://doi.org/10.1016/S2213-2600(20)30076-X
Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., ... & Zhou, Z. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8(5), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5
Yao, X. H., & He, Z. C. (2020). Pathological evidence for the role of ACE2 in COVID-19. The Lancet Infectious Diseases, 20(8), 823–824. https://doi.org/10.1016/S1473-3099(20)30394-1
Ye, Z. W., Yuan, S., & Yuen, K. Y. (2020). The pathogenesis and therapeutic strategies for COVID-19. Journal of Clinical Investigation, 130(5), 2285–2299. https://doi.org/10.1172/JCI138675
Ye, Q., Wang, B., & Mao, J. (2020). The pathogenesis and treatment of theCytokine Storm’in COVID-19. Journal of infection, 80(6), 607-613. https://doi.org/10.1016/j.jinf.2020.03.037
Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
Zhang, Y., & Li, Z. (2020). Modeling the transmission of SARS-CoV-2 and evaluating the impact of various control strategies. Computers, Materials & Continua, 63(3), 1271–1285. https://doi.org/10.32604/cmc.2020.010377
Zhang, Y., Zhang, J., Chen, Y., & Luo, B. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214–217. https://doi.org/10.1016/j.ijid.2020.01.050
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., ... & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet, 395(10229), 1054-1062. https://doi.org/10.1016/S0140- 6736(20)30566-3
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... & Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. https://doi.org/10.1038/s41586-020-2012-7
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., ... & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine, 382(8), 727-733. https://doi.org/10.1056/NEJMoa2001017