Article section
Association Between Microalbuminuria and Left Ventricular Hypertrophy in Hypertensive Patients: A Marker of Target Organ Damage
Abstract
Microalbuminuria, an indicator of endothelial dysfunction and organ damage, is often linked to left ventricular hypertrophy (LVH) in individuals with hypertension. Identifying microalbuminuria early can offer critical insights into assessing cardiovascular risks. This research aimed to explore the relationship between microalbuminuria and LVH in hypertensive patients and to evaluate the clinical relevance of microalbuminuria as an indicator of organ damage. This cross-sectional study involved 150 hypertensive patients, divided into two groups: 75 with LVH (Group 1) and 75 without LVH (Group 2). LVH was diagnosed using echocardiography, specifically the left ventricular mass index (LVMI). Microalbuminuria was measured via the albumin-to-creatinine ratio (ACR) in a single urine sample, with a cutoff of 30–300 µg/mg. Data on blood pressure, hypertension duration, and body mass index (BMI) were collected. Statistical analyses included t-tests and chi-square tests. Microalbuminuria was significantly more common in Group 1 than in Group 2 (60% vs. 20%; p < 0.001). The average ACR was also higher in Group 1 (65.4 ± 20.7 µg/mg vs. 22.5 ± 10.2 µg/mg; p < 0.001). Patients with LVH had a longer history of hypertension, higher BMI, and increased blood pressure compared to those without LVH (p < 0.05). Microalbuminuria is closely associated with LVH in hypertensive patients and can serve as a non-invasive marker for organ damage. Regular screening for microalbuminuria in hypertensive patients can enhance risk assessment and inform targeted treatments.
Keywords:
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(1), (2025)
Pages
17-20
Published
Copyright
Copyright (c) 2025 Salam Naser Zangana (Author)
Open access
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Al-Mudhaffer, A. M. (2019). The relation between left ventricular hypertrophy and microalbuminuria in essential hypertensive patients. Journal of Cardiovascular Disease Research, 10(1), 5-10.
American Heart Association (AHA). (2017). Understanding blood pressure readings. https://www.heart.org/en/health-topics/high-blood-pressure/understanding-blood-pressure-readings.
Dahlöf, B., Devereux, R. B., Kjeldsen, S. E., Julius, S., Beevers, G., de Faire, U., ... & Wedel, H. (2002). Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. The Lancet, 359(9311), 995-1003. https://doi.org/10.1016/S0140-6736(02)08089-3
Devereux, R. B., & Reichek, N. (1977). Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation, 55(4), 613-618. https://doi.org/10.1161/01.CIR.55.4.613
Ganau, A., Devereux, R. B., Roman, M. J., De Simone, G., Pickering, T. G., Saba, P. S., ... & Laragh, J. H. (1992). Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. Journal of the American College of Cardiology, 19(7), 1550-1558. https://doi.org/10.1016/0735-1097(92)90617-V
Kumar, S., Gupta, A., & Sharma, P. (2022). The role of ARBs in reducing microalbuminuria and left ventricular hypertrophy in hypertensive patients with diabetes. Diabetes Care, 45(3), 567-574.
Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., ... & Voigt, J. U. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal-Cardiovascular Imaging, 16(3), 233-271. https://doi.org/10.1016/j.echo.2014.10.003
Levey, A. S., Coresh, J., Bolton, K., Culleton, B., Harvey, K. S., Ikizler, T. A., ... & Briggs, J. (2002). K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. American Journal of Kidney Diseases, 39(2 SUPPL. 1), i-ii+S1-S266. https://doi.org/10.1053/ajkd.2002.30944
Loncaric, F., Nunno, L., Mimbrero, M., Marciniak, M., Fernandes, J. F., Tirapu, L., ... & Sitges, M. (2020). Basal ventricular septal hypertrophy in systemic hypertension. The American journal of cardiology, 125(9), 1339-1346. https://doi.org/10.1016/j.amjcard.2020.01.045
Mogensen, C. E. (1984). Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. New England journal of medicine, 310(6), 356-360. https://doi.org/10.1056/NEJM198402093100605
Parving, H. H., Lehnert, H., Bröchner-Mortensen, J., Gomis, R., Andersen, S., & Arner, P. (2001). The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. New England Journal of Medicine, 345(12), 870-878. https://doi.org/10.1056/NEJMoa011489
Ribó-Coll, M., Lassale, C., Sacanella, E., Ros, E., Toledo, E., Sorlí, J. V., ... & Hernáez, Á. (2021). Mediterranean diet and antihypertensive drug use: a randomized controlled trial. Journal of Hypertension, 39(6), 1230-1237. https://doi.org/10.1097/HJH.0000000000002765.
Schmieder, R. E., Klingbeil, A. U., Fleischmann, E. H. (1999). Update on prevention of left ventricular hypertrophy: newer antihypertensive agents. Journal of Hypertension Supplement, 17(6), 17-23.
Weir, M. R. (2007). Microalbuminuria and cardiovascular disease. Clinical Journal of the American Society of Nephrology, 2(3), 581-590. https://doi.org/10.2215/CJN.03190906.