Research Article

In Vitro Antiplasmodial Activities and Safety of Ocimum gratissimum L and Rhoicissus tridentate L.f Extracts

Authors

  • Joan C. Koech Department of Biological Sciences, University of Eldoret, Kenya

    jkoech96@gmail.com

  • M. Ngeiywa Department of Biological Sciences, University of Eldoret, Kenya
  • J. Makwali Department of Biological Sciences, University of Eldoret, Kenya
  • J. Gathirwa Kenya Medical Research Institute (KEMRI), Kenya
  • F. Kimani Kenya Medical Research Institute (KEMRI), Kenya
  • E. Kigondu Kenya Medical Research Institute (KEMRI), Kenya

Abstract

This study evaluated Ocimum gratissimum and Rhoicissus tridentata for their In vitro antimalarial activity and safety. The plant samples collected from Keiyo South in Kenya were processed and their compounds were extracted using inorganic and organic solvents. Phytochemical screening, antiplasmodial bioassays, cytotoxicity tests, and statistical analyses were conducted to validate and compare the efficacies of the two plant used traditionally in treatment of malaria in Kenya. O. gratissimum extracts showed strong inhibition and low toxicity, with methanol as the most effective solvent. Methanol and water solvents extracts demonstrated significant In vitro antiplasmodial activity with inhibition rates of 70.7% and 67.6%, respectively compared to the negative control, whereas R. tridentata extracts, especially those of hexane, had a lower inhibition rate of 36.1%. The Minimum Inhibitory Concentration (MIC) of O. gratissimum extracts was slightly higher than that of the standard antimalarial drug, Artemether-Lumefantrine indicating good antimalarial potency at the slightly higher dose. Cytotoxicity tests revealed that the methanol and water extracts of the two plants extracts were less toxic compared to hexane and dichloromethane solvents extracts. Phytochemical analysis found higher flavonoid content in O. gratissimum and higher carotenoid levels in R. tridentata. Methanol proved to be the most effective solvent, extracting more bioactive compounds than hexane and dichloromethane. The study highlights O. gratissimum as a promising antimalarial candidate and suggests that further optimization is needed to enhance its In vivo efficacy. The findings advocate for continued research into solvent selection, plant part efficacy, and phytochemical analysis to refine and potentially develop these plant extracts into effective therapeutic agents against malaria.

Keywords:

Antimalarial Activity Cytotoxicity Ocimum Gratissimum Phytochemical Analysis Rhoicissus Tridentate

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(1), (2025)

Pages

104-114

Published

27-05-2025

How to Cite

Koech, J. C., Ngeiywa, M., Makwali, J., Gathirwa, J., Kimani, F., & Kigondu, E. (2025). In Vitro Antiplasmodial Activities and Safety of Ocimum gratissimum L and Rhoicissus tridentate L.f Extracts. Journal of Medical Science, Biology, and Chemistry, 2(1), 104-114. https://doi.org/10.69739/jmsbc.v2i1.230

References

Aje, O. O. (2023). Inhibitory Effect of Some Flavones on Plasmodium falciparum Plasmepsin V Activity (Master’s thesis, Kwara State University, Nigeria).

Akhtar, N., & Mirza, B. (2018). Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arabian Journal of Chemistry, 11(8), 1223-1235. https://doi.org/10.1016/j.arabjc.2015.01.013

Alamgir, A. N. M., & Alamgir, A. N. M. (2018). Methods of Qualitative and Quantitative Analysis of Plant Constituents. Therapeutic Use of Medicinal Plants and their Extracts: Volume 2: Phytochemistry and Bioactive Compounds (pp. 721-804). https://doi.org/10.1007/978-3-319-92387-1_9

Alghamdi, J. M., Al-Qahtani, A. A., Alhamlan, F. S., & Al-Qahtani, A. A. (2024). Recent Advances in the Treatment of Malaria. Pharmaceutics, 16(11), 1416. https://doi.org/10.3390/pharmaceutics16111416

Alum, E. U. (2025). Sustainable harvesting of medicinal plants: balancing therapeutic benefits with environmental conservation. Agroecology and Sustainable Food Systems, 49(3), 380-385. https://doi.org/10.1080/21683565.2024.2421948

Anstey, N. M., Tham, W. H., Shanks, G. D., Poespoprodjo, J. R., Russell, B. M., & Kho, S. (2024). The biology and pathogenesis of vivax malaria. Trends in Parasitology, 40(7), 573-590. https://doi.org/10.1016/j.pt.2024.04.015

Bagavan, A., Rahuman, A. A., Kamaraj, C., Kaushik, N. K., Mohanakrishnan, D., & Sahal, D. (2011). Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitology Research, 108, 1099-1109. https://doi.org/10.1007/s00436-010-2151-0

Bekono, B. D., Ntie-Kang, F., Onguéné, P. A., Lifongo, L. L., Sippl, W., Fester, K., & Owono, L. C. (2020). The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malaria Journal, 19, 1-35. https://doi.org/10.1186/s12936-020-03231-7

Bhadange, Y. A., Carpenter, J., & Saharan, V. K. (2024). A comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega, 9(29), 31274-31297. https://doi.org/10.1021/acsomega.4c02718

Brookes, K. B., & Katsoulis, L. C. (2006). Bioactive components of Rhoicissus tridentata: A pregnancy-related traditional medicine. South African Journal of Science, 102(5), 267-272. https://hdl.handle.net/10520/EJC96537

Canter, P. H., Thomas, H., & Ernst, E. (2005). Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends in Biotechnology, 23(4), 180-185. https://doi.org/10.1016/j.tibtech.2005.02.002

Cheuka, P. M., Mayoka, G., Mutai, P., & Chibale, K. (2016). The role of natural products in drug discovery and development against neglected tropical diseases. Molecules, 22(1), 58. https://doi.org/10.3390/molecules22010058

Cibulskis, R. E., Alonso, P., Aponte, J., Aregawi, M., Barrette, A., Bergeron, L., ... & Williams, R. (2016). Malaria: global progress 2000–2015 and future challenges. Infectious Diseases of Poverty, 5, 1-8. https://doi.org/10.1186/s40249-016-0151-8

De Silva, G. O., Abeysundara, A. T., & Aponso, M. M. W. (2017). Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. American Journal of Essential Oils and Natural Products, 5(2), 29-32.

Doughari, J. H. (2012). Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents (pp. 1-33). Rijeka, Croatia: INTECH Open Access Publisher.

Eichelbaum, S. R. (2016). Screening of plants for antibacterial properties: growth inhibition of Staphylococcus aureus by Artemisia tridentata (Doctoral dissertation, Florida International University, USA).

Espíndola, M. R., Varotti, F. D. P., Aguiar, A. C. C., Andrade, S. N., & Rocha, E. M. M. D. (2022). In vitro assessment for cytotoxicity screening of new antimalarial candidates. Brazilian Journal of Pharmaceutical Sciences, 58, e18308. https://doi.org/10.1590/s2175-97902022e18308

Fatima, G., Magomedova, A., & Parvez, S. (2024). Biotechnology and Sustainable Development. Shineeks Publishers.

Fikadu, M., & Ashenafi, E. (2023). Malaria: an overview. Infection and Drug Resistance, 16, 3339-3347. https://doi.org/10.2147/IDR.S405668

Fotie, J. (2008). The antiprotozoan potential of flavonoids. Pharmacognosy Reviews, 2(3), 6. https://www.phcogrev.com/sites/default/files/PhcogRev-2-3-6.pdf

Gurib-Fakim, A. (2006). Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine, 27(1), 1-93. https://doi.org/10.1016/j.mam.2005.07.008

Habibi, P., Shi, Y., Fatima Grossi-de-Sa, M., & Khan, I. (2022). Plants as sources of natural and recombinant antimalaria agents. Molecular Biotechnology, 64(11), 1177-1197. https://doi.org/10.1007/s12033-022-00499-9

Jensen, J. B. (2002). In vitro culture of Plasmodium parasites. Malaria Methods and Protocols: Methods and Protocols (pp. 477-488).

Jha, A. K., & Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science & Technology, 119, 579-591. https://doi.org/10.1016/j.tifs.2021.11.019

Kaou, A. M., Mahiou-Leddet, V., Hutter, S., Aïnouddine, S., Hassani, S., Yahaya, I., ... & Ollivier, E. (2008). Antimalarial activity of crude extracts from nine African medicinal plants. Journal of Ethnopharmacology, 116(1), 74-83. https://doi.org/10.1016/j.jep.2007.11.001

Khan, S., Chandramohan, K., & Husen, A. (2024). Diversity and Geographic Distribution of Some Antimalarial Plant Species. In Antimalarial Medicinal Plants (pp. 1-39). CRC Press.

Kigondu, E. V., Rukunga, G. M., Keriko, J. M., Tonui, W. K., Gathirwa, J. W., Kirira, P. G., ... & Ndiege, I. O. (2009). Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya. Journal of Ethnopharmacology, 123(3), 504-509. https://doi.org/10.1016/j.jep.2009.02.008

Kingston, D. G., & Cassera, M. B. (2022). Antimalarial Natural Products (pp. 1-106). Springer International Publishing.

Kodi, P. (2018). Antiplasmodial and toxicity activities and characterization of chemical compounds extracted from selected medicinal plants in Uganda (Doctoral dissertation, Egerton University).

Kudamba, A., Kasolo, J. N., Bbosa, G. S., Lugaajju, A., Wabinga, H., Niyonzima, N., ... & Muwonge, H. (2023). Phytochemical Profiles of Rhoicissus tridentata Harvested From the Slopes Elgon Sub-region, Uganda. Research Square. https://doi.org/10.21203/rs.3.rs-3650181/v1

Lefebvre, T., Destandau, E., & Lesellier, E. (2021). Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography A, 1635, 461770. https://doi.org/10.1016/j.chroma.2020.461770

Lokole, P. B., Byamungu, G. G., Mutwale, P. K., Ngombe, N. K., Mudogo, C. N., Krause, R. W., & Nkanga, C. I. (2024). Plant-based nanoparticles targeting malaria management. Frontiers in Pharmacology, 15, 1440116. https://doi.org/10.3389/fphar.2024.1440116

Mamede, L., Ledoux, A., Jansen, O., & Frédérich, M. (2020). Natural phenolic compounds and derivatives as potential antimalarial agents. Planta medica, 86(09), 585-618. https://doi.org/10.1055/a-1148-9000

Monga, S., Dhanwal, P., Kumar, R., Kumar, A., & Chhokar, V. (2017). Pharmacological and physico-chemical properties of Tulsi (Ocimum gratissimum L.): An updated review. Pharma. Innovation, 6(4), 181-186.

Nanyingi, M. O., Kipsengeret, K. B., Wagate, C. G., & Midiwo, J. O. (2009). In vitro and in vivo antiplasmodial activity of Kenyan medicinal plants. In Midiwo, J. O., Clough, J. (Eds.) Aspects of African Biodiversity.

Oliveira, A. B., Dolabela, M. F., Braga, F. C., Jácome, R. L., Varotti, F. P., & Póvoa, M. M. (2009). Plant-derived antimalarial agents: new leads and efficient phythomedicines. Part I. Alkaloids. Anais da Academia Brasileira de Ciencias, 81, 715-740. https://doi.org/10.1590/S0001-37652009000400011

Ong, E. S. (2004). Extraction methods and chemical standardization of botanicals and herbal preparations. Journal of Chromatography B, 812(1-2), 23-33. https://doi.org/10.1016/j.jchromb.2004.07.041

Ouandaogo, H. S., Diallo, S., Odari, E., & Kinyua, J. (2023). Phytochemical Screening and GC-MS Analysis of Methanolic and Aqueous Extracts of Ocimum kilimandscharicum Leaves. ACS omega, 8(50), 47560-47572. https://doi.org/10.1021/acsomega.3c05554

Ouattara, L. P., Sanon, S., Mahiou-Leddet, V., Gansané, A., Baghdikian, B., Traoré, A., ... & Sirima, S. B. (2014). In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitology research, 113, 405-416. https://doi.org/10.1007/s00436-013-3669-8

Pandey, S. A. N. D. E. E. P. (2017). Antibacterial and antifungal activities of Ocimum gratissimum L. Proteus, 25(47), 56. http://dx.doi.org/10.22159/ijpps.2017v9i12.22678

Roux, A. T., Maharaj, L., Oyegoke, O., Akoniyon, O. P., Adeleke, M. A., Maharaj, R., & Okpeku, M. (2021). Chloroquine and sulfadoxine–pyrimethamine resistance in Sub-Saharan Africa—A review. Frontiers in Genetics, 12, 668574. https://doi.org/10.3389/fgene.2021.668574

Sato, S. (2021). Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. Journal of physiological anthropology, 40(1), 1.

Singha, B., Singh, V., & Soni, V. (2024). Alternative therapeutics to control antimicrobial resistance: a general perspective. Frontiers in Drug Discovery, 4, 1385460. https://doi.org/10.1186/s40101-020-00251-9

Stéphane, F. F. Y., Jules, B. K. J., Batiha, G. E. S., Ali, I., & Bruno, L. N. (2021). Extraction of bioactive compounds from medicinal plants and herbs. Natural medicinal plants (pp. 1-39). https://doi.org/10.5772/intechopen.98602

Van Wyk, A. S., & Prinsloo, G. (2018). Medicinal plant harvesting, sustainability and cultivation in South Africa. Biological Conservation, 227, 335-342. https://doi.org/10.1016/j.biocon.2018.09.018

Waiganjo, B., Moriasi, G., Onyancha, J., Elias, N., & Muregi, F. (2020). Antiplasmodial and cytotoxic activities of extracts of selected medicinal plants used to treat malaria in Embu County, Kenya. Journal of Parasitology Research, 2020(1), 8871375. https://doi.org/10.1155/2020/8871375

Woodrow, C. J., & White, N. J. (2017). The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS microbiology reviews, 41(1), 34-48. https://doi.org/10.1093/femsre/fuw037

World Health Organization. (2023). WHO guidelines for malaria, 14 March 2023 (No. WHO/UCN/GMP/2023.01). World Health Organization. https://www.who.int/publications/i/item/9789240069297

Downloads

Views

74

Downloads

33