Article section
Molecular Typing and Antibiotic-Resistance of Diarrheagenic Escherichia coli Isolated from Diarrhea-Diseased Children in Wasit Province, Iraq
Abstract
Diarrheagenic Escherichia coli (E. coli) is a common zoonotic bacterial pathogen that becomes increasingly resistant to antibiotics, making treatment difficult. Worldwide, almost E. coli infections are associated with the consumption of contaminated food and water causing a potential threat to the health and welfare of both humans and animals. Isolation and molecular confirmation of pathogenic E. coli from the fecal samples of diarrhea-diseased children, and then, estimation of the antibiotic susceptibility of the study isolates to determinate the antibiotics resistance pattern. A total of 80 fecal samples were collected from diarrhea diseased-children in Wasit province (Iraq) during September to November (2024). All samples were cultivated on McConkey agar, and the pure isolates were sub cultured on Nutrient agar. Targeting the 16S rRNA gene, the fresh positive colonies were confirmed molecularly using the conventional polymerase chain reaction (PCR). Also, the colonies of E. coli were inoculated on the Mueller-Hinton agar, and antibiotic susceptibility testing was conducted using the Kirby-Bauer method. An overall 36.25% (29/80) isolates were identified in diarrhea-diseased children. Targeting the 16S rRNA gene, 40.74% (11/29) were shown a positive reaction to pathogenic E. coli. Antibiotic susceptibility testing for pathogenic E. coli isolates revealed their significant sensitivity to Colisitin, Nitofurantion, Azithromycin, Ciprofloxacillin, Ofloxacine, Imipenem, Meropenem, Levofloxacine, and Nalidixic acid. However, significant high resistance was recorded to Amoxicillin, Amikacin, Ampicillin, Ceftazidime, Ceftriaxone, Cefotaxime and Cefepime; while intermediate resistance was identified to Gentamicin. The findings of MDR revealed that there was significant resistance to one type of Aminoglycosides (Amikacin), two types of Penicillin (Amoxicillin and Ampicillin), and four types of Cephalosporins (Ceftazidime, Ceftriaxone, Cefotaxine, and Cefepime). There is marginal relationship between the isolated pathotypes were isolated in this study and the multiple drug resistance and there is no association between pathotypes, virulence factors, and multiple drug resistance.
Keywords:
16S rRNA Gene Antibiotic Susceptibility Testing Enterobacteriaceae Multidrug-Resistant (MDR) Polymerase Chain Reaction (PCR)
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(1), (2025)
Pages
30-37
Published
Copyright
Copyright (c) 2025 Sagia Abbas Gibar Aifari (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Al-Taee, H. S., Sekhi, A. A., Gharban, H. A., and Biati, H. M. (2023). Serological identification of MERS-CoV in camels of Wasit province, Iraq. Open Veterinary Journal, 13(10), 1283-1289. https://www.ajol.info/index.php/ovj/article/view/259399
Arnold, B. J., Huang, I. T., and Hanage, W. P. (2022). Horizontal gene transfer and adaptive evolution in bacteria. Nature Reviews Microbiology, 20(4), 206-218. https://doi.org/10.1038/s41579-021-00650-4
Ayukekbong, J. A., Ntemgwa, M., & Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance & Infection Control, 6, 1-8. https://doi.org/10.1186/s13756-017-0208-x
Abayneh, M., & Worku, T. (2020). Prevalence of multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing gram-negative bacilli: a meta-analysis report in Ethiopia. Drug Target Insights, 14, 16. https://doi.org/10.33393/dti.2020.2170
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
Boyen, F., Vangroenweghe, F., Butaye, P., De Graef, E., Castryck, F., Heylen, P., & Haesebrouck, F. (2020). Disk prediffusion is a reliable method for testing colistin susceptibility in porcine E. coli strains. Veterinary microbiology, 144(3-4), 359-362. https://doi.org/10.1016/j.vetmic.2010.01.010
Brunette, G. W., & Jeffrey, B. N. (Eds). (2019). Travel-Related Infectious Diseases. CDC Yellow Book 2020: Health Information for International Travel.
Bush, K., & Bradford, P. A. (2016). β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harbor perspectives in medicine, 6(8), a025247. https://doi.org/10.1101/cshperspect.a025247
CDC. (2020). Centers for disease control and prevention.
CDC. (2023). Travel-Associated Infections & Diseases. In Jeffrey B. Nemhauser (Ed.), CDC Yellow Book 2024: Health Information for International Travel. Oxford Academic.
Dirar, M. H., Bilal, N. E., Ibrahim, M. E., & Hamid, M. E. (2020). Prevalence of extended-spectrum β-lactamase (ESBL) and molecular detection of bla TEM, bla SHV and bla CTX-M genotypes among Enterobacteriaceae isolates from patients in Khartoum, Sudan. Pan African Medical Journal, 37(1). https://www.ajol.info/index.php/pamj/article/view/221981
Duy, P. T. (2018). The Molecular Epidemiology of Enteric Fever in South and Southeast Asia. Open University (United Kingdom).
Faure, C. (2013). Role of antidiarrhoeal drugs as adjunctive therapies for acute diarrhoea in children. International Journal of Pediatrics, 2013(1), 612403. https://doi.org/10.1155/2013/612403
Galindo-Méndez, M. (2020). Antimicrobial resistance in Escherichia coli. In E. Coli Infections-Importance of Early Diagnosis and Efficient Treatment. IntechOpen. https://doi.org/10.1128/microbiolspec.arba-0026-2017
Georges, M. C., Wachsmuth, I. K., Meunier, D. M., Nebout, N., Didier, F., Siopathis, M. R., & Georges, A. J. (1984). Parasitic, bacterial, and viral enteric pathogens associated with diarrhea in the Central African Republic. Journal of clinical microbiology, 19(5), 571-575. https://doi.org/10.1128/jcm.19.5.571-575.1984
Guiral, E., Goncalves Quiles, M., Muñoz, L., Moreno-Morales, J., Alejo-Cancho, I., Salvador, P., ... & Vila, J. (2019). Emergence of resistance to quinolones and β-lactam antibiotics in enteroaggregative and enterotoxigenic Escherichia coli causing traveler’s diarrhea. Antimicrobial agents and chemotherapy, 63(2), 10-1128. https://doi.org/10.1128/aac.01745-18
Gupta, S., Govil, D., Kakar, P. N., Prakash, O., Arora, D., Das, S., and Malhotra, A. (2019). Colistin and polymyxin B: a re-emergence. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 13(2), 49. https://doi.org/10.4103/0972-5229.56048
Harada, K., Asai, T., Kojima, A., Oda, C., Ishihara, K., & Takahashi, T. (2005). Antimicrobial susceptibility of pathogenic Escherichia coli isolated from sick cattle and pigs in Japan. Journal of Veterinary Medical Science, 67(10), 999-1003. https://doi.org/10.1292/jvms.67.999
Imdad, A., Retzer, F., Thomas, L. S., McMillian, M., Garman, K., Rebeiro, P. F., ... & Woron, A. M. (2018). Impact of culture-independent diagnostic testing on recovery of enteric bacterial infections. Clinical Infectious Diseases, 66(12), 1892-1898. https://doi.org/10.1093/cid/cix1128
Jaureguy, F., Landraud, L., Passet, V., Diancourt, L., Frapy, E., Guigon, G., ... & Brisse, S. (2008). Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC genomics, 9, 1-14. https://doi.org/10.1186/1471-2164-9-560
Kariuki, S., Kering, K., Wairimu, C., Onsare, R., & Mbae, C. (2022). Antimicrobial resistance rates and surveillance in sub-Saharan Africa: where are we now?. Infection and drug resistance, 15, 3589-3609. https://doi.org/10.2147/IDR.S342753
Lukjancenko, O., Wassenaar, T. M., & Ussery, D. W. (2010). Comparison of 61 sequenced Escherichia coli genomes. Microbial ecology, 60, 708-720. https://doi.org/10.1007/s00248-010-9717-3
Madadi-Goli, N., Moniri, R., Bagheri-Josheghani, S., & Dasteh-Goli, N. (2017). Sensitivity of levofloxacin in combination with ampicillin-sulbactam and tigecycline against multidrug-resistant Acinetobacter baumannii. Iranian journal of microbiology, 9(1), 19. https://pmc.ncbi.nlm.nih.gov/articles/PMC5534000/
Mekdad, S. S., & AlSayed, L. (2020). Prospective evaluating the appropriate use of piperacillin/tazobactam in cardiac center of a tertiary care hospital. Journal of Cardiothoracic Surgery, 15, 1-6. https://doi.org/10.1186/s13019-020-01109-y
Michaelis, C., & Grohmann, E. (2023). Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics, 12(2), 328. https://doi.org/10.3390/antibiotics12020328
Narendrakumar, L., Chakraborty, M., Kumari, S., Paul, D., & Das, B. (2023). β-Lactam potentiators to re-sensitize resistant pathogens: Discovery, development, clinical use and the way forward. Frontiers in Microbiology, 13, 1092556. https://doi.org/10.3389/fmicb.2022.1092556
Parvin, M. S., Talukder, S., Ali, M. Y., Chowdhury, E. H., Rahman, M. T., & Islam, M. T. (2020). Antimicrobial resistance pattern of Escherichia coli isolated from frozen chicken meat in Bangladesh. Pathogens, 9(6), 420. https://doi.org/10.3390/pathogens9060420
Pishtiwan, A. H., & Khadija, K. M. (2019). Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterranean journal of hematology and infectious diseases, 11(1), e2019041. https://doi.org/10.4084/MJHID.2019.041
Pokharel, P., Dhakal, S., & Dozois, C. M. (2023). The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms, 11(2), 344. https://doi.org/10.3390/microorganisms11020344
Putnam, S. D., Riddle, M. S., Wierzba, T. F., Pittner, B. T., Elyazeed, R. A., El-Gendy, A., ... & Frenck, R. W. (2004). Antimicrobial susceptibility trends among Escherichia coli and Shigella spp. isolated from rural Egyptian paediatric populations with diarrhoea between 1995 and 2000. Clinical Microbiology and Infection, 10(9), 804-810. https://doi.org/10.1111/j.1469-0691.2004.00927.x
Puvača, N., & de Llanos Frutos, R. (2021). Antimicrobial resistance in Escherichia coli strains isolated from humans and pet animals. Antibiotics, 10(1), 69. https://doi.org/10.3390/antibiotics10010069
Roy, S., Shamsuzzaman, S. M., & Mamun, K. Z. (2013). Antimicrobial resistance pattern of diarrheagenic Escherichia coli isolated from acute diarrhea patients. International Journal of Pharmaceutical Science Invention, 2(6), 43-46.
Salleh, M. Z., Nik Zuraina, N. M. N., Hajissa, K., Ilias, M. I., & Deris, Z. Z. (2022). Prevalence of multidrug-resistant diarrheagenic Escherichia coli in Asia: A systematic review and meta-analysis. Antibiotics, 11(10), 1333. https://doi.org/10.3390/antibiotics11101333
Seidman, J. C., Johnson, L. B., Levens, J., Mkocha, H., Muñoz, B., Silbergeld, E. K., ... & Coles, C. L. (2016). Longitudinal comparison of antibiotic resistance in diarrheagenic and non-pathogenic Escherichia coli from young Tanzanian children. Frontiers in Microbiology, 7, 1420. https://doi.org/10.3389/fmicb.2016.01420
Siciliano, V., Nista, E. C., Rosà, T., Brigida, M., & Franceschi, F. (2020). Clinical management of infectious diarrhea. Reviews on Recent Clinical Trials, 15(4), 298-308. https://doi.org/10.2174/1574887115666200628144128
Sora, V. M., Meroni, G., Martino, P. A., Soggiu, A., Bonizzi, L., & Zecconi, A. (2021). Extraintestinal pathogenic Escherichia coli: Virulence factors and antibiotic resistance. Pathogens, 10(11), 1355. https://doi.org/10.3390/pathogens10111355
Taneja, N., Mohan, B., Khurana, S., & Sharma, M. (2004). Antimicrobial resistance in selected bacterial enteropathogens in north India. Indian Journal of Medical Research, 120, 39-43.
Talebi, A. F., Tabatabaei, M., & Chisti, Y. (2014). BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Research Journal, 1(2), 55-57. https://www.biofueljournal.com/article_5546_1.html
Uma, B., Prabhakar, K., Rajendran, S., Kavitha, K., & Sarayu, Y. L. (2009). Antibiotic sensitivity and plasmid profiles of Escherichia coli isolated from pediatric diarrhea. Journal of Global Infectious Diseases, 1(2), 107-110. https://doi.org/10.4103/0974-777X.56255
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria—A review. Antibiotics, 11(8), 1079. https://doi.org/10.3390/antibiotics11081079
Wang, G. Q., Wu, C. M., Du, X. D., Shen, Z. Q., Song, L. H., Chen, X., & Shen, J. Z. (2008). Characterization of integrons-mediated antimicrobial resistance among Escherichia coli strains isolated from bovine mastitis. Veterinary microbiology, 127(1-2), 73-78. https://doi.org/10.1016/j.vetmic.2007.08.003