Review Article

Real-Time Environmental Trigger Modeling and Personalized Allergic Rhinitis Management in the United States: Exploring a Digital Twin Ecosystem

Authors

  • Ubalaeze Elechi University of Nigeria, Nigeria https://orcid.org/0009-0002-3474-1002

    elechiuba@gmail.com

  • Adekunle Fatai Adeoye Georgia State University, USA
  • Kelechi Elechi The University of Texas Health Science Center at San Antonio, USA
  • Stephen Onyekachi Obiya National University of Science and Technology MISIS, Russian Federation
  • Shehu Abubakar Umar National University of Science and Technology MISIS, Russian Federation
  • Paul Iwu National University of Science and Technology MISIS, Russian Federation
  • Muhammad Bello Demola University of Ulster, UK
  • Okabeonye Sunday Agbo Enugu State University of Science and Technology, Nigeria https://orcid.org/0009-0000-3305-2649
  • Joy Chinyere Elokaakwaeze Kwame Nkrumah University of Science and Technology, Ghana
  • Victor Chiedozie Ezeamii Department of Biostatistics, Epidemiology, and Environmental Health Sciences, Georgia Southern University, USA https://orcid.org/0009-0005-4321-1136
  • Kindson Nkejah Abone University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria https://orcid.org/0009-0002-1197-6634
  • Chiazom Arubaleze University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria https://orcid.org/0009-0006-9770-7660

Abstract

Allergic rhinitis imposes a major health and socioeconomic burden. Real-time environmental trigger modeling and digital-twin technology promise a personalized approach to managing this burden. We review how a digital twin ecosystem can integrate live environmental data (such as pollen and pollution levels) with individual patient profiles (sensitization, symptoms, behaviors) to predict allergic rhinitis flares and inform tailored interventions. This narrative review synthesizes recent advances in digital architecture, data streams, and predictive analytics for allergic rhinitis. We discuss a layered digital-twin system that continuously fuses real-world exposures with personal health data to generate real-time risk assessments, treatment recommendations, and decision support. Early evidence suggests that such systems improve symptom tracking and enable preventive strategies to reduce flare-ups, but challenges remain in data integration, user engagement, and validation. We highlight clinical implications, cost benefits, technological gaps, and future directions for deploying digital twins in allergy care and broader public health initiatives worldwide.

Keywords:

Allergic Rhinitis Digital Twin Technology Personalized Medicine Predictive Analytics in Healthcare Real‑Time Environmental Monitoring

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(1), (2025)

Pages

84-91

Published

22-05-2025

How to Cite

Elechi, U., Adeoye, A. F., Elechi, K., Obiya, S. O., Umar, S. A., Paul, I., Demola, M. B., Agbo, O. S., Elokaakwaeze, J. C., Ezeamii, V. C. E., Abone, K. N. A., & Arubaleze, C. (2025). Real-Time Environmental Trigger Modeling and Personalized Allergic Rhinitis Management in the United States: Exploring a Digital Twin Ecosystem. Journal of Medical Science, Biology, and Chemistry, 2(1), 84-91. https://doi.org/10.69739/jmsbc.v2i1.559

References

Abrams, C. M., Davila, N., Badawy, S. M., Marks, S., Kepper, M. M., Gibson, R. W., King, A. A., Gordeuk, V. R., Nwosu, C., Li, S., Glassberg, J. A., Klesges, L. M., Shah, N., Brambilla, D., Hankins, J. S., & the Sickle Cell Disease Implementation Consortium. (2024). Factors influencing engagement with adherence-enhancing mobile health app in sickle cell disease. BMC Digital Health, 2(1), 81. https://doi.org/10.1186/s44247-024-00138-0

AirNow. (n.d.). AirNow Interactive Map. Retrieved May 12, 2025, from https://gispub.epa.gov/airnow/?showgreencontours=false&xmin=-10126330.97914666&xmax=-8455723.28894629&ymin=3830353.4967402974&ymax=4408828.926802358

Antó, A., Sousa-Pinto, B., Czarlewski, W., Pfaar, O., Bosnic-Anticevich, S., Klimek, L., Matricardi, P., Tripodi, S., Fonseca, J. A., Antó, J. M., & Bousquet, J. (2022). Automatic market research of mobile health apps for the self-management of allergic rhinitis. Clinical & Experimental Allergy, 52(10), 1195–1207. https://doi.org/10.1111/cea.14135

Asthma and Allergy Foundation of America. (2025, March 18). Pollen Seasons are Longer and More Intense, Affecting Millions. GlobeNewswire News Room. https://www.globenewswire.com/news-release/2025/03/18/3044347/0/en/Pollen-Seasons-are-Longer-and-More-Intense-Affecting-Millions.html

Brigham and Women’s Hospital. (2022). Apple Health Study Home. Apple Health Study. https://applehealthstudy.bwh.harvard.edu/

CDC. (2023, January 27). More Than a Quarter of U.S. Adults and Children Have at Least One Allergy. https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/20220126.htm

Field, R. I., Keller, C., & Louazel, M. (2020). Can governments push providers to collaborate? A comparison of hospital network reforms in France and the United States. Health Policy (Amsterdam, Netherlands), 124(10), 1100–1107. https://doi.org/10.1016/j.healthpol.2020.07.003

Foley Davelaar, C. M. (2021). Body Image and its Role in Physical Activity: A Systematic Review. Cureus, 13(2), e13379. https://doi.org/10.7759/cureus.13379

Halamka, J. (2024, December 23). Digital Twin Technology Has Potential to Redefine Patient Care. Mayo Clinic Platform. https://www.mayoclinicplatform.org/2024/12/23/digital-twin-technology-has-potential-to-redefine-patient-care/

Health. (2022, September 29). Device Software Functions Including Mobile Medical Applications. FDA; FDA. https://www.fda.gov/medical-devices/digital-health-center-excellence/device-software-functions-including-mobile-medical-applications

Johnson, D., Deterding, S., Kuhn, K.-A., Staneva, A., Stoyanov, S., & Hides, L. (2016). Gamification for health and wellbeing: A systematic review of the literature. Internet Interventions, 6, 89–106. https://doi.org/10.1016/j.invent.2016.10.002

Lamb, C. E., Ratner, P. H., Johnson, C. E., Ambegaonkar, A. J., Joshi, A. V., Day, D., Sampson, N., & Eng, B. (2006). Economic impact of workplace productivity losses due to allergic rhinitis compared with select medical conditions in the United States from an employer perspective. Current Medical Research and Opinion, 22(6), 1203–1210. https://doi.org/10.1185/030079906X112552

Matricardi, P. M., Hoffmann, T., & Dramburg, S. (2023). The “allergic nose as a pollen detector” concept: e‐Diaries to predict pollen trends. Pediatric Allergy and Immunology, 34(6), e13966. https://doi.org/10.1111/pai.13966

NOAA Climate. (2018, June 7). Climate & allergies. NOAA Climate.gov. https://www.climate.gov/news-features/climate-and/climate-allergies

Noeikham, P., Buakum, D., & Sirivongpaisal, N. (2024). Architecture designing of digital twin in a healthcare unit. Health Informatics Journal, 30(4), 14604582241296792. https://doi.org/10.1177/14604582241296792

Park, M., Oh, N., & Jung, Y. G. (2023). Digital Twins in Healthcare and Their Applicability in Rhinology: A Narrative Review. Journal of Rhinology: Official Journal of the Korean Rhinologic Society, 30(2), 80–86. https://doi.org/10.18787/jr.2023.00018

Pattini, S., Pingitore, G., Cardinale, F., Licari, A., Giudice, M. M. D., Calvani, M., Chiappini, E., Cravidi, C., Marseglia, G. L., Ricci, G., Duse, M., & Tripodi, S. (2021). Digital health in the management of allergic diseases. Acta Bio Medica : Atenei Parmensis, 92(Suppl 7), e2021529. https://doi.org/10.23750/abm.v92iS7.12405

Prescott, S. L. (2013). Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. The Journal of Allergy and Clinical Immunology, 131(1), 23–30. https://doi.org/10.1016/j.jaci.2012.11.019

Reed, S. D., Lee, T. A., & McCrory, D. C. (2004). The economic burden of allergic rhinitis: A critical evaluation of the literature. Pharmaco Economics, 22(6), 345–361. https://doi.org/10.2165/00019053-200422060-00002

Sarabu, C., Steyaert, S., & Shah, N. R. (2021). Predicting Environmental Allergies from Real World Data Through a Mobile Study Platform. Journal of Asthma and Allergy, 14, 259–264. https://doi.org/10.2147/JAA.S292336

Serugga, J. (2025). Digital Twins and AI Decision Models: Advancing Cost Modelling in Off-Site Construction. Eng, 6(2), Article 2. https://doi.org/10.3390/eng6020022

Sousa-Pinto, B., Anto, A., Berger, M., Dramburg, S., Pfaar, O., Klimek, L., Jutel, M., Czarlewski, W., Bedbrook, A., Valiulis, A., Agache, I., Amaral, R., Ansotegui, I. J., Bastl, K., Berger, U., Bergmann, K. C., Bosnic-Anticevich, S., Braido, F., Brussino, L., … Bousquet, J. (2022). Real-world data using mHealth apps in rhinitis, rhinosinusitis and their multimorbidities. Clinical and Translational Allergy, 12(11), e12208. https://doi.org/10.1002/clt2.12208

Xu, L., Shi, H., Shen, M., Ni, Y., Zhang, X., Pang, Y., Yu, T., Lian, X., Yu, T., Yang, X., & Li, F. (2022). The Effects of mHealth-Based Gamification Interventions on Participation in Physical Activity: Systematic Review. JMIR mHealth and uHealth, 10(2), e27794. https://doi.org/10.2196/27794

Zhang, Y., & Steiner, A. L. (2022). Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nature Communications, 13(1), 1234. https://doi.org/10.1038/s41467-022-28764-0

Downloads

Views

105

Downloads

49