Review Article

In Vitro Sample Hemolysis in Chemistry Laboratories and Its Challenges

Authors

  • Taha S. Mostafa Mohamed Department of Medical Biochemistry, Assiut University, Assiut, Egypt

    drtsmohamed@gmail.com

Abstract

Hemolysis is an old and new challenging preanalytical cause of errors in chemistry laboratories, and there is a lot of controversy as regards it; also, it is the number one cause of sample rejection in chemistry laboratories. In this review, we try to spotlight the causes, how to detect hemolytic samples, how hemolysis can affect analytical assays, the biochemical effect of hemolysis on chemistry analytes, and how to reduce errors related to hemolysis. In this narrative review We aimed to understand the causes of invitro hemolysis, to clarify how to detect it precisely, to outline how hemolysis affect the chemistry lab results and its effect on clinical decision, when to accept or reject the hemolyzed chemistry sample and spotlight on how to reduce hemolysis and its effect on the chemistry results. We conclude that, Hemolysis interferes with numerous biochemical parameters, primarily potassium, AST, LDH and CK-MB, either by falsification or modification of the respective concentrations. The interference can be reduced by using standardized collection techniques, using HIL indices, and regular training of personnel. 

Keywords:

Hemolysis Hil Indices In-Vitro Hemolysis Preanalytical Errors

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(2), (2025)

Pages

186-191

Published

07-10-2025

How to Cite

Mohamed, T. S. M. (2025). In Vitro Sample Hemolysis in Chemistry Laboratories and Its Challenges. Journal of Medical Science, Biology, and Chemistry, 2(2), 186-191. https://doi.org/10.69739/jmsbc.v2i2.566

References

Almotairi, W., Alrashidi, M., Alqarni, M., Alotaibe, R., Alshahrani, A., Almuaybid, R., Al-Johar, J., Najem, W., & Alharbi, N. (2025). Analyzing the impact of blood collection errors on patient safety and clinical outcomes. International Journal of Community Medicine and Public Health, 12(2), 1123–1127. https://doi.org/10.18203/2394-6040.ijcmph20250220

Badrick, T., Barden, H., Callen, S., Dimeski, G., Gay, S., Graham, P., Petinos, P., & Sikaris, K. (2016). Consensus Statement for the Management and Reporting of Haemolysed Specimens. Clinical Biochemist Reviews, 37(4), 140-142. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242477/

Cadamuro, J., von Meyer, A., Johannis, W., Haschke-Becher, E., Keppel, M. H., & Streichert, T. (2021). Effect of five different pneumatic tube carrier inserts on mechanical sample stress: a multicentre evaluation. Clinical Chemistry and Laboratory Medicine (CCLM), 59(8), e313-e316. https://doi.org/10.1515/cclm-2020-1818

Cadamuro, J., von Meyer, A., Wiedemann, H., Klaus Felder, T., Moser, F., Kipman, U., ... & Simundic, A. M. (2016). Hemolysis rates in blood samples: differences between blood collected by clinicians and nurses and the effect of phlebotomy training. Clinical Chemistry and Laboratory Medicine (CCLM), 54(12), 1987-1992. https://doi.org/10.1515/cclm-2016-0175

Carter, E. (2023). The Impact of Hemolysis on LDH and AST Levels in Blood Tests: Importance for Healthcare Professionals. Needle.Tube. https://www.needle.tube/resources-10/the-impact-of-hemolysis-on-ldh-and-ast-levels-in-blood-tests-importance-for-healthcare-professionals

Centers for Disease Control and Prevention. (2024). Reference Tool to Determine Hemolysis Status. https://www.cdc.gov/vector-borne-diseases/php/laboratories/reference-tool-for-hemolysis-status.htmlER

Clinical and Laboratory Standards Institute. (2012a). Hemolysis, Icterus, and Lipemia/Turbidity Indices as Indicators of Interference in Clinical Laboratory Analysis; Approved Guideline.

Clinical and Laboratory Standards Institute. (2012b). Hemolysis, Icterus, and Lipemia/Turbidity Indices as Indicators of Interference in Clinical Laboratory Analysis; Approved Guideline. CLSI.

Clinical and Laboratory Standards Institute. (2024). Laboratories should verify the performance of HIL indices within their specific operational context. This involves assessing the accuracy and reliability of automated HIL detection systems and ensuring they align with the laboratory’s quality standards. https://www.clsi.org/

ClinicalBasics Editorial, T. (2023). Impact of Hemolysis on Potassium Levels in Blood: Implications for Patient Care. ClinicalBasics Blog. https://clinicalbasics.com/impact-of-hemolysis-on-potassium-levels-in-blood-implications-for-patient-care/

Coşkun, C., Gümüş, A., Uçar, K. T., Düz, M., Yeşil, B., Özkan, A., & Karan, E. (2024). Assessment of blood collection competency in phlebotomists: a survey study. Turkish Journal of Biochemistry, 50, 322-330. https://doi.org/10.1515/tjb-2024-0322

Damato, C., & Rickard, D. (2015). Using Lean-Six Sigma to reduce hemolysis in the emergency care center in a collaborative quality improvement project with the hospital laboratory. The Joint Commission Journal on Quality and Patient Safety, 41(3), 99-AP1. https://doi.org/10.1016/s1553-7250(15)41014-1

de Koning, L., Orton, D., Seiden Long, I., Boyd, J., Kellogg, M., Abdullah, A., Naugler, C., Tsui, A., Strange, B., & Glaser, D. (2023). Distribution of videos demonstrating best practices in preventing hemolysis is associated with reduced hemolysis among nurse-collected specimens in hospitals. Clinical Biochemistry, 119, 110632. https://doi.org/https://doi.org/10.1016/j.clinbiochem.2023.110632

Dolci, A., & Panteghini, M. (2013). Harmonization of automated hemolysis index assessment and use: Is it possible? Clinica chimica acta; international journal of clinical chemistry, 432. https://doi.org/10.1016/j.cca.2013.10.012

Ersoy, S., & Ilanbey, B. (2023). A single-center prospective study of the effects of different methods of phlebotomy in the emergency department on blood sample hemolysis rates. Journal of Emergency Nursing, 49(1), 134-139. https://doi.org/10.1016/j.jen.2022.08.005

Goyal, T., & Schmotzer, C. L. (2015). Validation of hemolysis index thresholds optimizes detection of clinically significant hemolysis. American Journal of Clinical Pathology, 143(4), 579-583. https://doi.org/10.1309/ajcpdude1hra0ymr

Hawkins, R. (2002). Discrepancy between visual and spectrophotometric assessment of sample haemolysis. Annals of clinical biochemistry, 39, 521-522. https://doi.org/10.1258/000456302320314575

Heireman, L., Van Geel, P., Musger, L., Heylen, E., Uyttenbroeck, W., & Mahieu, B. (2017). Causes, consequences and management of sample hemolysis in the clinical laboratory. Clinical Biochemistry, 50(18), 1317-1322. https://doi.org/10.1016/j.clinbiochem.2017.09.013

Heyer, N. J., Derzon, J. H., Winges, L., Shaw, C., Mass, D., Snyder, S. R., Epner, P., Nichols, J. H., Gayken, J. A., Ernst, D., & Liebow, E. B. (2012). Effectiveness of practices to reduce blood sample hemolysis in EDs: a laboratory medicine best practices systematic review and meta-analysis. Clin Biochem, 45(13-14), 1012-1032. https://doi.org/10.1016/j.clinbiochem.2012.08.002

Heyer, N. J., Derzon, J. H., Winges, L., Shaw, C., Mass, D., Snyder, S. R., Epner, P., Nichols, J. H., Gayken, J. A., Ernst, D., & Liebow, E. B. (2012). Effectiveness of practices to reduce blood sample hemolysis in EDs: A laboratory medicine best practices systematic review and meta-analysis. Clinical Biochemistry, 45(13), 1012-1032. https://doi.org/https://doi.org/10.1016/j.clinbiochem.2012.08.002

Ho, C. K., Chen, C., Setoh, J. W., Yap, W. W., & Hawkins, R. C. (2021). Optimization of hemolysis, icterus and lipemia interference thresholds for 35 clinical chemistry assays. Practical laboratory medicine, 25, e00232. https://doi.org/10.1016/j.plabm.2021.e00232

Ialongo, C., & Bernardini, S. (2016). Phlebotomy, a bridge between laboratory and patient. Biochem Med (Zagreb), 26(1), 17-33. https://doi.org/10.11613/bm.2016.002

Koseoglu, M., Hur, A., Atay, A., & Cuhadar, S. (2011). Effects of hemolysis interferences on routine biochemistry parameters. Biochem Med (Zagreb), 21(1), 79-85. https://doi.org/10.11613/bm.2011.015

Kovacevic, D., Cincovic, M., Majkic, M., Spasojevic, J., Djokovic, R., Nikolic, S., Dosenovic Marinkovic, M., Delic Vujanovic, B., Obradovic, N., Andusic, L., Cukic, A., Petrovic, M., Staric, J., & Jezek, J. (2024). Analytical and Clinical Interference of Sample Hemolysis in Evaluating Blood Biochemical and Endocrine Parameters in Cows. Animals (Basel), 14(12). https://doi.org/10.3390/ani14121773

Krasowski, M. D. (2019). Educational Case: Hemolysis and Lipemia Interference With Laboratory Testing. Academic Pathology, 6, 2374289519888754. https://doi.org/https://doi.org/10.1177/2374289519888754

Lippi, G., & Plebani, M. (2020). Methods for Hemolysis Interference Study in Laboratory Medicine – A Critical Review. Biochemia Medica, 30(1), 5-12. https://doi.org/10.11613/BM.2020.010501

Lippi, G., Blanckaert, N., Bonini, P., Green, S., Kitchen, S., Palicka, V., & et al. (2008). Haemolysis: An Overview of the Leading Cause of Unsuitable Specimens in Clinical Laboratories. Clinical Chemistry and Laboratory Medicine, 46(6), 764-772. https://doi.org/10.1515/CCLM.2008.170

Lippi, G., Blanckaert, N., Bonini, P., Green, S., Kitchen, S., Palicka, V., Vassault, A., & Plebani, M. (2008). Haemolysis: an overview of the leading cause of unsuitable specimens in clinical laboratories. Clinical Chemistry and Laboratory Medicine, 46(6), 764-772. https://doi.org/10.1515/CCLM.2008.170 ER

Lippi, G., Cadamuro, J., Meyer, A. v., Simundic, A.-M., Chemistry, o. b. o. t. E. F. o. C., & Phase, L. M. W. G. f. P. (2018). Practical recommendations for managing hemolyzed samples in clinical chemistry testing. Clinical Chemistry and Laboratory Medicine (CCLM), 56(5), 718-727. https://doi.org/doi:10.1515/cclm-2017-1104

Lippi, G., Salvagno, G. L., Montagnana, M., Brocco, G., & Guidi, G. C. (2006). Influence of hemolysis on routine clinical chemistry testing. Clinical Chemistry and Laboratory Medicine, 44(3), 311-316. https://doi.org/10.1515/CCLM.2006.054 ER

Loriamini, M., Cserti-Gazdewich, C., & Branch, D. R. (2024). Autoimmune hemolytic anemias: classifications, pathophysiology, diagnoses and management. International journal of molecular sciences, 25(8), 4296. https://doi.org/10.3390/ijms25084296

Lowe, G., Stike, R., Pollack, M., Bosley, J., O’Brien, P., Hake, A., ... & Stover, T. (2008). Nursing blood specimen collection techniques and hemolysis rates in an emergency department: analysis of venipuncture versus intravenous catheter collection techniques. Journal of Emergency Nursing, 34(1), 26-32. https://doi.org/10.1016/j.jen.2007.02.006

Makhumula‐Nkhoma, N., Weston, K. L., McSherry, R., & Atkinson, G. (2019). The impact of venepuncture training on the reduction of pre‐analytical blood sample haemolysis rates: A systematic review. Journal of clinical nursing, 28(23-24), 4166-4176. https://doi.org/10.1111/jocn.14997

Maksymyuk, H., Boykiv, N., & Martianova, O. (2023). Factors of Interference in Laboratory Investigations: Hemolysis, Icterus, Lipemia. Ukrainian Journal of Laboratory Medicine, 1(1), 34-40. https://doi.org/10.62151/2786-9288.1.1.2023.04

Marques-Garcia, F. (2020). Methods for Hemolysis Interference Study in Laboratory Medicine - A Critical Review. Journal of the International Federation of Clinical Chemistry / IFCC, 31, 85-97.

Oostendorp, M., Solinge, W., & Kemperman, H. (2012). Potassium but Not Lactate Dehydrogenase Elevation Due To In Vitro Hemolysis Is Higher in Capillary Than in Venous Blood Samples. Archives of pathology & laboratory medicine, 136, 1262-1265. https://doi.org/10.5858/arpa.2011-0319-OA

Perović, A., & Dolčić, M. (2019). Influence of hemolysis on clinical chemistry parameters determined with Beckman Coulter tests–detection of clinically significant interference. Scandinavian Journal of Clinical and Laboratory Investigation, 79(3), 154-159. https://doi.org/10.1080/00365513.2019.1576099

Plebani, M., & Lippi, G. (2009). Hemolysis index: quality indicator or criterion for sample rejection?. Clinical chemistry and laboratory medicine, 47(8), 899-902. https://doi.org/10.1515/CCLM.2009.229

Streichert, T., Otto, B., Schnabel, C., Nordholt, G., Haddad, M., Maric, M., ... & Wagener, C. (2011). Determination of hemolysis thresholds by the use of data loggers in pneumatic tube systems. Clinical chemistry, 57(10), 1390-1397. https://doi.org/10.1373/clinchem.2011.167932

Taylor, M. J., McNicholas, C., Nicolay, C., Darzi, A., Bell, D., & Reed, J. E. (2014). Systematic review of the application of the plan–do–study–act method to improve quality in healthcare. BMJ quality & safety, 23(4), 290-298. https://doi.org/10.1136/bmjqs-2013-001862

Tolan, N. V., Kaleta, E. J., Fang, J. L., Colby, C. E., Carey, W. A., Karon, B. S., & Baumann, N. A. (2016). Neonatal intensive care unit quality initiative: identifying preanalytical variables contributing to specimen hemolysis and measuring the impact of evidence-based practice interventions. American journal of clinical pathology, 146(1), 113-118. https://doi.org/10.1093/ajcp/aqw086

Uy, R. J., Serrano, K., Hadjesfandiari, N., Shih, A. W., & Devine, D. (2024). The effects of pen ink and surface disinfectants on red blood cells stored in plasticized polyvinylchloride transfusion bags. Transfusion, 64(1), 141-149. https://doi.org/https://doi.org/10.1111/trf.17620

wan Azman, W. N., Omar, J., Koon, T. S., & Ismail, T. S. T. (2019). Hemolyzed specimens: major challenge for identifying and rejecting specimens in clinical laboratories. Oman medical journal, 34(2), 94. https://doi.org/10.5001/omj.2019.19

Wang, Z., Wang, L., Wang, Y., Wang, X., & Zhang, Y. (2014). Differential Interferences of Hemoglobin and Hemolysis on Insulin Assay with the Abbott Architect-Ci8200 Immunoassay. Clinical Biochemistry, 47(4-5), 340-342. https://doi.org/10.1016/j.clinbiochem.2013.12.017

Whipple, J. (2020). Interferences. https://eclinpath.com/test-basics/interferences/

Whitehead, R. D., Jr., Mei, Z., Mapango, C., & Jefferds, M. E. D. (2019). Methods and analyzers for hemoglobin measurement in clinical laboratories and field settings. Annals of the New York Academy of Sciences, 1450(1), 147-171. https://doi.org/10.1111/nyas.14124

Downloads

Views

0

Downloads

0