Article section
Microbial Consortia: Synergistic Effects on Plastic Degradation and Enzyme Production
Abstract
Growing interest in biological degradation as a sustainable mitigation strategy is a result of the fact that plastic pollution is still one of the most persistent environmental threats. Through cooperative metabolism and complementary enzyme production, microbial consortia—diverse communities of bacteria, fungi, or both—have shown synergistic capacities to break down otherwise resistant plastics, outperforming single isolates. The enzymatic or oxidative activity of one organism in mixed cultures can release substrates for other organisms, speeding up the depolymerization and mineralization of polymers like polyethylene, polyethylene terephthalate, and polystyrene. More thorough degradation pathways are made possible by these consortia’s support of diverse enzymatic repertoires, such as laccases, cutinases, and multicopper oxidases. Although previous research has listed strains and enzymes that break down plastic, this review synthesizes in a novel way how particular metabolic interactions within consortia promote superior plastic biodegradation. We discuss the significance of enzyme complementarity and cross-feeding, highlight recent research that demonstrates co-occurrence and functional cooperation, and pinpoint important design guidelines for scalable, consortium-based bioremediation. Future waste management solutions are informed by these insights into both the ecology of natural plastispheres and engineered microbial systems.
Keywords:
Bioremediation Enzyme Production Microbial Consortia Plastic Biodegradation Polymer Waste Synergistic Degradation
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(1), (2025)
Pages
149-156
Published
Copyright
Copyright (c) 2025 Aminat Olamide Shokunbi, Ogochukwu Mercy Ezeh, Deborah Pelumi Fadipe, Ayobami Samson Olanrewaju, Olabisi Oluwaseun Badru, Chinechendo N. Eze, Loveth Chinwendu Iwuala (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Amaral-Zettler, L. A., Zettler, E. R., & Mincer, T. J. (2020). The ecology of the plastisphere. Nature Reviews Microbiology, 18(3), 139–151. https://doi.org/10.1038/s41579-019-0308-0
Andrady, A. L. (2011). Microplastics in the ocean. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
Bao, T., Qian, Y., Xin, Y., Collins, J. J., & Lu, T. (2023). Engineering microbiological labor division for plastic recycling. Nature Communications, 14(1), 5712. https://doi.org/10.1038/s41467-023-40777-x
Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic litter in worldwide ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205
Bergmann, M., Mützel, S., Primpke, S., Tekman, M. B., Trachsel, J., & Gerdts, G. (2019). White and great? Microplastics are common in snow from the Alps to the Arctic. Science Advances, 5(8), eaax1157. https://doi.org/10.1126/sciadv.aax1157
Carmen, S. (2021). Microbial ability to break down chemical additives included in petroleum-based plastic products: A overview of the current situation and future prospects. Journal of Hazardous Materials, 402, 123534. https://doi.org/10.1016/j.jhazmat.2020.123534
Chigwada, A. D., Ogola, H. J. O., & Tekere, M. (2023). Multivariate analysis of enriched landfill soil consortia provide insight on the community structural perturbation and functioning during low-density polyethylene degradation. Microbiological Research, 274, 127425. https://doi.org/10.1016/j.micres.2023.127425
Danso, D., Chow, J., & Streit, W. R. (2019). Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Applied and Environmental Microbiology, 85(19), e01095-19. https://doi.org/10.1128/AEM.01095-19
Dubey, A. P., & Thalla, A. K. (2025). Bioprospecting native bacteria from landfill leachate to improve the breakdown of polypropylene microplastics. Journal of Hazardous Materials, 487, 137139. https://doi.org/10.1016/j.jhazmat.2025.137139
Evode, N., Qamar, S. A., Bilal, M., Barceló, D., & Iqbal, H. M. N. (2021). Plastic garbage and its management techniques for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4, 100142. https://doi.org/10.1016/j.cscee.2021.100142
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). The creation, utilization, and eventual outcome of all plastics ever produced. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
Gui, Z., Liu, G., Liu, X., Cai, R., Liu, R., & Sun, C. (2023). A deep-sea bacterium is capable of degrading polyurethane. Microbiology Spectrum, 11(3), e00073-23. https://doi.org/10.1128/spectrum.00073-23
Ibrahim, S. S., Ionescu, D., & Grossart, H.-P. (2024). Using fungi to break down plastic and rubber: Fungi that are very strong can do this. The Science of the Total Environment, 934, 173188. https://doi.org/10.1016/j.scitotenv.2024.173188
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic garbage flows from land to the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352
Karlsson, T. M., Hassellöv, M., & Jakubowicz, I. (2018). How thermooxidative degradation affects the destiny of polyethylene in temperate coastal waters. Marine Pollution Bulletin, 135, 187–194. https://doi.org/10.1016/j.marpolbul.2018.07.015
Khan, A. K., & Majeed, T. (2019). Biodegradation of Synthetic and Natural Plastics by Microorganisms: A Mini Review. Journal of Natural & Applied Sciences Pakistan, 1(2), 180-184.
Lebreton, L., & Andrady, A. (2019). Possible future scenarios for the creation and disposal of plastic garbage around the world. Palgrave Communications, 5(1), 1–11. https://doi.org/10.1057/s41599-018-0212-7
Lou, H., Fu, R., Long, T., Fan, B., Guo, C., Li, L., ... & Zhang, G. (2022). Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). Science of the Total Environment, 853, 158604.https://doi.org/10.1016/j.scitotenv.2022.158604
Maheswaran, B., Al-Ansari, M., Al-Humaid, L., Sebastin Raj, J., Kim, W., Karmegam, N., & Mohamed Rafi, K. (2023). In vivo breakdown of polyethylene terephthalate utilizing microbial isolates from a plastic-contaminated environment. Chemosphere, 310, 136757. https://doi.org/10.1016/j.chemosphere.2022.136757
Massot, F., Bernard, N., Alvarez, L. M. M., Martorell, M. M., Mac Cormack, W. P., & Ruberto, L. A. M. (2022). Microbial partnerships for bioremediation. What does the term “microbial consortia” mean? Applied Microbiology and Biotechnology, 106(7), 2283–2297. https://doi.org/10.1007/s00253-022-11864-8
Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste management, 69, 24-58. https://doi.org/10.1016/j.wasman.2017.07.044
Salinas, J., Carpena, V., Martínez-Gallardo, M. R., Segado, M., Estrella-González, M. J., Toribio, A. J., Jurado, M. M., López-González, J. A., Suárez-Estrella, F., & López, M. J. (2023). Creation of plastic-degrading microbial consortia using induced selection in microcosms. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1143769
Salinas, J., Martinez-Gallardo, M. R., Jurado, M. M., Suarez-Estrella, F., Lopez-Gonzalez, J. A., Estrella-Gonzalez, M. J., Toribio, A. J., Carpena-Istan, V., & Lopez, M. J. (2025). Building flexible groups of microbes that break down plastic using ligninolytic microbes that are found in composting agricultural waste. Environmental Pollution, 366, 125333. https://doi.org/10.1016/j.envpol.2024.125333
Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). The capability of fungi extracted from the mangrove rhizosphere soil at dumping locations to decompose polythene. Scientific Reports, 9(1), 5390. https://doi.org/10.1038/s41598-019-41448-y
Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2019). A comparative biodegradation investigation of polymers derived from plastic bottle waste utilizing unique isolated bacteria and fungus from marine sources. Journal of Polymer Research, 27(1), 16. https://doi.org/10.1007/s10965-019-1973-4
Shi, C., Quinn, E. C., Diment, W. T., & Chen, E. Y.-X. (2024). Polyesters that can be recycled and (bio)degraded in a circular plastics economy. Chemical Reviews, 124(7), 4393–4478. https://doi.org/10.1021/acs.chemrev.3c00848
Skariyachan, S., Taskeen, N., Kishore, A. P., & Krishna, B. V. (2022). Recent advancements in plastic degradation encompass microbial consortia-based techniques as well as methodologies informed by data sciences and computational biology. Journal of Hazardous Materials, 426, 128086. https://doi.org/10.1016/j.jhazmat.2021.128086
Su, T., Zhang, T., Liu, P., Bian, J., Zheng, Y., Yuan, Y., Li, Q., Liang, Q., & Qi, Q. (2023). The biodegradation of polyurethane by microbial consortia enriched from waste. Applied Microbiology and Biotechnology, 107(5), 1983–1995. https://doi.org/10.1007/s00253-023-12418-2
Taghavi, N., Singhal, N., Zhuang, W.-Q., & Baroutian, S. (2021). Decomposition of plastic waste through the utilization of stimulated and indigenous microbial strains. Chemosphere, 263, 127975. https://doi.org/10.1016/j.chemosphere.2020.127975
Wei, R., & Zimmermann, W. (2017). How far along are we with microbial enzymes that can break down tough-to-recycle plastics made from oil? Microbial Biotechnology, 10(6), 1308–1322. https://doi.org/10.1111/1751-7915.12710
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacteria that breaks down and takes in poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359
Zampolli, J., Mangiagalli, M., Vezzini, D., Lasagni, M., Ami, D., Natalello, A., Arrigoni, F., Bertini, L., Lotti, M., & Di Gennaro, P. (2023). Oxidative breakdown of polyethylene by two new laccase-like multicopper oxidases derived from Rhodococcus opacus R7. Environmental Technology & Innovation, 32, 103273. https://doi.org/10.1016/j.eti.2023.103273
Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “Plastisphere”: Microbial Communities on Marine Plastic Debris. Environmental Science & Technology, 47(13), 7137–7146. https://doi.org/10.1021/es401288x