Review Article

Microbial Consortia: Synergistic Effects on Plastic Degradation and Enzyme Production

Authors

  • Aminat Olamide Shokunbi Instituto Politécnico Nacional-Centro de Biotecnología Genómica, Mexico https://orcid.org/0000-0003-4634-4514

    shokunbi.o.aminat@gmail.com

  • Ogochukwu Mercy Ezeh Department of Biological Sciences, Georgia State University, Atlanta, Georgia 30303, USA https://orcid.org/0009-0005-0396-8468
  • Deborah Pelumi Fadipe Department of Biology, Illinois Institute of Technology Chicago, Illinois, USA
  • Ayobami Samson Olanrewaju Department of Industrial Chemistry, University of Ibadan Opposite Agbowo Shopping Complex, Ibadan, Nigeria https://orcid.org/0009-0007-0345-0743
  • Olabisi Oluwaseun Badru Department of Industrial Chemistry, University of Ibadan Opposite Agbowo Shopping Complex, Ibadan, Nigeria https://orcid.org/0009-0004-4550-2271
  • Chinechendo N. Eze Department of Biology, University of Louisiana at Lafayette Lafayette, LA, USA https://orcid.org/0009-0002-4934-7331
  • Loveth Chinwendu Iwuala Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA

Abstract

Growing interest in biological degradation as a sustainable mitigation strategy is a result of the fact that plastic pollution is still one of the most persistent environmental threats. Through cooperative metabolism and complementary enzyme production, microbial consortia—diverse communities of bacteria, fungi, or both—have shown synergistic capacities to break down otherwise resistant plastics, outperforming single isolates. The enzymatic or oxidative activity of one organism in mixed cultures can release substrates for other organisms, speeding up the depolymerization and mineralization of polymers like polyethylene, polyethylene terephthalate, and polystyrene. More thorough degradation pathways are made possible by these consortia’s support of diverse enzymatic repertoires, such as laccases, cutinases, and multicopper oxidases. Although previous research has listed strains and enzymes that break down plastic, this review synthesizes in a novel way how particular metabolic interactions within consortia promote superior plastic biodegradation. We discuss the significance of enzyme complementarity and cross-feeding, highlight recent research that demonstrates co-occurrence and functional cooperation, and pinpoint important design guidelines for scalable, consortium-based bioremediation. Future waste management solutions are informed by these insights into both the ecology of natural plastispheres and engineered microbial systems.

Keywords:

Bioremediation Enzyme Production Microbial Consortia Plastic Biodegradation Polymer Waste Synergistic Degradation

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(1), (2025)

Pages

149-156

Published

21-06-2025

How to Cite

Shokunbi, A. O., Ezeh, O. M., Fadipe, D. P., Olanrewaju, A. S., Badru, O. O., Eze, C. N., & Iwuala, L. C. (2025). Microbial Consortia: Synergistic Effects on Plastic Degradation and Enzyme Production. Journal of Medical Science, Biology, and Chemistry, 2(1), 149-156. https://doi.org/10.69739/jmsbc.v2i1.681

References

Amaral-Zettler, L. A., Zettler, E. R., & Mincer, T. J. (2020). The ecology of the plastisphere. Nature Reviews Microbiology, 18(3), 139–151. https://doi.org/10.1038/s41579-019-0308-0

Andrady, A. L. (2011). Microplastics in the ocean. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

Bao, T., Qian, Y., Xin, Y., Collins, J. J., & Lu, T. (2023). Engineering microbiological labor division for plastic recycling. Nature Communications, 14(1), 5712. https://doi.org/10.1038/s41467-023-40777-x

Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic litter in worldwide ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205

Bergmann, M., Mützel, S., Primpke, S., Tekman, M. B., Trachsel, J., & Gerdts, G. (2019). White and great? Microplastics are common in snow from the Alps to the Arctic. Science Advances, 5(8), eaax1157. https://doi.org/10.1126/sciadv.aax1157

Carmen, S. (2021). Microbial ability to break down chemical additives included in petroleum-based plastic products: A overview of the current situation and future prospects. Journal of Hazardous Materials, 402, 123534. https://doi.org/10.1016/j.jhazmat.2020.123534

Chigwada, A. D., Ogola, H. J. O., & Tekere, M. (2023). Multivariate analysis of enriched landfill soil consortia provide insight on the community structural perturbation and functioning during low-density polyethylene degradation. Microbiological Research, 274, 127425. https://doi.org/10.1016/j.micres.2023.127425

Danso, D., Chow, J., & Streit, W. R. (2019). Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Applied and Environmental Microbiology, 85(19), e01095-19. https://doi.org/10.1128/AEM.01095-19

Dubey, A. P., & Thalla, A. K. (2025). Bioprospecting native bacteria from landfill leachate to improve the breakdown of polypropylene microplastics. Journal of Hazardous Materials, 487, 137139. https://doi.org/10.1016/j.jhazmat.2025.137139

Evode, N., Qamar, S. A., Bilal, M., Barceló, D., & Iqbal, H. M. N. (2021). Plastic garbage and its management techniques for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4, 100142. https://doi.org/10.1016/j.cscee.2021.100142

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). The creation, utilization, and eventual outcome of all plastics ever produced. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Gui, Z., Liu, G., Liu, X., Cai, R., Liu, R., & Sun, C. (2023). A deep-sea bacterium is capable of degrading polyurethane. Microbiology Spectrum, 11(3), e00073-23. https://doi.org/10.1128/spectrum.00073-23

Ibrahim, S. S., Ionescu, D., & Grossart, H.-P. (2024). Using fungi to break down plastic and rubber: Fungi that are very strong can do this. The Science of the Total Environment, 934, 173188. https://doi.org/10.1016/j.scitotenv.2024.173188

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic garbage flows from land to the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352

Karlsson, T. M., Hassellöv, M., & Jakubowicz, I. (2018). How thermooxidative degradation affects the destiny of polyethylene in temperate coastal waters. Marine Pollution Bulletin, 135, 187–194. https://doi.org/10.1016/j.marpolbul.2018.07.015

Khan, A. K., & Majeed, T. (2019). Biodegradation of Synthetic and Natural Plastics by Microorganisms: A Mini Review. Journal of Natural & Applied Sciences Pakistan, 1(2), 180-184.

Lebreton, L., & Andrady, A. (2019). Possible future scenarios for the creation and disposal of plastic garbage around the world. Palgrave Communications, 5(1), 1–11. https://doi.org/10.1057/s41599-018-0212-7

Lou, H., Fu, R., Long, T., Fan, B., Guo, C., Li, L., ... & Zhang, G. (2022). Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). Science of the Total Environment, 853, 158604.https://doi.org/10.1016/j.scitotenv.2022.158604

Maheswaran, B., Al-Ansari, M., Al-Humaid, L., Sebastin Raj, J., Kim, W., Karmegam, N., & Mohamed Rafi, K. (2023). In vivo breakdown of polyethylene terephthalate utilizing microbial isolates from a plastic-contaminated environment. Chemosphere, 310, 136757. https://doi.org/10.1016/j.chemosphere.2022.136757

Massot, F., Bernard, N., Alvarez, L. M. M., Martorell, M. M., Mac Cormack, W. P., & Ruberto, L. A. M. (2022). Microbial partnerships for bioremediation. What does the term “microbial consortia” mean? Applied Microbiology and Biotechnology, 106(7), 2283–2297. https://doi.org/10.1007/s00253-022-11864-8

Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste management, 69, 24-58. https://doi.org/10.1016/j.wasman.2017.07.044

Salinas, J., Carpena, V., Martínez-Gallardo, M. R., Segado, M., Estrella-González, M. J., Toribio, A. J., Jurado, M. M., López-González, J. A., Suárez-Estrella, F., & López, M. J. (2023). Creation of plastic-degrading microbial consortia using induced selection in microcosms. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1143769

Salinas, J., Martinez-Gallardo, M. R., Jurado, M. M., Suarez-Estrella, F., Lopez-Gonzalez, J. A., Estrella-Gonzalez, M. J., Toribio, A. J., Carpena-Istan, V., & Lopez, M. J. (2025). Building flexible groups of microbes that break down plastic using ligninolytic microbes that are found in composting agricultural waste. Environmental Pollution, 366, 125333. https://doi.org/10.1016/j.envpol.2024.125333

Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). The capability of fungi extracted from the mangrove rhizosphere soil at dumping locations to decompose polythene. Scientific Reports, 9(1), 5390. https://doi.org/10.1038/s41598-019-41448-y

Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2019). A comparative biodegradation investigation of polymers derived from plastic bottle waste utilizing unique isolated bacteria and fungus from marine sources. Journal of Polymer Research, 27(1), 16. https://doi.org/10.1007/s10965-019-1973-4

Shi, C., Quinn, E. C., Diment, W. T., & Chen, E. Y.-X. (2024). Polyesters that can be recycled and (bio)degraded in a circular plastics economy. Chemical Reviews, 124(7), 4393–4478. https://doi.org/10.1021/acs.chemrev.3c00848

Skariyachan, S., Taskeen, N., Kishore, A. P., & Krishna, B. V. (2022). Recent advancements in plastic degradation encompass microbial consortia-based techniques as well as methodologies informed by data sciences and computational biology. Journal of Hazardous Materials, 426, 128086. https://doi.org/10.1016/j.jhazmat.2021.128086

Su, T., Zhang, T., Liu, P., Bian, J., Zheng, Y., Yuan, Y., Li, Q., Liang, Q., & Qi, Q. (2023). The biodegradation of polyurethane by microbial consortia enriched from waste. Applied Microbiology and Biotechnology, 107(5), 1983–1995. https://doi.org/10.1007/s00253-023-12418-2

Taghavi, N., Singhal, N., Zhuang, W.-Q., & Baroutian, S. (2021). Decomposition of plastic waste through the utilization of stimulated and indigenous microbial strains. Chemosphere, 263, 127975. https://doi.org/10.1016/j.chemosphere.2020.127975

Wei, R., & Zimmermann, W. (2017). How far along are we with microbial enzymes that can break down tough-to-recycle plastics made from oil? Microbial Biotechnology, 10(6), 1308–1322. https://doi.org/10.1111/1751-7915.12710

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacteria that breaks down and takes in poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359

Zampolli, J., Mangiagalli, M., Vezzini, D., Lasagni, M., Ami, D., Natalello, A., Arrigoni, F., Bertini, L., Lotti, M., & Di Gennaro, P. (2023). Oxidative breakdown of polyethylene by two new laccase-like multicopper oxidases derived from Rhodococcus opacus R7. Environmental Technology & Innovation, 32, 103273. https://doi.org/10.1016/j.eti.2023.103273

Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “Plastisphere”: Microbial Communities on Marine Plastic Debris. Environmental Science & Technology, 47(13), 7137–7146. https://doi.org/10.1021/es401288x

Downloads

Views

163

Downloads

52