Article section
A Review of AI-Wearable Technologies for Public Health Surveillance in the U.S: Challenges and Recommendations
Abstract
Artificial intelligence (AI)–enhanced wearables generate continuous physiologic streams that can be aggregated for real-time public health surveillance. This review summarizes evidence from U.S. studies on device penetration, analytic performance, and operational value. Surveillance infrastructure has evolved from mailed case cards to cloud dashboards accepting patient-generated data; current machine-learning pipelines transform inertial, photoplethysmographic, and temperature signals into population biomarkers. Lead-time gains of two to six days over laboratory reporting have been documented for influenza, COVID-19, and heart failure admissions. However, uneven adoption, sensor bias, privacy regulation, and limited interoperability constrain scale-up. Interfacing solutions such as FHIR subscriptions and federated analytics are assessed, alongside emerging FDA guidance on AI lifecycle management. Strategic recommendations address standards consolidation, equitable subsidization of devices, algorithm auditability, and workforce training. With these measures, AI wearables could transition from consumer novelties to an integral layer of U.S. public-health intelligence, offering earlier outbreak detection, finer chronic-disease surveillance, and more precise resource allocation.
Keywords:
AI Wearable Healthcare Digital Health Surveillance Public Health Technology Remote Patient Monitoring Wearable Data Integration
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(2), (2025)
Pages
37-49
Published
Copyright
Copyright (c) 2025 Musa Olayinka Hanafi, Gbenga Adeniyi Adediran, Ifedayo Akinfemisoye, Sylvester Tafirenyika, Oluwaferanmi Bello, Confidence Nkechineyerem Chikezie (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Alexander, G. (2024, December 12). Understanding FHIR Subscriptions Across Versions: R4, R4B, and R5—Topology Health. Topology Health. https://blog.topology.health/articles/fhir-subscriptions
Altman, S., & Huffington, A. (2024, July 8). AI-Driven Behavior Change Could Transform Health Care. TIME. https://time.com/6994739/ai-behavior-change-health-care/
Aston, P. (2024, December 1). Does Skin Tone Affect Machine Learning Classification Accuracy Applied to Photoplethysmography Signals? 2024 Computing in Cardiology Conference. https://doi.org/10.22489/CinC.2024.038
Bossenko, I., Randmaa, R., Piho, G., & Ross, P. (2024). Interoperability of health data using FHIR Mapping Language: Transforming HL7 CDA to FHIR with reusable visual components. Frontiers in Digital Health, 6. https://doi.org/10.3389/fdgth.2024.1480600
Campion, E. W., & Jarcho, J. A. (2019). Watched by Apple. New England Journal of Medicine, 381(20), 1964–1965. https://doi.org/10.1056/NEJMe1913980
CDC. (2023, February 22). ACIP Meeting Summary February 22-24, 2023. https://www.cdc.gov/acip/downloads/minutes/summary-2023-02-23-24-508.pdf
CDC. (2024a, April 11). CDC Data Modernization Efforts Accelerate Nation’s Ability to Detect and Rapidly Respond to Health Threats. CDC Newsroom. https://www.cdc.gov/media/releases/2024/p0411-CDC-data-modernization.html
CDC. (2024b, October 22). CDC Advisory Committee to the Director (ACD)- Record of the October 22, 2024 Meeting. CDC. https://www.cdc.gov/about/advisory-committee-director/pdf/2024.10.22_ACD-Meeting-Minutes-Final.pdf
CDC. (2024c, November 22). Data Modernization Initiative (DMI). Data Modernization. https://www.cdc.gov/data-modernization/php/about/dmi.html
CDC. (2025, February 21). Artificial Intelligence and Machine Learning | Technologies | CDC. Public Health Surveillance and Data. https://www.cdc.gov/surveillance/data-modernization/technologies/ai-ml.html
Centers for Medicare & Medicaid Services. (2023, November). Calendar Year (CY) 2024 Medicare Physician Fee Schedule Final Rule | CMS. Newsroom Homepage. https://www.cms.gov/newsroom/fact-sheets/calendar-year-cy-2024-medicare-physician-fee-schedule-final-rule
Centers for Medicare & Medicaid Services. (2025, April). Telehealth & Remote Patient Monitoring. Centers for Medicare & Medicaid Services. https://www.cms.gov/files/document/mln901705-telehealth-remote-patient-monitoring.pdf
Chandrasekaran, R., Sadiq T, M., & Moustakas, E. (2025). Usage Trends and Data Sharing Practices of Healthcare Wearable Devices Among US Adults: Cross-Sectional Study. Journal of Medical Internet Research, 27, e63879. https://doi.org/10.2196/63879
Classen, D., Li, M., Miller, S., & Ladner, D. (2018). An Electronic Health Record–Based Real-Time Analytics Program For Patient Safety Surveillance And Improvement. Https://Doi.Org/10.1377/Hlthaff.2018.0728. https://doi.org/10.1377/hlthaff.2018.0728
Daly, B., Brawley, O. W., Gospodarowicz, M. K., Olopade, O. I., Fashoyin-Aje, L., Smart, V. W., Chang, I.-F., Tendler, C. L., Kim, G., Fuchs, C. S., Beg, M. S., Zhang, L., Legos, J. J., Duran, C. O., Kalidas, C., Qian, J., Finnegan, J., Pilarski, P., Keane, H., … Li, B. T. (2024). Remote Monitoring and Data Collection for Decentralized Clinical Trials. JAMA Network Open, 7(4), e246228. https://doi.org/10.1001/jamanetworkopen.2024.6228
de Oliveira El-Warrak, L., & Miceli de Farias, C. (2025). Could digital twins be the next revolution in healthcare? European Journal of Public Health, 35(1), 19–25. https://doi.org/10.1093/eurpub/ckae191
Dénes-Fazakas, L., Szilágyi, L., Kovács, L., De Gaetano, A., & Eigner, G. (2024). Reinforcement Learning: A Paradigm Shift in Personalized Blood Glucose Management for Diabetes. Biomedicines, 12(9), 2143. https://doi.org/10.3390/biomedicines12092143
DETECT | Join the Study. (n.d.). DETECT. Retrieved June 24, 2025, from https://detect.scripps.edu/
Dhingra, L. S., Aminorroaya, A., Oikonomou, E. K., Nargesi, A. A., Wilson, F. P., Krumholz, H. M., & Khera, R. (2023). Use of Wearable Devices in Individuals With or at Risk for Cardiovascular Disease in the US, 2019 to 2020. JAMA Network Open, 6(6), e2316634. https://doi.org/10.1001/jamanetworkopen.2023.16634
Domaradzka, A., Biesaga, M., Roszczynska-Kurasinska, M., & Domaradzka, E. (2024). Challenges and Future Directions for Integrating Healthcare Wearable Sensors into Smart Cities and Communities. Hawaii International Conference on System Sciences 2024 (HICSS-57). https://aisel.aisnet.org/hicss-57/dg/smart_cities/7
Drake, K. (2023, September 29). PyrAmes Receives FDA Clearance for its Groundbreaking Boppli® Wearable Blood Pressure Monitoring Device. PyrAmes. https://pyrameshealth.com/pyrames-receives-fda-clearance-for-its-groundbreaking-bopplir-wearable-blood-pressure-monitoring-device/
Efren, M., Rahul, S., & Channa, S. (2024, November 29). Unlocking the Power of Edge Intelligence with AWS | The Internet of Things on AWS – Official Blog. The Internet of Things on AWS – Official Blog. https://aws.amazon.com/blogs/iot/unlocking-real-time-intelligence-at-the-edge-with-awss-connected-edge-intelligence/
Elechi, U., Adeoye, A. F., Elechi, K., Obiya, S. O., Umar, S. A., Paul, I., Demola, M. B., Agbo, O. S., Elokaakwaeze, J. C., Ezeamii, V. C. E., Abone, K. N. A., & Arubaleze, C. (2025). Real-Time Environmental Trigger Modeling and Personalized Allergic Rhinitis Management in the United States: Exploring a Digital Twin Ecosystem. Journal of Medical Science, Biology, and Chemistry, 2(1), Article 1. https://doi.org/10.69739/jmsbc.v2i1.559
FDA. (2018). DE NOVO CLASSIFICATION REQUEST FOR IRREGULAR RHYTHM NOTIFICATION FEATURE. Food and Drug Administration. https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180042.pdf
Felix, S. E. B. (2024). A Standard Framework for Evaluating Large Health Care Data and Related Resources. MMWR Supplements, 73. https://doi.org/10.15585/mmwr.su7303a1
Global Wellness Institute. (2025, April 2). AI Initiative Trends for 2025—Global Wellness Institute. Global Wellness Institute. https://globalwellnessinstitute.org/global-wellness-institute-blog/2025/04/02/ai-initiative-trends-for-2025/
Goldman, M. (2024, December 4). FDA streamlines approval of AI-powered devices. Axios. https://www.axios.com/2024/12/04/fda-ai-device-guidance
Google Cloud. (n.d.). FHIR | Cloud Healthcare API. Google Cloud. Retrieved June 24, 2025, from https://cloud.google.com/healthcare-api/docs/concepts/fhir
Griffin, A. C., Moyer, M. F., Anoshiravani, A., Hornsey, S., & Sharp, C. D. (2025). A sociotechnical approach to defining clinical responsibilities for patient-generated health data. NPJ Digital Medicine, 8, 270. https://doi.org/10.1038/s41746-025-01680-5
Gunasekeran, D. V., Tseng, R. M. W. W., Tham, Y.-C., & Wong, T. Y. (2021). Applications of digital health for public health responses to COVID-19: A systematic scoping review of artificial intelligence, telehealth and related technologies. Npj Digital Medicine, 4(1), 40. https://doi.org/10.1038/s41746-021-00412-9
Health, C. for D. and R. (2025). Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
HealthSnap. (2022, December 13). RPM Billing Overview. HealthSnap. https://healthsnap.io/resources/rpm-billing-overview/
Henshall, W. (2023, December 21). AI Health Coaches Are Coming Soon to a Device Near You. TIME. https://time.com/6549810/ai-health-coach/
HL7 International. (2025, May 18). Subscriptions—FHIR v6.0.0-ballot2. FHIR CI-Build. https://build.fhir.org/subscriptions.html?utm_source=chatgpt.com
Hong, A., Choi, D., Chung, H., Kumar, P., & Lee, J. (2025). Environmental and health monitoring in smart cities: A systematic review of trends, opportunities, and challenges. Sustainable Cities and Society, 130, 106491. https://doi.org/10.1016/j.scs.2025.106491
IDTechEx. (2023). AI Chips for Edge Applications 2024-2034: Artificial Intelligence at the Edge. https://www.idtechex.com/en/research-report/ai-chips-for-edge-applications/956
Jeong, H., Roghanizad, A. R., Master, H., Kim, J., Kouame, A., Harris, P. A., Basford, M., Marginean, K., & Dunn, J. (2025). Data from the All of Us research program reinforces existence of activity inequality. Npj Digital Medicine, 8(1), 8. https://doi.org/10.1038/s41746-024-01358-4
Kallay, R., Doshi, R. H., Muhoza, P., Choi, M. J., Legand, A., Aberle-Grasse, E., Bagayoko, A., Hyde, T. B., Formenty, P., & Costa, A. (2024). Use of Ebola Vaccines—Worldwide, 2021–2023. MMWR. Morbidity and Mortality Weekly Report, 73(16), 360–364. https://doi.org/10.15585/mmwr.mm7316a1
Kargarandehkordi, A., Li, S., Lin, K., Phillips, K. T., Benzo, R. M., & Washington, P. (2025). Fusing Wearable Biosensors with Artificial Intelligence for Mental Health Monitoring: A Systematic Review. Biosensors, 15(4), 202. https://doi.org/10.3390/bios15040202
Kumar, T. (2025, June 3). Federated Learning: The Future of Privacy-Preserving AI in 2025. AI Explorerz. https://medium.com/ai-explorerz/federated-learning-the-future-of-privacy-preserving-ai-in-2025-9f9a8c931265
Leeb, G., Auchus, I., Law, T., Bickler, P., Feiner, J., Hashi, S., Monk, E., Igaga, E., Bernstein, M., Chou, Y. C., Hughes, C., Schornack, D., Lester, J., Moore, K., Okunlola, O., Fernandez, J., Shmuylovich, L., & Lipnick, M. (2024). The performance of 11 fingertip pulse oximeters during hypoxemia in healthy human participants with varied, quantified skin pigment. eBioMedicine, 102. https://doi.org/10.1016/j.ebiom.2024.105051
Li, Z., Wang, B., Li, J., Hua, Y., & Zhang, S. (2022). Local differential privacy protection for wearable device data. PLoS ONE, 17(8), e0272766. https://doi.org/10.1371/journal.pone.0272766
Lifebit. (2024). The Complete Guide to Trusted Research Environments in 2024—Lifebit. Lifebit Biotech. https://lifebit.ai/trusted-research-environment/complete-guide-2024/
Luong, N., Mark, G., Kulshrestha, J., & Aledavood, T. (2024). Sleep During the COVID-19 Pandemic: Longitudinal Observational Study Combining Multisensor Data With Questionnaires. JMIR mHealth and uHealth, 12, e53389. https://doi.org/10.2196/53389
Mason, M. R., Hudgins, J. H., Campbell, M. S., Biddle, M. J., Ickes, M. J., Dugan, A., & Bollinger, L. M. (2022). Changes in Physical Activity during the initial stages of the COVID-19 Pandemic. Journal of Sports Sciences, 40(1), 116–124. https://doi.org/10.1080/02640414.2021.1976569
McKay, J. (2024, March 21). Wearable Tech Measures the Effect of Smoke on Firefighters. GovTech. https://www.govtech.com/em/preparedness/wearable-tech-measures-the-effect-of-smoke-on-firefighters
McKenna, M. (2020, April 20). ‘Covid Near You’ Crowdsources Data to Predict New Hot Spots. Wired. https://www.wired.com/story/covid-near-you-crowdsources-data-to-predict-new-hotspots/
Mukkamala, R., Shroff, S. G., Kyriakoulis, K. G., Avolio, A. P., & Stergiou, G. S. (2025). Cuffless Blood Pressure Measurement: Where Do We Actually Stand? Hypertension, 82(6), 957–970. https://doi.org/10.1161/HYPERTENSIONAHA.125.24822
Nanowear. (2024, January 4). FDA 510(k) Hypertension Diagnostic Management. Nanowear. https://www.nanowearinc.com/releasejan2024
National Institutes of Health. (n.d.). Bridge to Artificial Intelligence (Bridge2AI) | NIH Common Fund. Retrieved June 24, 2025, from https://commonfund.nih.gov/bridge2ai?utm_source=chatgpt.com
Overbye-Thompson, H., Hamilton, K. A., & Mastro, D. (2024). Reinvention mediates impacts of skin tone bias in algorithms: Implications for technology diffusion. Journal of Computer-Mediated Communication, 29(5), zmae016. https://doi.org/10.1093/jcmc/zmae016
Parker, R., Vitalis, A., Walker, R., Riley, D., & Pearce, H. G. (2017). Measuring wildland fire fighter performance with wearable technology. Applied Ergonomics, 59, 34–44. https://doi.org/10.1016/j.apergo.2016.08.018
Perez, M. V., Mahaffey, K. W., Hedlin, H., Rumsfeld, J. S., Garcia, A., Ferris, T., Balasubramanian, V., Russo, A. M., Rajmane, A., Cheung, L., Hung, G., Lee, J., Kowey, P., Talati, N., Nag, D., Gummidipundi, S. E., Beatty, A., Hills, M. T., Desai, S., … Turakhia, M. P. (2019). Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. New England Journal of Medicine, 381(20), 1909–1917. https://doi.org/10.1056/NEJMoa1901183
Pinnelli, M., Marsella, S., Tossut, F., Schena, E., Setola, R., & Massaroni, C. (2025). Field Testing Multi-Parametric Wearable Technologies for Wildfire Firefighting Applications. Sensors (Basel, Switzerland), 25(10), 3066. https://doi.org/10.3390/s25103066
Pronovost, P. J., Cole, M. D., & Hughes, R. M. (2022). Remote Patient Monitoring During COVID-19: An Unexpected Patient Safety Benefit. JAMA, 327(12), 1125–1126. https://doi.org/10.1001/jama.2022.2040
Quer, G., Radin, J. M., Gadaleta, M., Baca-Motes, K., Ariniello, L., Ramos, E., Kheterpal, V., Topol, E. J., & Steinhubl, S. R. (2021). Wearable sensor data and self-reported symptoms for COVID-19 detection. Nature Medicine, 27(1), 73–77. https://doi.org/10.1038/s41591-020-1123-x
Radin, J. M., Wineinger, N. E., Topol, E. J., & Steinhubl, S. R. (2020). Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: A population-based study. The Lancet Digital Health, 2(2), e85–e93. https://doi.org/10.1016/S2589-7500(19)30222-5
Reuters. (2024, December 10). STMicro launches “edge” AI microcontroller. Reuters. https://www.reuters.com/technology/artificial-intelligence/stmicro-launches-edge-ai-microcontroller-2024-12-10/
Satija, B., & Satija, B. (2025, January 6). FDA seeks to boost accuracy of blood-oxygen monitors across skin tones. Reuters. https://www.reuters.com/business/healthcare-pharmaceuticals/fda-seeks-boost-blood-oxygen-device-accuracy-across-skin-tones-2025-01-06/
Satyajit, S. (2024, April 30). The top 6 edge AI trends—As showcased at Embedded World 2024. IoT Analytics. https://iot-analytics.com/top-6-edge-ai-trends-as-showcased-at-embedded-world-2024/
Scotland, R. D. (n.d.). What are Trusted Research Environments? Research Data Scotland. Retrieved June 24, 2025, from https://www.researchdata.scot/engage-and-learn/data-explainers/what-are-trusted-research-environments
Shakeri Hossein Abad, Z., Kline, A., Sultana, M., Noaeen, M., Nurmambetova, E., Lucini, F., Al-Jefri, M., & Lee, J. (2021). Digital public health surveillance: A systematic scoping review. NPJ Digital Medicine, 4(1), 41. https://doi.org/10.1038/s41746-021-00407-6
Shandhi, M. M. H., Cho, P. J., Roghanizad, A. R., Singh, K., Wang, W., Enache, O. M., Stern, A., Sbahi, R., Tatar, B., Fiscus, S., Khoo, Q. X., Kuo, Y., Lu, X., Hsieh, J., Kalodzitsa, A., Bahmani, A., Alavi, A., Ray, U., Snyder, M. P., … Dunn, J. P. (2022). A method for intelligent allocation of diagnostic testing by leveraging data from commercial wearable devices: A case study on COVID-19. Npj Digital Medicine, 5(1), 130. https://doi.org/10.1038/s41746-022-00672-z
Stehlik, J., Schmalfuss, C., Bozkurt, B., Nativi-Nicolau, J., Wohlfahrt, P., Wegerich, S., Rose, K., Ray, R., Schofield, R., Deswal, A., Sekaric, J., Anand, S., Richards, D., Hanson, H., Pipke, M., & Pham, M. (2020). Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization. Circulation: Heart Failure, 13(3), e006513. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006513
Team, O. (2020, December 15). How Oura Ring Data Could Help Identify Early COVID-19 Symptoms. The Pulse Blog. https://ouraring.com/blog/early-covid-symptoms/
United States Department of Health and Human Services. (2025, January). U.S. Department of Health and Human Services: Strategic Plan for the Use of Artificial Intelligence in Health, Human Services, and Public Health. U.S. Department of Health and Human Services.
United States Government Accountability Office. (2024, December). Wearable Technologies: Potential Opportunities and Deployment Challenges in Manufacturing and Warehousing. https://www.gao.gov/assets/gao-25-107213.pdf
Velasquez, G. D. D. S., Borna, S., Maniaci, M. J., Coffey, J. D., Haider, C. R., Demaerschalk, B. M., & Forte, A. J. (2024). Economic Perspective of the Use of Wearables in Health Care: A Systematic Review. Mayo Clinic Proceedings: Digital Health, 2(3), 299–317. https://doi.org/10.1016/j.mcpdig.2024.05.003
Vogels, E. A. (2020, January 9). About one-in-five Americans use a smart watch or fitness tracker. Pew Research Center. https://www.pewresearch.org/short-reads/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
Vudathaneni, V. K. P., Lanke, R. B., Mudaliyar, M. C., Movva, K. V., Mounika Kalluri, L., & Boyapati, R. (2024). The Impact of Telemedicine and Remote Patient Monitoring on Healthcare Delivery: A Comprehensive Evaluation. Cureus, 16(3), e55534. https://doi.org/10.7759/cureus.55534
Waehner, K. (2024a, February 9). The State of Data Streaming for Healthcare with Kafka and Flink. Medium. https://kai-waehner.medium.com/the-state-of-data-streaming-for-healthcare-with-kafka-and-flink-18ecf1dae343
Waehner, K. (2024b, December 17). How Siemens Healthineers Leverages Data Streaming with Apache Kafka and Flink in Manufacturing and Healthcare. Kai Waehner. https://www.kai-waehner.de/blog/2024/12/17/how-siemens-healthineers-leverages-data-streaming-with-apache-kafka-and-flink-in-manufacturing-and-healthcare/
Yoon, D., Han, C., Kim, D. W., Kim, S., Bae, S., Ryu, J. A., & Choi, Y. (2024). Redefining Health Care Data Interoperability: Empirical Exploration of Large Language Models in Information Exchange. Journal of Medical Internet Research, 26(1), e56614. https://doi.org/10.2196/56614
zack. (2024, December 17). AONDevices releases Edge AI sensor module. AONDevices. https://aondevices.com/aondevices-releases-edge-ai-sensor-module/