Article section
HlyA Gene in Hemolysin-Producing Uropathogenic and Enteric Escherichia coli Isolated from Iraqi Patients and the Effect of Gamma Rays on It
Abstract
Escherichia coli is among the most common causes of bacterial infections. Haemolytic E. coli poses a significant threat to public health worldwide. This study aimed to identify haemolytic E. coli isolates, detect the hlyA gene, and evaluate the effects of gamma rays on it. A total of 400 urine and diarrhea samples were collected from patients with urinary and diarrheal diseases in Al-Diwaniya Province, Iraq, between November 2016 and April 2017. Haemolytic E. coli was confirmed using phenotypic and genotypic methods. The isolates were then exposed to mutagenic gamma rays for 10 and 15 minutes. The nucleotide and amino acid sequences of the hlyA gene were analyzed using the BLAST program and compared with the sequence of a standard isolate from the NCBI database. Out of 345 samples, 156 (45.2%) isolates tested positive for E. coli, including 80 (51.2%) from diarrhea cases and 76 (48.7%) from urine samples. The higher prevalence of diarrhea among males was statistically significant (p < 0.01), while the higher rate of urinary tract infections (UTIs) among females was also statistically significant (p < 0.01). Phenotypically, hemolysin enzyme production was observed in 40 E. coli isolates. Genotypically, the hlyA gene was detected in 15 isolates. DNA sequencing was used to determine the nucleotide and amino acid sequences of the hemolysin gene before and after exposure to gamma rays (60 cobalt). The results demonstrated substitution mutations, including both transitions and transversions, in the hlyA gene. According to the NCBI BLAST analysis, these mutations altered the protein translation by changing the amino acid asparagine to glutamine. This may reduce the expression level of the hlyA gene, potentially impacting the virulence of E. coli. These findings suggest that haemolytic-producing E. coli are widely circulating among populations affected by enteric and urinary tract infections in central Iraq.
Keywords:
DNA Sequencing Gamma Rays Haemolytic E. coli hlyA Gene Substitution Mutations
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(2), (2025)
Pages
70-80
Published
Copyright
Copyright (c) 2025 Raid Razzaq Ojaimi, Zainab Zaidan Mutashar (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Abdelkhalig, S. M., Elmanakhly, A. R., Alblwi, N. A. N., Alharbi, N. K., Alhomrani, M., Alamri, A. S., Alshehri, F., Mosbah, R. A., Safwat, N. A., AbdElrahman, M., & Bendary, M. M. (2025). Comparative analysis of diarrheagenic and uropathogenic Escherichia coli isolates: antimicrobial resistance, virulence, and genomic profiling. Journal of applied microbiology, 136(5), lxaf082. https://doi.org/10.1093/jambio/lxaf082
Ali, S. S., Al-Tohamy, R., Sun, J., Wu, J., & Huizi, L. (2019). Screening and construction of a novel microbial consortium SSA-6 enriched from the gut symbionts of wood-feeding termite, Coptotermes formosanus and its biomass-based biorefineries. Fuel, 236, 1128-1145. https://doi.org/10.1016/j.fuel.2018.08.117
Alipour, T., & Poursina, F. (2021). The frequency of hybrid Enteroaggregative/Uropathogenic Escherichia coli isolated from clinical samples of Isfahan hospitals, Iran. Gene Reports, 23, 101042. https://doi.org/10.1016/j.genrep.2021.101042
Beutin, L., Montenegro, M., Zimmermann, S., & Stephan, R. (1986). Characterization of hemolytic strains of Escherichia coli belonging to classical enteropathogenic O-serogroups. Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology, 261(3), 266–279. https://doi.org/10.1016/s0176-6724(86)80044-x
Bielaszewska, M., Rüter, C., Kunsmann, L., Greune, L., Bauwens, A., Zhang, W., Kuczius, T., Kim, K. S., Mellmann, A., Schmidt, M. A., & Karch, H. (2013). Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. PLoS pathogens, 9(12), e1003797. https://doi.org/10.1371/journal.ppat.1003797
Boehm, D. F., Welch, R. A., & Snyder, I. S. (1990). Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infection and immunity, 58(6), 1959–1964. https://doi.org/10.1128/iai.58.6.1959-1964.1990
Burgos, Y., & Beutin, L. (2010). Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli. BMC microbiology, 10, 193. https://doi.org/10.1186/1471-2180-10-193
Caetano, B. L., Domingos, M. O., da Silva, M. A., da Silva, J. C. A., Polatto, J. M., Montoni, F., Iwai, L. K., Pimenta, D. C., Vigerelli, H., Vieira, P. C. G., Ruiz, R. C., Patané, J. S., & Piazza, R. M. F. (2022). In Silico Prediction and Design of Uropathogenic Escherichia coli Alpha-Hemolysin Generate a Soluble and Hemolytic Recombinant Toxin. Microorganisms, 10(1), 172. https://doi.org/10.3390/microorganisms10010172
Cag, Y., Haciseyitoglu, D., Ozdemir, A. A., & Cag, Y. (2021). Antibiotic Resistance and Bacteria in Urinary Tract Infections in Pediatric Patients. Medeniyet medical journal, 36(3), 217–224. https://doi.org/10.5222/MMJ.2021.78535
Chuan-Xiao, X., An, X., Li-Jun, W., Jian-Min, Y., Jian-Bo, Y., & Zeng-Liang, Y. (2004). Comparison of base substitutions in response to nitrogen ion implantation and 60Co-gamma ray irradiation in Escherichia coli. Genetics and molecular biology, 27, 284-290.
Fazly Bazzaz, B. S., Darvishi Fork, S., Ahmadi, R., & Khameneh, B. (2021). Deep insights into urinary tract infections and effective natural remedies. African Journal of Urology, 27(1), 6. http://dx.doi.org/10.1186/s12301-020-00111-z
Garcia, J., Pempek, J., Hengy, M., Hinds, A., Diaz-Campos, D., & Habing, G. (2022). Prevalence and predictors of bacteremia in dairy calves with diarrhea. Journal of dairy science, 105(1), 807–817. https://doi.org/10.3168/jds.2020-19819
Getaneh, T., Negesse, A., Dessie, G., Desta, M., & Tigabu, A. (2021). Prevalence of Urinary Tract Infection and Its Associated Factors among Pregnant Women in Ethiopia: A Systematic Review and Meta-Analysis. BioMed research international, 2021, 6551526. https://doi.org/10.1155/2021/6551526
Hashemabad, Z. N., Shabanpour, B., Azizi, H., & Ojagh, S. M. (2018). Effects of Tio 2 Nanocomposite Packaging and Gamma Irradiation on the Shelf-life of Rainbow trout Stored at (+ 4◦C). Turkish Journal of Fisheries and Aquatic Sciences, 18(12), 1387-1397. https://doi.org/10.4194/1303- 2712-v18_12_07.
Hernández-Chiñas, U., Chávez-Berrocal, M. E., Ahumada-Cota, R. E., Navarro-Ocaña, A., Rocha-Ramírez, L. M., Pérez-Del Mazo, Y., Alvarado-Cabello, M., Pérez-Soto, G., León-Alamilla, L. A., Acevedo-Monroy, S. E., Esquiliano, D., Raya-Rivera, A. M., & Eslava, C. A. (2021). Prospective Study in Children with Complicated Urinary Tract Infection Treated with Autologous Bacterial Lysates. Microorganisms, 9(9), 1811. https://doi.org/10.3390/microorganisms9091811
Juda, E. K., & Khalaf, K. J. (2024). Effect of Some Metals Ions on Hemolysin Production from Clinical Isolates of Escherichia coli. Journal of Contemporary Medical Sciences, 10(1). https://doi.org/10.22317/jcms.v10i1.1450
Kanonenberg, K., Spitz, O., Erenburg, I. N., Beer, T., & Schmitt, L. (2018). Type I secretion system-it takes three and a substrate. FEMS microbiology letters, 365(11), 10.1093/femsle/fny094. https://doi.org/10.1093/femsle/fny094
Kasanga, M., Shempela, D. M., Daka, V., Mwikisa, M. J., Sikalima, J., Chanda, D., & Mudenda, S. (2024). Antimicrobial resistance profiles of Escherichia coli isolated from clinical and environmental samples: findings and implications. JAC-antimicrobial resistance, 6(2), dlae061. https://doi.org/10.1093/jacamr/dlae061
Li, X., Hu, H., Zhu, Y., Wang, T., Lu, Y., Wang, X., Peng, Z., Sun, M., Chen, H., Zheng, J., & Tan, C. (2024). Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China. Nature communications, 15(1), 5811. https://doi.org/10.1038/s41467-024-50268-2
Ludwig, A., Schmid, A., Benz, R., & Goebel, W. (1991). Mutations affecting pore formation by haemolysin from Escherichia coli. Molecular & general genetics: MGG, 226(1-2), 198–208. https://doi.org/10.1007/BF00273604
Magalhães, C. A., Rossato, S. S., Barbosa, A. S., Santos, T. O., Elias, W. P., Sircili, M. P., & Piazza, R. M. (2011). The ability of haemolysins expressed by atypical enteropathogenic Escherichia coli to bind to extracellular matrix components. Memorias do Instituto Oswaldo Cruz, 106(2), 146–152. https://doi.org/10.1590/s0074-02762011000200005
Mare, A., Man, A., Toma, F., Ciurea, C. N., Coșeriu, R. L., Vintilă, C., & Maier, A. C. (2020). Hemolysin-Producing Strains among Diarrheagenic Escherichia coli Isolated from Children under 2 Years Old with Diarrheal Disease. Pathogens, 9(12), 1022. https://doi.org/10.3390/pathogens9121022
Moeinizadeh, H., & Shaheli, M. (2021). Frequency of hlyA, hlyB, hlyC and hlyD genes in uropathogenic Escherichia coli isolated from UTI patients in Shiraz. GMS hygiene and infection control, 16, Doc25. https://doi.org/10.3205/dgkh000396
Mouhammed, K., & Gdoura, R. (2024). Study of the Genomic Characterization of Antibiotic-Resistant Escherichia Coli Isolated From Iraqi Patients with Urinary Tract Infections. Indian journal of microbiology, 64(2), 457–466. https://doi.org/10.1007/s12088-023-01123-3
Murase, K., Ooka, T., Iguchi, A., Ogura, Y., Nakayama, K., Asadulghani, M., Islam, M. R., Hiyoshi, H., Kodama, T., Beutin, L., & Hayashi, T. (2012). Haemolysin E- and enterohaemolysin-derived haemolytic activity of O55/O157 strains and other Escherichia coli lineages. Microbiology, 158(Pt 3), 746–758. https://doi.org/10.1099/mic.0.054775-0
Naqid, I. A., Balatay, A. A., Hussein, N. R., Saeed, K. A., Ahmed, H. A., & Yousif, S. H. (2020). Antibiotic susceptibility pattern of Escherichia coli isolated from various clinical samples in Duhok City, Kurdistan Region of Iraq. International Journal of Infection, 7(3), e103740. https://doi.org/10.5812/iji.103740
Ohno, M., Sakumi, K., Fukumura, R., Furuichi, M., Iwasaki, Y., Hokama, M., Ikemura, T., Tsuzuki, T., Gondo, Y., & Nakabeppu, Y. (2014). 8-oxoguanine causes spontaneous de novo germline mutations in mice. Scientific reports, 4, 4689. https://doi.org/10.1038/srep04689
Ojaimi, R. R., & Al-Nashe, A. A. R. (2019). Molecular Detection of hlyA Gene from Escherichia coli hemolytic isolated from Intestinal and Urinary tract infections. Journal of Global Pharma Technology, 11(07). http://dx.doi.org/10.13140/RG.2.2.16667.58403
Pokharel, P., Dhakal, S., & Dozois, C. M. (2023). The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms, 11(2), 344. https://doi.org/10.3390/microorganisms11020344
Provoda, C. J., & Lee, K. D. (2000). Bacterial pore-forming hemolysins and their use in the cytosolic delivery of macromolecules. Advanced drug delivery reviews, 41(2), 209–221. https://doi.org/10.1016/s0169-409x(99)00067-8
Rohde M. (2019). The Gram-Positive Bacterial Cell Wall. Microbiology spectrum, 7(3), 10.1128/microbiolspec.gpp3-0044-2018. https://doi.org/10.1128/microbiolspec.GPP3-0044-2018
Sánchez-Magraner, L., Cortajarena, A. L., Goñi, F. M., & Ostolaza, H. (2006). Membrane insertion of Escherichia coli alpha-hemolysin is independent from membrane lysis. The Journal of biological chemistry, 281(9), 5461–5467. https://doi.org/10.1074/jbc.M512897200
Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut pathogens, 11, 10. https://doi.org/10.1186/s13099-019-0290-0
Schindel, C., Zitzer, A., Schulte, B., Gerhards, A., Stanley, P., Hughes, C., Koronakis, V., Bhakdi, S., & Palmer, M. (2001). Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. European journal of biochemistry, 268(3), 800–808. https://doi.org/10.1046/j.1432-1327.2001.01937.x
Shahbazi, S., Asadi Karam, M. R., Habibi, M., Talebi, A., & Bouzari, S. (2018). Distribution of extended-spectrum β-lactam, quinolone and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. Journal of global antimicrobial resistance, 14, 118–125. https://doi.org/10.1016/j.jgar.2018.03.006
Shaker, Z., Al-Awsi, G. R. L., Khamis, A. S., Tolaifeh, Z. A., & Jameel, Z. I. (2018). Rapd-PCR is a good DNA finger-printing technique to detect phylogenetic relationships among Staphylococcus. aureus isolated from different sources in Hilla city, Iraq. Biochemical & Cellular Archives, 18.
Sirous, M., Hashemzadeh, M., Keshtvarz, M., Amin, M., Shams, N., Dastoorpoor, M., ... & Koraei, D. (2020). Molecular characterization and antimicrobial resistance of enteropathogenic Escherichia coli in Children from Ahvaz, Iran. Jundishapur Journal of Microbiology, 13(7), 1-9. https://doi.org/10.5812/jjm.100877
Takahashi, S., Kurimura, Y., Hashimoto, J., Uehara, T., Hiyama, Y., Iwasawa, A., Nishimura, M., Sunaoshi, K., Takeda, K., Suzuki, N., & Tsukamoto, T. (2013). Antimicrobial susceptibility and penicillin-binding protein 1 and 2 mutations in Neisseria gonorrhoeae isolated from male urethritis in Sapporo, Japan. Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy, 19(1), 50–56. https://doi.org/10.1007/s10156-012-0450-3
Trampuz, A., Piper, K. E., Steckelberg, J. M., & Patel, R. (2006). Effect of gamma irradiation on viability and DNA of Staphylococcus epidermidis and Escherichia coli. Journal of medical microbiology, 55(Pt 9), 1271–1275. https://doi.org/10.1099/jmm.0.46488-0
Welch R. A. (2005). The Escherichia coli Hemolysin. EcoSal Plus, 1(2), 10.1128/ecosalplus.8.7.2. https://doi.org/10.1128/ecosalplus.8.7.2
Yazdanpour, Z., Tadjrobehkar, O., & Shahkhah, M. (2020). Significant association between genes encoding virulence factors with antibiotic resistance and phylogenetic groups in community acquired uropathogenic Escherichia coli isolates. BMC microbiology, 20(1), 241. https://doi.org/10.1186/s12866-020-01933-1