Review Article

Drugging the Inflammasome Gasdermin Axis: Toward Precision Control of Pyroptosis

Authors

  • Deborah Pelumi Fadipe Cell Biology, Illinois Institute of Technology, Chicago, Illinois, USA

    deborahfadipe90@gmail.com

  • Oluwapelumi Hannah Sonoiki Department of Biology, Eastern Washington University, Cheney, Washington, USA
  • Emmanuel Aanu Bankole Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA https://orcid.org/0009-0006-7897-7032
  • Loveth Chinwendu Iwuala Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
  • Shalom Jesufunminiye Adedeji Isolo General Hospital, Isolo, Lagos State, Nigeria
  • Chinedu George Ezeah Department of Pharmaceutical Chemistry, University of Nigeria, Nsukka, Nigeria
  • Reginald Oyortey Department of Pharmaceutical Science, Central University, Ghana https://orcid.org/0009-0006-7212-117X

Abstract

Pyroptosis, an inflammasome-driven, gasdermin-mediated form of lytic cell death, has emerged as a unifying mechanism in disorders ranging from sepsis to Alzheimer’s disease. Canonical and non-canonical pathways converge on caspase-1/4/5/11 cleavage of gasdermin D, releasing IL-1β and IL-18; basal epithelial IL-18 preserves barrier integrity, whereas unchecked cytokine efflux fuels cardiovascular, metabolic, and neuro-inflammation. Early translational successes include the oral NLRP3 inhibitor dapansutrile, which lowered synovial IL-1β by 72 % and halved pain scores in a phase II gout-flare trial, and tadekinig alfa, a recombinant IL-18-binding protein now in phase II for NLRC4-MAS. Repurposed disulfiram blocks gasdermin pores pre-clinically, while AI-guided structure screens and nanocarrier delivery are accelerating next-generation candidates. Yet inhibiting pyroptosis may heighten infection risk and demand brain-penetrant, cost-effective molecules. Judicious, biomarker-guided modulation of this fiery death program is therefore a promising but complex therapeutic strategy. This approach offers an increasingly tangible route to precision immunotherapy.

Keywords:

Gasdermin Axis Precision Control Pyroptosis

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(2), (2025)

Pages

169-179

Published

23-09-2025

How to Cite

Fadipe, D. P., Sonoiki, O. H., Bankole, E. A., Iwuala, L. C., Adedeji, S. J., Ezeah, C. G., & Oyortey, R. (2025). Drugging the Inflammasome Gasdermin Axis: Toward Precision Control of Pyroptosis. Journal of Medical Science, Biology, and Chemistry, 2(2), 169-179. https://doi.org/10.69739/jmsbc.v2i2.856

References

Amo-Aparicio, J., Daly, J., Højen, J. F., & Dinarello, C. A. (2023). Pharmacologic inhibition of NLRP3 reduces the levels of α-synuclein and protects dopaminergic neurons in a model of Parkinson’s disease. Journal of Neuroinflammation, 20, 147. https://doi.org/10.1186/s12974-023-02830-w

Antiochos, B., Trejo-Zambrano, D., Fenaroli, P., Rosenberg, A., Baer, A., Garg, A., Sohn, J., Li, J., Petri, M., Goldman, D. W., Mecoli, C., Casciola-Rosen, L., & Rosen, A. (2022). The DNA sensors AIM2 and IFI16 are SLE autoantigens that bind neutrophil extracellular traps. eLife, 11, e72103. https://doi.org/10.7554/eLife.72103

Arnold, D. D., Yalamanoglu, A., & Boyman, O. (2022). Systematic Review of Safety and Efficacy of IL-1-Targeted Biologics in Treating Immune-Mediated Disorders. Frontiers in Immunology, 13, 888392. https://doi.org/10.3389/fimmu.2022.888392

Arrè, V., Scialpi, R., Centonze, M., Giannelli, G., Scavo, M. P., & Negro, R. (2023). The ‘speck’-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. Journal of Biomedical Science, 30, 90. https://doi.org/10.1186/s12929-023-00983-7

Auger, A., Faidi, R., Rickman, A. D., Martinez, C. P., Fajfer, A., Carling, J., Hilyard, A., Ali, M., Ono, R., Cleveland, C., Seliniotakis, R., Truong, N., Chefson, A., Raymond, M., Germain, M.-A., Crackower, M. A., & Heckmann, B. L. (2025). Post-symptomatic NLRP3 inhibition rescues cognitive impairment and mitigates amyloid and tau driven neurodegeneration. Npj Dementia, 1(1), 3. https://doi.org/10.1038/s44400-025-00011-5

Basiorka, A. A., McGraw, K. L., Abbas-Aghababazadeh, F., McLemore, A. F., Vincelette, N. D., Ward, G. A., … List, A. F. (2018). Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: An observational cohort study. The Lancet. Haematology, 5(9), e393–e402. https://doi.org/10.1016/S2352-3026(18)30109-1

Benetti, E., Chiazza, F., Patel, N. S. A., & Collino, M. (2013). The NLRP3 Inflammasome as a Novel Player of the Intercellular Crosstalk in Metabolic Disorders. Mediators of Inflammation, 2013, 678627. https://doi.org/10.1155/2013/678627

Cabral, J. E., Wu, A., Zhou, H., Pham, M. A., Lin, S., & McNulty, R. (2025). Targeting the NLRP3 inflammasome for inflammatory disease therapy. Trends in Pharmacological Sciences, 46(6), 503–519. https://doi.org/10.1016/j.tips.2025.04.007

Cavalli, G., & Dinarello, C. A. (2018). Anakinra Therapy for Non-cancer Inflammatory Diseases. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.01157

Chen, P.-K., Tang, K.-T., & Chen, D.-Y. (2024). The NLRP3 Inflammasome as a Pathogenic Player Showing Therapeutic Potential in Rheumatoid Arthritis and Its Comorbidities: A Narrative Review. International Journal of Molecular Sciences, 25(1), 626. https://doi.org/10.3390/ijms25010626

Chen, X.-Y., Liu, Y., Zhu, W.-B., Li, S.-H., Wei, S., Cai, J., Lin, Y., Liang, J.-K., Yan, G.-M., Guo, L., & Hu, C. (2024). Arming oncolytic M1 virus with gasdermin E enhances antitumor efficacy in breast cancer. iScience, 27(11), 111148. https://doi.org/10.1016/j.isci.2024.111148

den Broeder, A. A., de Jong, E., Franssen, M. J. A. M., Jeurissen, M. E. C., Flendrie, M., & van den Hoogen, F. H. J. (2006). Observational study on efficacy, safety, and drug survival of anakinra in rheumatoid arthritis patients in clinical practice. Annals of the Rheumatic Diseases, 65(6), 760–762. https://doi.org/10.1136/ard.2004.033662

de Vasconcelos, N. M., Van Opdenbosch, N., Van Gorp, H., Parthoens, E., & Lamkanfi, M. (2019). Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death and Differentiation, 26(1), 146–161. https://doi.org/10.1038/s41418-018-0106-7

Doitsh, G., Galloway, N. L., Geng, X., Yang, Z., Monroe, K. M., Zepeda, O., ... & Greene, W. C. (2014). Pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 505(7484), 509–514. https://doi.org/10.1038/nature12940

Everett, B. M., MacFadyen, J. G., Thuren, T., Libby, P., Glynn, R. J., & Ridker, P. M. (2020). Inhibition of Interleukin-1β and Reduction in Atherothrombotic Cardiovascular Events in the CANTOS Trial. Journal of the American College of Cardiology, 76(14), 1660–1670. https://doi.org/10.1016/j.jacc.2020.08.011

Gao, H., Cao, M., Yao, Y., Hu, W., Sun, H., Zhang, Y., Zeng, C., Tang, J., Luan, S., & Chen, P. (2021). Dysregulated Microbiota-Driven Gasdermin D Activation Promotes Colitis Development by Mediating IL-18 Release. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.750841

Hoffman, H. M., Throne, M. L., Amar, N. J., Sebai, M., Kivitz, A. J., Kavanaugh, A., ... & Mellis, S. J. (2008). Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes: Results from two sequential placebo-controlled studies. Arthritis & Rheumatism, 58(8), 2443–2452. https://doi.org/10.1002/art.23687

Hu, J. J., Liu, X., Xia, S., Zhang, Z., Zhang, Y., Zhao, J., ... & Wu, H. (2020). FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nature Immunology, 21(7), 736–745. https://doi.org/10.1038/s41590-020-0669-6

Huang, C., Li, J., Wu, R., Li, Y., & Zhang, C. (2025). Targeting pyroptosis for cancer immunotherapy: Mechanistic insights and clinical perspectives. Molecular Cancer, 24(1), 131. https://doi.org/10.1186/s12943-025-02344-4

Huang, Y., Jiang, H., Chen, Y., Wang, X., Yang, Y., Tao, J., Deng, X., Liang, G., Zhang, H., Jiang, W., & Zhou, R. (2018). Tranilast directly targets NLRP3 to treat inflammasome‐driven diseases. EMBO Molecular Medicine, 10(4), e8689. https://doi.org/10.15252/emmm.201708689

Ikegami, S., Maeda, K., Urano, T., Mu, J., Nakamura, M., Yamamura, T., ... & Kawashima, H. (2024). Monoclonal Antibody Against Mature Interleukin-18 Ameliorates Colitis in Mice and Improves Epithelial Barrier Function. Inflammatory Bowel Diseases, 30(8), 1353–1366. https://doi.org/10.1093/ibd/izad292

Klück, V., Tim, L., Janssen, M., Comarniceanu, A., Efdé, M., Tengesdal, I. W., ... & Joosten, L. A. (2020). Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2a trial. The Lancet Rheumatology, 2(5), e270–e280. https://doi.org/10.1016/s2665-9913(20)30065-5

Kumar, R., Kurapati, M., Aiyengar, M., Reddy, S., & Sahu, S. (2015). Evaluation of Hs-CRP Levels and Interleukin 18 (-137G/C) Promoter Polymorphism in Risk Prediction of Coronary Artery Disease in First Degree Relatives. PLoS ONE, 10(3), e0120359. https://doi.org/10.1371/journal.pone.0120359

Larsen, C. M., Faulenbach, M., Vaag, A., Vølund, A., Ehses, J. A., Seifert, B., Mandrup-Poulsen, T., & Donath, M. Y. (2007). Interleukin-1-receptor antagonist in type 2 diabetes mellitus. The New England Journal of Medicine, 356(15), 1517–1526. https://doi.org/10.1056/NEJMoa065213

Lin, J., Sun, S., Zhao, K., Gao, F., Wang, R., Li, Q., ... & He, W. (2023). Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity. Nature Communications, 14(1), 224. https://doi.org/10.1038/s41467-023-35917-2

Liu, Y., Pan, R., Ouyang, Y., Gu, W., Xiao, T., Yang, H., Tang, L., Wang, H., Xiang, B., & Chen, P. (2024). Pyroptosis in health and disease: Mechanisms, regulation and clinical perspective. Signal Transduction and Targeted Therapy, 9(1), 245. https://doi.org/10.1038/s41392-024-01958-2

Lobo, A. (2025, June 22). NLRP3 inhibitor found safe, well tolerated in Parkinson’s trial. Bionews. https://parkinsonsnewstoday.com/news/nlrp3-inhibitor-found-safe-well-tolerated-parkinsons-trial/

M. Bader, S., Scherer, L., Schaefer, J., Cooney, J. P., Mackiewicz, L., Dayton, M., ... & Doerflinger, M. (2025). IL-1β drives SARS-CoV-2-induced disease independently of the inflammasome and pyroptosis signalling. Cell Death & Differentiation, 1–14. https://doi.org/10.1038/s41418-025-01459-x

McKie, E. A., Reid, J. L., Mistry, P. C., DeWall, S. L., Abberley, L., Ambery, P. D., & Gil-Extremera, B. (2016). A Study to Investigate the Efficacy and Safety of an Anti-Interleukin-18 Monoclonal Antibody in the Treatment of Type 2 Diabetes Mellitus. PLOS ONE, 11(3), e0150018. https://doi.org/10.1371/journal.pone.0150018

Michael, O. (2019, February 2). Hopes Fade for a CV Indication for Canakinumab: What’s Next for the Inflammatory Hypothesis? TCTMD.Com. https://www.tctmd.com/news/hopes-fade-cv-indication-canakinumab-whats-next-inflammatory-hypothesis

Nandi, D., Debnath, M., Forster, J., Pandey, A., Bharadwaj, H., Patel, R., & Kulkarni, A. (2024). Nanoparticle-mediated co-delivery of inflammasome inhibitors provides protection against sepsis. Nanoscale, 16(9), 4678–4690. https://doi.org/10.1039/D3NR05570A

Nguyen, L. N., & Kanneganti, T.-D. (2022). PANoptosis in Viral Infection: The Missing Puzzle Piece in the Cell Death Field. Journal of Molecular Biology, 434(4), 167249. https://doi.org/10.1016/j.jmb.2021.167249

Nowarski, R., Jackson, R., Gagliani, N., de Zoete, M. R., Palm, N. W., Bailis, W., Low, J. S., Harman, C. C. D., Graham, M., Elinav, E., & Flavell, R. A. (2015). Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis. Cell, 163(6), 1444–1456. https://doi.org/10.1016/j.cell.2015.10.072

Ong, S.-B., Hernández-Reséndiz, S., Crespo-Avilan, G. E., Mukhametshina, R. T., Kwek, X.-Y., Cabrera-Fuentes, H. A., & Hausenloy, D. J. (2018). Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacology & Therapeutics, 186, 73–87. https://doi.org/10.1016/j.pharmthera.2018.01.001

Regeneron Pharmaceuticals. (2008, March 25). ARCALYST(TM) (rilonacept), First and Only FDA-approved Treatment for Cryopyrin-Associated Periodic Syndromes (CAPS), Now Available in the United States. Regeneron Pharmaceuticals Inc. Regeneron Pharmaceuticals. https://investor.regeneron.com/news-releases/news-release-details/arcalysttm-rilonacept-first-and-only-fda-approved-treatment/

Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., ... & Glynn, R. J. (2017). Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine, 377(12), 1119–1131. https://doi.org/10.1056/NEJMoa1707914

Rogers, C., Fernandes-Alnemri, T., Mayes, L., Alnemri, D., Cingolani, G., & Alnemri, E. S. (2017). Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature Communications, 8(1), 14128. https://doi.org/10.1038/ncomms14128

Sadiq, N. M., Robinson, K. J., & Terrell, J. M. (2025). Colchicine. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK431102/

VX-765-Cognitive-Vitality-For-Researchers. (2019, January 15). Alzheimer’s Drug Discovery Foundation. https://www.alzdiscovery.org/uploads/cognitive_vitality_media/VX-765-Cognitive-Vitality-For-Researchers.pdf

Wei, J., Wang, A., Li, B., Li, X., Yu, R., Li, H., Wang, X., Wang, Y., & Zhu, M. (2024). Pathological mechanisms and crosstalk among various cell death pathways in cardiac involvement of systemic lupus erythematosus. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1452678

Wu, W., Lan, W., Jiao, X., Wang, K., Deng, Y., Chen, R., Zeng, R., & Li, J. (2025). Pyroptosis in sepsis-associated acute kidney injury: Mechanisms and therapeutic perspectives. Critical Care, 29, 168. https://doi.org/10.1186/s13054-025-05329-3

Xia, S., Zhang, Z., Magupalli, V. G., Pablo, J. L., Dong, Y., Vora, S. M., Wang, L., Fu, T.-M., Jacobson, M. P., Greka, A., Lieberman, J., Ruan, J., & Wu, H. (2021). Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 593(7860), 607–611. https://doi.org/10.1038/s41586-021-03478-3

Xu, C., Lu, Z., Luo, Y., Liu, Y., Cao, Z., Shen, S., Li, H., Liu, J., Chen, K., Chen, Z., Yang, X., Gu, Z., & Wang, J. (2018). Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nature Communications, 9(1), 4092. https://doi.org/10.1038/s41467-018-06522-5

Yin, J., Lei, J., Yu, J., Cui, W., Satz, A. L., Zhou, Y., Feng, H., Deng, J., Su, W., & Kuai, L. (2022). Assessment of AI-Based Protein Structure Prediction for the NLRP3 Target. Molecules, 27(18), 5797. https://doi.org/10.3390/molecules27185797

Yin, Q., Song, S.-Y., Bian, Y., Wang, Y., Deng, A., Lv, J., & Wang, Y. (2024). Unlocking the potential of pyroptosis in tumor immunotherapy: A new horizon in cancer treatment. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1381778

Yu, P., Zhang, X., Liu, N., Tang, L., Peng, C., & Chen, X. (2021). Pyroptosis: Mechanisms and diseases. Signal Transduction and Targeted Therapy, 6(1), 128. https://doi.org/10.1038/s41392-021-00507-5

Zahid, A., Li, B., Kombe, A. J. K., Jin, T., & Tao, J. (2019). Pharmacological Inhibitors of the NLRP3 Inflammasome. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02538

Zeng, W., Wu, D., Sun, Y., Suo, Y., Yu, Q., Zeng, M., Gao, Q., Yu, B., Jiang, X., & Wang, Y. (2021). The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Scientific Reports, 11(1), 19305. https://doi.org/10.1038/s41598-021-98437-3

Zhang, Y., Zhao, D., Wang, T., Li, P., Yu, D., Gao, H., Zhao, M., Qin, L., & Zhang, K. (2025). Pyroptosis, a double-edged sword during pathogen infection: A review. Cell Death Discovery, 11(1), 289. https://doi.org/10.1038/s41420-025-02579-6

Zheng, Q., Yao, D., Cai, Y., & Zhou, T. (2020). NLRP3 augmented resistance to gemcitabine in triple-negative breast cancer cells via EMT/IL-1β/Wnt/β-catenin signaling pathway. Bioscience Reports, 40(7), BSR20200730. https://doi.org/10.1042/BSR20200730

Downloads

Views

13

Downloads

3