Article section
A Comprehensive Review of Solar Stills Performance and Design
Abstract
The worldwide scarcity of potable water has increased significantly due to population expansion and the pollution of accessible water sources from anthropogenic activities. Solar stills are essential for supplying potable water via solar-powered distillation. Alterations, including phase change materials (PCM), nano fluids, and reflectors, markedly enhance heat retention and evaporation rates, leading to increased distillate production. Also, the efficacy of distillate production is significantly affected by design specifications, materials, and operational conditions. This paper delineates the passive and active designs, classifications of solar stills, single - effect and multi - effect kinds, and various improvements made to these types to augment yield, including heat storage, fins, reflectors, and collector types. Also, photovoltaic-thermal stills are encompassed in this review.
Keywords:
Desalination Distillate Performance Productivity Solar Still Design
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(2), (2025)
Pages
101-109
Published
Copyright
Copyright (c) 2025 Ann A. Jawad Alani, Nseer A. Issa Alhaboubi (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Abdessemed, A., Bougriou, C., Guerraiche, D., & Abachi, R. (2018). Effects of tray shape of a multi-stage solar still coupled to a parabolic concentrating solar collector in Algeria. Renewable Energy, 132. https://doi.org/10.1016/j.renene.2018.08.074
Aghaei Zoori, H., Farshchi Tabrizi, F., Sarhaddi, F., & Heshmatnezhad, F. (2013). Comparison between energy and exergy efficiencies in a weir type cascade solar still. Desalination, 325, 113–121. https://doi.org/10.1016/j.desal.2013.07.004
Ahsan, A., Imteaz, M., Thomas, U. A., Azmi, M., Rahman, A., & Nik Daud, N. N. (2014). Parameters affecting the performance of a low cost solar still. Applied Energy, 114, 924–930. https://doi.org/10.1016/j.apenergy.2013.08.066
Al-Shayji, K., & Aleisa, E. (2018). Characterizing the fossil fuel impacts in water desalination plants in Kuwait: A Life Cycle Assessment approach. Energy, 158, 681–692. https://doi.org/10.1016/j.energy.2018.06.077
Alwan, N. T., Ali, B. M., Alomar, O. R., Abdulrazzaq, N. M., Ali, O. M., & Abed, R. M. (2024). Performance of solar still units and enhancement techniques: A review investigation. Heliyon, 10(18), e37693. https://doi.org/10.1016/j.heliyon.2024.e37693
Arjunan, T. V., & Sakthivel, T. G. (2017). An experimental study on the performance of vertical basin solar still. Journal of Advanced Chemistry, 13(7), 6356–6362. https://doi.org/10.24297/jac.v13i7.5788
Arunkumar, T., Jayaprakash, R., Denkenberger, D., Ahsan, A., Okundamiya, M. S., Tanaka, H., & Aybar, H. Ş. (2012). An experimental study on a hemispherical solar still. Desalination, 286, 342-348. https://doi.org/10.1016/j.desal.2011.11.047
Badran, O. O. (2007). Experimental study of the enhancement parameters on a single slope solar still productivity. Desalination, 209(1–3), 136–143. https://doi.org/10.1016/j.desal.2007.04.022
Bouadila, S. (2023). Solar stills: Review (pp. 55–62).
Boubekri, M., & Chaker, A. (2011). Yield of an improved solar still: Numerical approach. Energy Procedia, 6, 610–617. https://doi.org/10.1016/j.egypro.2011.05.07
Delyannis, E. (2003). Historic background of desalination and renewable energies. Solar Energy, 75(5), 357–366. https://doi.org/10.1016/j.solener.2003.08.002
Dev, R., & Tiwari, G. N. (2009). Characteristic equation of a passive solar still. Desalination, 245(1–3), 246–265. https://doi.org/10.1016/j.desal.2008.07.011
Dev, R., & Tiwari, G. N. (2010). Characteristic equation of a hybrid (PV-T) active solar still. Desalination, 254(1–3), 126–137. https://doi.org/10.1016/j.desal.2009.12.004
Dsilva Winfred Rufuss, D., Iniyan, S., Suganthi, L., & Davies, P. A. (2016). Solar stills: A comprehensive review of designs, performance and material advances. Renewable and Sustainable Energy Reviews, 63, 464–496. https://doi.org/10.1016/j.rser.2016.05.068
El-Sebaii, A. A. (2004). Effect of wind speed on active and passive solar stills. Energy Conversion and Management, 45(7–8), 1187–1204. https://doi.org/10.1016/j.enconman.2003.09.036
El-Sebaii, A. A., Ramadan, M. R. I., Aboul-Enein, S., & El-Naggar, M. (2015). Effect of fin configuration parameters on single basin solar still performance. Desalination, 365, 15–24. https://doi.org/10.1016/j.desal.2015.02.002
Elango, T., & Kalidasa Murugavel, K. (2015). The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination, 359, 82–91. https://doi.org/10.1016/j.desal.2014.12.036
Elsafty, A. F., Fath, H. E., & Amer, A. M. (2008). Mathematical model development for a new solar desalination system (SDS). Energy Conversion and Management, 49(11), 3331–3337. https://doi.org/10.1016/j.enconman.2008.04.016
Feilizadeh, M., Soltanieh, M., Jafarpur, K., & Karimi Estahbanati, M. R. (2010). A new radiation model for a single-slope solar still. Desalination, 262(1–3), 166–173. https://doi.org/10.1016/j.desal.2010.06.005
Fu, H., Dai, M., Song, H., Hou, X., Riaz, F., Li, S., ... & Sultan, M. (2021). Updates on evaporation and condensation methods for the performance improvement of solar stills. Energies, 14(21), 7050. https://doi.org/10.3390/en14217050
Hemmatian, A., Kargarsharifabad, H., Rahbar, N., Abedini, A., & Shoeibi, S. (2024). Improving solar still performance with heat pipe/pulsating heat pipe evacuated tube solar collectors and PCM: An experimental and environmental analysis. Solar Energy, 269, 112371. https://doi.org/10.1016/j.solener.2024.112371
Kalidasa Murugavel, K., Chockalingam, K. K. S. K., & Srithar, K. (2008). Progresses in improving the effectiveness of the single basin passive solar still. Desalination, 220(1–3), 677–686. https://doi.org/10.1016/j.desal.2007.01.062
Lafta, A. M., Amori, K. E., & Mansour, M. M. (2024). Experimental evaluation of stepped solar stills augmented with magnets as granular porous media. Power Engineering and Engineering Thermophysics, 3(2), 103–115. https://doi.org/10.56578/peet030203
Li, R. X. (2012). Design and realization of 3-DOF welding manipulator control system based on motion controller. Energy Procedia, 14, 931–936. https://doi.org/10.1016/j.egypro.2011.12.887
Mahdi, J. T., Smith, B. E., & Sharif, A. O. (2011). An experimental wick-type solar still system: Design and construction. Desalination, 267(2–3), 233–238. https://doi.org/10.1016/j.desal.2010.09.032
Nishikawa, H., Tsuchiya, T., Narasaki, Y., Kamiya, I., & Sato, H. (1998). Triple effect evacuated solar still system for getting fresh water from seawater. Applied Thermal Engineering, 18(11), 1067–1075. https://doi.org/10.1016/S1359-4311(98)00020-9
Omara, Z. M., Hamed, M. H., & Kabeel, A. E. (2011). Performance of finned and corrugated absorbers solar stills under Egyptian conditions. Desalination, 277(1–3), 281–287. https://doi.org/10.1016/j.desal.2011.04.042
Panagopoulos, A., Haralambous, K. J., & Loizidou, M. (2019). Desalination brine disposal methods and treatment technologies - A review. Science of the Total Environment, 693, 133545. https://doi.org/10.1016/j.scitotenv.2019.07.351
Panchal, H. N. (2011). Performance analysis of different energy absorbing plates on solar stills. Iranian Journal of Energy & Environment, 2(4), 297–301. https://doi.org/10.5829/idosi.ijee.2011.02.04.2706
Radhwan, A. M. (2005). Transient performance of a stepped solar still with built-in latent heat thermal energy storage. Desalination, 171(1), 61–76. https://doi.org/10.1016/j.desa1.2003.12.010
Rahbar, N., & Esfahani, J. A. (2013). Productivity estimation of a single-slope solar still: Theoretical and numerical analysis. Energy, 49(1), 289–297. https://doi.org/10.1016/j.energy.2012.10.023
Rahim, N. H. A. (1995). Utilization of a forced condensing technique in a moving film inclined solar desalination still. Desalination, 101(3), 255–262. https://doi.org/10.1016/0011-9164(95)00028-Z
Rajaseenivasan, T., Nelson Raja, P., & Srithar, K. (2014). An experimental investigation on a solar still with an integrated flat plate collector. Desalination, 347, 131–137. https://doi.org/10.1016/j.desal.2014.05.029
Rubio-Cerda, E., Porta-Gándara, M. A., & Fernández-Zayas, J. L. (2002). Thermal performance of the condensing covers in a triangular solar still. Renewable Energy, 27(2), 301–308. https://doi.org/10.1016/S0960-1481(01)00196-3
Samee, M. A., Mirza, U. K., Majeed, T., & Ahmad, N. (2007). Design and performance of a simple single basin solar still. Renewable and Sustainable Energy Reviews, 11(3), 543–549. https://doi.org/10.1016/j.rser.2005.03.003
Sampathkumar, K., & Senthilkumar, P. (2012). Utilization of solar water heater in a single basin solar still—An experimental study. Desalination, 297, 8–19. https://doi.org/10.1016/j.desal.2012.04.012
Sarkar, J., & Bhattacharyya, S. (2012). Application of graphene and graphene-based materials in clean energy-related devices Minghui. Archives of Thermodynamics, 33(4), 23–40. https://doi.org/10.1002/er
Setoodeh, N., Rahimi, R., & Ameri, A. (2011). Modeling and determination of heat transfer coefficient in a basin solar still using CFD. Desalination, 268(1–3), 103–110. https://doi.org/10.1016/j.desal.2010.10.004
Sharshir, S. W., Elsheikh, A. H., Peng, G., Yang, N., El-Samadony, M. O. A., & Kabeel, A. E. (2017). Thermal performance and exergy analysis of solar stills – A review. Renewable and Sustainable Energy Reviews, 73, 521–544. https://doi.org/10.1016/j.rser.2017.01.156
Siddula, S., Stalin, N., Mahesha, C. R., Dattu, V. S., Singh, D. P., Mohanavel, V., & Sathyamurthy, R. (2022). Triangular and single slope solar stills: performance and yield studies with different water mass. Energy Reports, 8, 480-488. https://doi.org/10.1016/j.egyr.2022.10.225
Singh, G., Kumar, S., & Tiwari, G. N. (2011). Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still. Desalination, 277(1–3), 399–406. https://doi.org/10.1016/j.desal.2011.04.064
Tanaka, H. (2010). Monthly optimum inclination of glass cover and external reflector of a basin type solar still with internal and external reflector. Solar Energy, 84(11), 1959–1966. https://doi.org/10.1016/j.solener.2010.07.013
Tiwari, G. N., & Tyagi, R. C. (1981). Simple multiple wick solar still: analysis and performance. Solar energy, 26(2), 127-131.
Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. (2008). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10), 2602–2608. https://doi.org/10.1016/j.enconman.2008.05.010
Velmurugan, V., Mandlin, J., Stalin, B., & Srithar, K. (2009). Augmentation of saline streams in solar stills integrating with a mini solar pond. Desalination, 249(1), 143–149. https://doi.org/10.1016/j.desal.2009.06.016
Vinoth Kumar, K., & Kasturi Bai, R. (2008). Performance study on solar still with enhanced condensation. Desalination, 230(1–3), 51–61. https://doi.org/10.1016/j.desal.2007.11.015