Review Article

A Comprehensive Review of Solar Stills Performance and Design

Authors

  • Ann A. Jawad Alani Department of Chemical Engineering, Al-Nahrain University, Baghdad, Iraq
  • Nseer A. Issa Alhaboubi Department of Chemical Engineering, Al-Nahrain University, Baghdad, Iraq

    naseer.a.alhaboubi@nahrainuniv.edu.iq

Abstract

The worldwide scarcity of potable water has increased significantly due to population expansion and the pollution of accessible water sources from anthropogenic activities. Solar stills are essential for supplying potable water via solar-powered distillation. Alterations, including phase change materials (PCM), nano fluids, and reflectors, markedly enhance heat retention and evaporation rates, leading to increased distillate production. Also, the efficacy of distillate production is significantly affected by design specifications, materials, and operational conditions. This paper delineates the passive and active designs, classifications of solar stills, single - effect and multi - effect kinds, and various improvements made to these types to augment yield, including heat storage, fins, reflectors, and collector types. Also, photovoltaic-thermal stills are encompassed in this review.

Keywords:

Desalination Distillate Performance Productivity Solar Still Design

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(2), (2025)

Pages

101-109

Published

17-08-2025

How to Cite

Alani, A. A. J., & Alhaboubi, N. A. I. (2025). A Comprehensive Review of Solar Stills Performance and Design. Journal of Medical Science, Biology, and Chemistry, 2(2), 101-109. https://doi.org/10.69739/jmsbc.v2i2.857

References

Abdessemed, A., Bougriou, C., Guerraiche, D., & Abachi, R. (2018). Effects of tray shape of a multi-stage solar still coupled to a parabolic concentrating solar collector in Algeria. Renewable Energy, 132. https://doi.org/10.1016/j.renene.2018.08.074

Aghaei Zoori, H., Farshchi Tabrizi, F., Sarhaddi, F., & Heshmatnezhad, F. (2013). Comparison between energy and exergy efficiencies in a weir type cascade solar still. Desalination, 325, 113–121. https://doi.org/10.1016/j.desal.2013.07.004

Ahsan, A., Imteaz, M., Thomas, U. A., Azmi, M., Rahman, A., & Nik Daud, N. N. (2014). Parameters affecting the performance of a low cost solar still. Applied Energy, 114, 924–930. https://doi.org/10.1016/j.apenergy.2013.08.066

Al-Shayji, K., & Aleisa, E. (2018). Characterizing the fossil fuel impacts in water desalination plants in Kuwait: A Life Cycle Assessment approach. Energy, 158, 681–692. https://doi.org/10.1016/j.energy.2018.06.077

Alwan, N. T., Ali, B. M., Alomar, O. R., Abdulrazzaq, N. M., Ali, O. M., & Abed, R. M. (2024). Performance of solar still units and enhancement techniques: A review investigation. Heliyon, 10(18), e37693. https://doi.org/10.1016/j.heliyon.2024.e37693

Arjunan, T. V., & Sakthivel, T. G. (2017). An experimental study on the performance of vertical basin solar still. Journal of Advanced Chemistry, 13(7), 6356–6362. https://doi.org/10.24297/jac.v13i7.5788

Arunkumar, T., Jayaprakash, R., Denkenberger, D., Ahsan, A., Okundamiya, M. S., Tanaka, H., & Aybar, H. Ş. (2012). An experimental study on a hemispherical solar still. Desalination, 286, 342-348. https://doi.org/10.1016/j.desal.2011.11.047

Badran, O. O. (2007). Experimental study of the enhancement parameters on a single slope solar still productivity. Desalination, 209(1–3), 136–143. https://doi.org/10.1016/j.desal.2007.04.022

Bouadila, S. (2023). Solar stills: Review (pp. 55–62).

Boubekri, M., & Chaker, A. (2011). Yield of an improved solar still: Numerical approach. Energy Procedia, 6, 610–617. https://doi.org/10.1016/j.egypro.2011.05.07

Delyannis, E. (2003). Historic background of desalination and renewable energies. Solar Energy, 75(5), 357–366. https://doi.org/10.1016/j.solener.2003.08.002

Dev, R., & Tiwari, G. N. (2009). Characteristic equation of a passive solar still. Desalination, 245(1–3), 246–265. https://doi.org/10.1016/j.desal.2008.07.011

Dev, R., & Tiwari, G. N. (2010). Characteristic equation of a hybrid (PV-T) active solar still. Desalination, 254(1–3), 126–137. https://doi.org/10.1016/j.desal.2009.12.004

Dsilva Winfred Rufuss, D., Iniyan, S., Suganthi, L., & Davies, P. A. (2016). Solar stills: A comprehensive review of designs, performance and material advances. Renewable and Sustainable Energy Reviews, 63, 464–496. https://doi.org/10.1016/j.rser.2016.05.068

El-Sebaii, A. A. (2004). Effect of wind speed on active and passive solar stills. Energy Conversion and Management, 45(7–8), 1187–1204. https://doi.org/10.1016/j.enconman.2003.09.036

El-Sebaii, A. A., Ramadan, M. R. I., Aboul-Enein, S., & El-Naggar, M. (2015). Effect of fin configuration parameters on single basin solar still performance. Desalination, 365, 15–24. https://doi.org/10.1016/j.desal.2015.02.002

Elango, T., & Kalidasa Murugavel, K. (2015). The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination, 359, 82–91. https://doi.org/10.1016/j.desal.2014.12.036

Elsafty, A. F., Fath, H. E., & Amer, A. M. (2008). Mathematical model development for a new solar desalination system (SDS). Energy Conversion and Management, 49(11), 3331–3337. https://doi.org/10.1016/j.enconman.2008.04.016

Feilizadeh, M., Soltanieh, M., Jafarpur, K., & Karimi Estahbanati, M. R. (2010). A new radiation model for a single-slope solar still. Desalination, 262(1–3), 166–173. https://doi.org/10.1016/j.desal.2010.06.005

Fu, H., Dai, M., Song, H., Hou, X., Riaz, F., Li, S., ... & Sultan, M. (2021). Updates on evaporation and condensation methods for the performance improvement of solar stills. Energies, 14(21), 7050. https://doi.org/10.3390/en14217050

Hemmatian, A., Kargarsharifabad, H., Rahbar, N., Abedini, A., & Shoeibi, S. (2024). Improving solar still performance with heat pipe/pulsating heat pipe evacuated tube solar collectors and PCM: An experimental and environmental analysis. Solar Energy, 269, 112371. https://doi.org/10.1016/j.solener.2024.112371

Kalidasa Murugavel, K., Chockalingam, K. K. S. K., & Srithar, K. (2008). Progresses in improving the effectiveness of the single basin passive solar still. Desalination, 220(1–3), 677–686. https://doi.org/10.1016/j.desal.2007.01.062

Lafta, A. M., Amori, K. E., & Mansour, M. M. (2024). Experimental evaluation of stepped solar stills augmented with magnets as granular porous media. Power Engineering and Engineering Thermophysics, 3(2), 103–115. https://doi.org/10.56578/peet030203

Li, R. X. (2012). Design and realization of 3-DOF welding manipulator control system based on motion controller. Energy Procedia, 14, 931–936. https://doi.org/10.1016/j.egypro.2011.12.887

Mahdi, J. T., Smith, B. E., & Sharif, A. O. (2011). An experimental wick-type solar still system: Design and construction. Desalination, 267(2–3), 233–238. https://doi.org/10.1016/j.desal.2010.09.032

Nishikawa, H., Tsuchiya, T., Narasaki, Y., Kamiya, I., & Sato, H. (1998). Triple effect evacuated solar still system for getting fresh water from seawater. Applied Thermal Engineering, 18(11), 1067–1075. https://doi.org/10.1016/S1359-4311(98)00020-9

Omara, Z. M., Hamed, M. H., & Kabeel, A. E. (2011). Performance of finned and corrugated absorbers solar stills under Egyptian conditions. Desalination, 277(1–3), 281–287. https://doi.org/10.1016/j.desal.2011.04.042

Panagopoulos, A., Haralambous, K. J., & Loizidou, M. (2019). Desalination brine disposal methods and treatment technologies - A review. Science of the Total Environment, 693, 133545. https://doi.org/10.1016/j.scitotenv.2019.07.351

Panchal, H. N. (2011). Performance analysis of different energy absorbing plates on solar stills. Iranian Journal of Energy & Environment, 2(4), 297–301. https://doi.org/10.5829/idosi.ijee.2011.02.04.2706

Radhwan, A. M. (2005). Transient performance of a stepped solar still with built-in latent heat thermal energy storage. Desalination, 171(1), 61–76. https://doi.org/10.1016/j.desa1.2003.12.010

Rahbar, N., & Esfahani, J. A. (2013). Productivity estimation of a single-slope solar still: Theoretical and numerical analysis. Energy, 49(1), 289–297. https://doi.org/10.1016/j.energy.2012.10.023

Rahim, N. H. A. (1995). Utilization of a forced condensing technique in a moving film inclined solar desalination still. Desalination, 101(3), 255–262. https://doi.org/10.1016/0011-9164(95)00028-Z

Rajaseenivasan, T., Nelson Raja, P., & Srithar, K. (2014). An experimental investigation on a solar still with an integrated flat plate collector. Desalination, 347, 131–137. https://doi.org/10.1016/j.desal.2014.05.029

Rubio-Cerda, E., Porta-Gándara, M. A., & Fernández-Zayas, J. L. (2002). Thermal performance of the condensing covers in a triangular solar still. Renewable Energy, 27(2), 301–308. https://doi.org/10.1016/S0960-1481(01)00196-3

Samee, M. A., Mirza, U. K., Majeed, T., & Ahmad, N. (2007). Design and performance of a simple single basin solar still. Renewable and Sustainable Energy Reviews, 11(3), 543–549. https://doi.org/10.1016/j.rser.2005.03.003

Sampathkumar, K., & Senthilkumar, P. (2012). Utilization of solar water heater in a single basin solar still—An experimental study. Desalination, 297, 8–19. https://doi.org/10.1016/j.desal.2012.04.012

Sarkar, J., & Bhattacharyya, S. (2012). Application of graphene and graphene-based materials in clean energy-related devices Minghui. Archives of Thermodynamics, 33(4), 23–40. https://doi.org/10.1002/er

Setoodeh, N., Rahimi, R., & Ameri, A. (2011). Modeling and determination of heat transfer coefficient in a basin solar still using CFD. Desalination, 268(1–3), 103–110. https://doi.org/10.1016/j.desal.2010.10.004

Sharshir, S. W., Elsheikh, A. H., Peng, G., Yang, N., El-Samadony, M. O. A., & Kabeel, A. E. (2017). Thermal performance and exergy analysis of solar stills – A review. Renewable and Sustainable Energy Reviews, 73, 521–544. https://doi.org/10.1016/j.rser.2017.01.156

Siddula, S., Stalin, N., Mahesha, C. R., Dattu, V. S., Singh, D. P., Mohanavel, V., & Sathyamurthy, R. (2022). Triangular and single slope solar stills: performance and yield studies with different water mass. Energy Reports, 8, 480-488. https://doi.org/10.1016/j.egyr.2022.10.225

Singh, G., Kumar, S., & Tiwari, G. N. (2011). Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still. Desalination, 277(1–3), 399–406. https://doi.org/10.1016/j.desal.2011.04.064

Tanaka, H. (2010). Monthly optimum inclination of glass cover and external reflector of a basin type solar still with internal and external reflector. Solar Energy, 84(11), 1959–1966. https://doi.org/10.1016/j.solener.2010.07.013

Tiwari, G. N., & Tyagi, R. C. (1981). Simple multiple wick solar still: analysis and performance. Solar energy, 26(2), 127-131.

Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. (2008). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10), 2602–2608. https://doi.org/10.1016/j.enconman.2008.05.010

Velmurugan, V., Mandlin, J., Stalin, B., & Srithar, K. (2009). Augmentation of saline streams in solar stills integrating with a mini solar pond. Desalination, 249(1), 143–149. https://doi.org/10.1016/j.desal.2009.06.016

Vinoth Kumar, K., & Kasturi Bai, R. (2008). Performance study on solar still with enhanced condensation. Desalination, 230(1–3), 51–61. https://doi.org/10.1016/j.desal.2007.11.015

Downloads

Views

21

Downloads

12