Article section
In Silico Identification of Natural Compounds Targeting the Essential ClpP1P2 Protease in Mycobacterium tuberculosis
Abstract
Drug-resistant strains of tuberculosis (TB) is caused by Mycobacterium tuberculosis and are making the disease a global health emergency. This calls for new treatments that target unidentified bacterial pathways. In order to find natural inhibitors of the ClpP1P2 protease that is a crucial virulence factor for mycobacterial survival, our study used computational techniques. We used molecular docking to screen 100 compounds against the ClpP1P2 structure (PDB: 4U0G) while giving preference to ligands with higher binding affinities than reference medications (ethambutol, isoniazid). To evaluate therapeutic potential, we subjected top hits to target fishing, toxicity prediction and pharmacokinetic profiling. Our top two hit compounds were neodiospyrin and arbutin respectively. According to physiologically-based pharmacokinetic modelling, neodiospyrin was the best candidate due to its remarkable binding energy (−13.28 kcal/mol), ligand efficiency (0.474), and intracellular lung accumulation. Also, Arbutin showed good safety but restricted tissue penetration. Through Prediction of Activity Spectra of substances (PASS) analysis, both compounds demonstrated complementary biological activities like modulation of apoptosis and anti-inflammatory effects. Target fishing indicated possible human off-target interactions (GPCRs for arbutin, kinases for neodiospyrin) but this requires further experimental validation. Our findings presented and demonstrated the potential of ClpP1P2 inhibition for tuberculosis treatment, with neodiospyrin identified as a key candidate for further improvement against drug-resistant strains.
Keywords:
ClpP1P2 Protease Drug-Resistant Tuberculosis Molecular Docking Neodiospyrin Pharmacokinetic Modeling
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(2), (2025)
Pages
125-144
Published
Copyright
Copyright (c) 2025 Omoyele Olatunji Alli, Olayinka Afeez Bankole, Al-islam Abimbola Balogun, Moyinoluwa Tolulope Abioye (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Abreu, R., Giri, P., & Quinn, F. (2020). Host-pathogen interaction as a novel target for host-directed therapies in tuberculosis. Frontiers in immunology, 11, 1553. https://doi.org/10.3389/fimmu.2020.01553
Adeniyi, B. A., Fong, H. H. S., Pezzuto, J. M., Luyengi, L., & Odelola, H. A. (2000). Antibacterial activity of diospyrin, isodiospyrin and bisisodiospyrin from the root of Diospyros piscatoria (Gurke)(Ebenaceae). Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 14(2), 112-117. https://doi.org/10.1002/(SICI)1099-1573(200003)14:2%3C112::AID-PTR488%3E3.0.CO;2-T
Ahmad, F., Rani, A., Alam, A., Zarin, S., Pandey, S., Singh, H., ... & Ehtesham, N. Z. (2022). Macrophage: a cell with many faces and functions in tuberculosis. Frontiers in immunology, 13, 747799. https://doi.org/10.3389/fcimb.2020.618414
Åkerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nature reviews Molecular cell biology, 11(8), 545-555. https://doi.org/10.1038/nrm2938
Ann, I. C. R. P. (2002). Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP, 32(3), 5. https://doi.org/10.1016/0146-6453(79)90123-4
Aungst, B. J. (2017). Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. Journal of pharmaceutical sciences, 106(4), 921-929. https://doi.org/10.1016/j.xphs.2016.12.002
Banks, W. A. (2009). Characteristics of compounds that cross the blood-brain barrier. BMC neurology, 9(Suppl 1), S3. https://doi.org/10.1186/1471-2377-9-S1-S3
Baptista, R., Bhowmick, S., Shen, J., & Mur, L. A. (2021). Molecular docking suggests the targets of anti-mycobacterial natural products. Molecules, 26(2), 475. https://doi.org/10.3390/molecules26020475
Baptista, R., Bhowmick, S., Shen, J., & Mur, L. A. (2021). Molecular docking suggests the targets of anti-mycobacterial natural products. Molecules, 26(2), 475. https://doi.org/10.3390/molecules26020475
Barry 3rd, C. E., Boshoff, H. I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., ... & Young, D. (2009). The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology, 7(12), 845-855. https://doi.org/10.1038/nrmicro2236
Bhalla, M., Mittal, R., Kumar, M., & Kushwah, A. S. (2022). Pharmacological Aspects of a Bioactive Compound Arbutin: A Comprehensive Review. Biointerface Research in Applied Chemistry, 13, 119. https://doi.org/10.33263/BRIAC132.119
Chandra, P., Grigsby, S. J., & Philips, J. A. (2022). Immune evasion and provocation by Mycobacterium tuberculosis. Nature Reviews Microbiology, 20(12), 750-766. https://doi.org/10.1038/s41579-022-00763-4
Chen, M., Borlak, J., & Tong, W. (2013). High lipophilicity and high daily dose of oral medications are associated with significant risk for drug‐induced liver injury. Hepatology, 58(1), 388-396.
Coleman, M., Martinez, L., Theron, G., Wood, R., & Marais, B. (2022). Mycobacterium tuberculosis transmission in high-incidence settings—new paradigms and insights. Pathogens, 11(11), 1228. https://doi.org/10.3390/pathogens11111228
D’Ambrosio, L., Centis, R., Sotgiu, G., Pontali, E., Spanevello, A., & Migliori, G. B. (2015). New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Research, 1(1). https://doi.org/10.1183/23120541.00010-2015
Eastmond, D. A., Hartwig, A., Anderson, D., Anwar, W. A., Cimino, M. C., Dobrev, I., ... & Vickers, C. (2009). Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme. Mutagenesis, 24(4), 341-349. https://doi.org/10.1093/mutage/gep014
Ekins, S., Spektor, A. C., Clark, A. M., Dole, K., & Bunin, B. A. (2017). Collaborative drug discovery for More Medicines for Tuberculosis (MM4TB). Drug discovery today, 22(3), 555-565. https://doi.org/10.1016/j.drudis.2016.10.009
Eweas, A. F., Maghrabi, I. A., & Namarneh, A. I. (2014). Advances in molecular modeling and docking as a tool for modern drug discovery. Der Pharma Chemica, 6(6), 211-228. http://derpharmachemica.com/archive.html
Famulla, K., Sass, P., Malik, I., Akopian, T., Kandror, O., Alber, M., ... & Brötz‐Oesterhelt, H. (2016). Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease. Molecular microbiology, 101(2), 194-209. https://doi.org/10.1111/mmi.13362
Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444-457. https://doi.org/10.1007/s10593-014-1496-1
Fischer, A., Smiesko, M., Sellner, M., & Lill, M. A. (2021). Decision making in structure-based drug discovery: visual inspection of docking results. Journal of Medicinal Chemistry, 64(5), 2489-2500. https://doi.org/10.1021/acs.jmedchem.0c02227
Freitas de Freitas, T., Roth, C. D., Abbadi, B. L., Hopf, F. S. M., Perelló, M. A., de Matos Czeczot, A., ... & Timmers, L. F. S. M. (2023). Identification of potential inhibitors of Mycobacterium tuberculosis shikimate kinase: molecular docking, in silico toxicity and in vitro experiments. Journal of Computer-Aided Molecular Design, 37(3), 117-128. https://doi.org/10.1007/s10822-022-00495-w
Ge, P., Lei, Z., Yu, Y., Lu, Z., Qiang, L., Chai, Q., ... & Wang, J. (2022). M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy, 18(3), 576-594. https://doi.org/10.1080/15548627.2021.1938912
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic acids research, 42(W1), W32-W38. https://doi.org/10.1093/nar/gku293
Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C., & Reynolds, C. H. (2014). The role of ligand efficiency metrics in drug discovery. Nature reviews Drug discovery, 13(2), 105-121. https://doi.org/10.1038/nrd4163
Houben, R. M., & Dodd, P. J. (2016). The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS medicine, 13(10), e1002152. https://doi.org/10.1371/journal.pmed.1002152
Khan, N., Syed, D. N., Ahmad, N., & Mukhtar, H. (2013). Fisetin: a dietary antioxidant for health promotion. Antioxidants & redox signaling, 19(2), 151-162. https://doi.org/10.1089/ars.2012.4901
Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery, 3(11), 935-949. https://doi.org/10.1038/nrd1549
Kliewer, S. A., Goodwin, B., & Willson, T. M. (2002). The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocrine reviews, 23(5), 687-702.
Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. In Homology modeling: Methods and protocols (pp. 231-257). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-588-6_10
Kumar, A., Farhana, A., Guidry, L., Saini, V., Hondalus, M., & Steyn, A. J. (2011). Redox homeostasis in mycobacteria: the key to tuberculosis control?. Expert reviews in molecular medicine, 13, e39. https://doi.org/10.1017/S1462399411002079
Kumar, J. K., Prasad, A. D., & Chaturvedi, V. (2014). Phytochemical screening of five medicinal legumes and their evaluation for in vitro anti-tubercular activity. AYU (An International Quarterly Journal of Research in Ayurveda), 35(1), 98-102. https://doi.org/10.4103/0974-8520.141952
Leibold, J. E. (1966). The ocular toxicity of ethambutol and its relation to dose. Annals of the New York Academy of Sciences, 135(2), 904-909. https://doi.org/10.1111/j.1749-6632.1966.tb45532.x
Lein, P., Locke, P., & Goldberg, A. (2007). Meeting report: alternatives for developmental neurotoxicity testing. Environmental health perspectives, 115(5), 764-768. https://doi.org/10.1289/ehp.9841
Leodolter, J., Warweg, J., & Weber-Ban, E. (2015). The Mycobacterium tuberculosis ClpP1P2 protease interacts asymmetrically with its ATPase partners ClpX and ClpC1. PloS one, 10(5), e0125345. https://doi.org/10.1371/journal.pone.0125345
Li, D. H. S., Chung, Y. S., Gloyd, M., Joseph, E., Ghirlando, R., Wright, G. D., ... & Ortega, J. (2010). Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Chemistry & biology, 17(9), 959-969. https://doi.org/10.1016/j.chembiol.2010.07.008
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3), 3-25. https://doi.org/10.1016/S0169-409X(96)00423-1
Maeda, K. A., & Fukuda, M. (1991). In vitro effectiveness of several whitening cosmetic components in human melanocytes. Journal of the Society of Cosmetic Chemists, 42(6), 361-368. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5508354
Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design, 7(2), 146-157. https://doi.org/10.2174/157340911795677602
Mohanty, M., & Mohanty, P. S. (2023). Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Monatshefte für Chemie-Chemical Monthly, 154(7), 683-707. https://doi.org/10.1007/s00706-023-03076-1
Ollinger, J., O’Malley, T., Kesicki, E. A., Odingo, J., & Parish, T. (2012). Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. Journal of bacteriology, 194(3), 663-668. https://doi.org/10.1128/jb.06142-11
Pieters, J. (2008). Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell host & microbe, 3(6), 399-407. https://doi.org/10.1016/j.chom.2008.05.001
Prentki, M., Peyot, M. L., Masiello, P., & Madiraju, S. M. (2020). Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes, 69(3), 279-290. https://doi.org/10.2337/dbi19-0014
Putra, O. N., & Adiwinoto, R. P. (2023). Linezolid-associated neurologic toxicity in patients with drug-resistant tuberculosis in a bedaquiline-based regimen: A scoping review. Journal of Preventive, Diagnostic and Treatment Strategies in Medicine, 2(4), 194-201. https://doi.org/10.4103/jpdtsm.jpdtsm_117_23
Putra, O. N., Faizah, A. K., & DN, N. W. (2023). Six Months of Bedaquiline-Pretomanid-Linezolid (BPaL) Regimen in Patients with Drug-Resistant Tuberculosis: A Narrative Review. Journal of Endocrinology, Tropical Medicine, and Infectious Disease (JETROMI), 5(2), 83-95. https://doi.org/10.32734/jetromi.v5i2.12373
Qiu, K. H., Wang, Y. J., Cheng, K. L., Jiang, L. Q., Li, X., & Zhang, J. L. (2025). Preparation, characterization and analysis of anthocyanin arbutin co-amorphous complexes and evaluation of the inhibition of tyrosinase. International Journal of Biological Macromolecules, 143600. https://doi.org/10.1016/j.ijbiomac.2025.143600
Rahman, F. (2024). Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Frontiers in Immunology, 15, 1437901. https://doi.org/10.3389/fimmu.2024.1437901
Raju, R. M., Unnikrishnan, M., Rubin, D. H., Krishnamoorthy, V., Kandror, O., Akopian, T. N., ... & Rubin, E. J. (2012). Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS pathogens, 8(2), e1002511. https://doi.org/10.1371/journal.ppat.1002511
Reynolds, C. H., Tounge, B. A., & Bembenek, S. D. (2008). Ligand binding efficiency: trends, physical basis, and implications. Journal of medicinal chemistry, 51(8), 2432-2438. https://doi.org/10.1021/jm701255b
Rodgers, T., & Rowland, M. (2007). Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharmaceutical research, 24(5), 918-933. https://doi.org/10.1007/s11095-006-9210-3
Ronacher, K., Joosten, S. A., van Crevel, R., Dockrell, H. M., Walzl, G., & Ottenhoff, T. H. (2015). Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus. Immunological reviews, 264(1), 121-137. https://doi.org/10.1111/imr.12257
Saukkonen, J. J., Cohn, D. L., Jasmer, R. M., Schenker, S., Jereb, J. A., Nolan, C. M., ... & Sterling, T. R. (2006). An official ATS statement: hepatotoxicity of antituberculosis therapy. American journal of respiratory and critical care medicine, 174(8), 935-952. https://doi.org/10.1164/rccm.200510-1666ST
Schmitz, K. R., Carney, D. W., Sello, J. K., & Sauer, R. T. (2014). Crystal structure of Mycobacterium tuberculosis ClpP1P2 suggests a model for peptidase activation by AAA+ partner binding and substrate delivery. Proceedings of the National Academy of Sciences, 111(43), E4587-E4595. https://doi.org/10.1073/pnas.1417120111
Shahbaaz, M., Qari, S. H., Abdellattif, M. H., & Hussien, M. A. (2022). Structural analyses and classification of novel isoniazid resistance coupled mutational landscapes in Mycobacterium tuberculosis: a combined molecular docking and MD simulation study. Journal of Biomolecular Structure and Dynamics, 40(11), 4791-4800. https://doi.org/10.1080/07391102.2020.1861986
Shu, P., Wang, Y., & Zhang, L. (2024). The effect of α-arbutin on UVB-induced damage and its underlying mechanism. Molecules, 29(9), 1921. https://doi.org/10.3390/molecules29091921
Sujjavorakul, K., Katip, W., Kerr, S. J., Wacharachaisurapol, N., & Puthanakit, T. (2023). Predicting the area under the plasma concentration-time curve (AUC) for first dose vancomycin using first-order pharmacokinetic equations. Antibiotics, 12(4), 630. https://doi.org/10.3390/antibiotics12040630
Suryanti, S., & Ahmed, I. A. (2025). Correlation Between Demographic Factors (Age, Gender, and Living Area) and Tuberculosis Notification Rates in Private Healthcare: a Cross-sectional Study. International Journal of Health Literacy and Science, 3(1), 33-39. https://doi.org/10.60074/ihelis.v3i1.68
Tasneen, R., Mortensen, D. S., Converse, P. J., Urbanowski, M. E., Upton, A., Fotouhi, N., ... & Hawryluk, N. (2021). Dual mTORC1/mTORC2 inhibition as a host-directed therapeutic target in pathologically distinct mouse models of tuberculosis. Antimicrobial agents and chemotherapy, 65(7), 10-1128. https://doi.org/10.1128/aac.00253-21
Tian, N., Chu, H., Li, Q., Sun, H., Zhang, J., Chu, N., & Sun, Z. (2025). Host-directed therapy for tuberculosis. European Journal of Medical Research, 30(1), 267. https://doi.org/10.1186/s40001-025-02443-4
Van der Kooy, F., Meyer, J. J. M., & Lall, N. (2006). Antimycobacterial activity and possible mode of action of newly isolated neodiospyrin and other naphthoquinones from Euclea natalensis. South African Journal of Botany, 72(3), 349-352. https://doi.org/10.1016/j.sajb.2005.09.009
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry, 45(12), 2615-2623. https://doi.org/10.1021/jm020017n
Vilchèze, C. (2020). Mycobacterial cell wall: a source of successful targets for old and new drugs. Applied Sciences, 10(7), 2278. https://doi.org/10.3390/app10072278
World Health Organization. (2024). Global tuberculosis report 2024. World Health Organization. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024
Wu, S. Y., Dornan, J., Kontopidis, G., Taylor, P., & Walkinshaw, M. D. (2001). The first direct determination of a ligand binding constant in protein crystals. Angewandte Chemie, 113(3), 602-606. https://doi.org/10.1002/1521-3773(20010202)40:3%3C582::AID-ANIE582%3E3.0.CO;2-0
Yuan, T., Werman, J. M., & Sampson, N. S. (2021). The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC chemical biology, 2(2), 423-440. https://doi.org/10.1039/D0CB00226G
Zhang, H., Zhang, J., & Streisand, J. B. (2002). Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clinical pharmacokinetics, 41(9), 661-680. https://doi.org/10.2165/00003088-200241090-00003
Zumla, A., Nahid, P., & Cole, S. T. (2013). Advances in the development of new tuberculosis drugs and treatment regimens. Nature reviews Drug discovery, 12(5), 388-404. https://doi.org/10.1038/nrd4001