Research Article

In Silico Identification of Natural Compounds Targeting the Essential ClpP1P2 Protease in Mycobacterium tuberculosis

Authors

Abstract

Drug-resistant strains of tuberculosis (TB) is caused by Mycobacterium tuberculosis and are making the disease a global health emergency. This calls for new treatments that target unidentified bacterial pathways. In order to find natural inhibitors of the ClpP1P2 protease that is a crucial virulence factor for mycobacterial survival, our study used computational techniques. We used molecular docking to screen 100 compounds against the ClpP1P2 structure (PDB: 4U0G) while giving preference to ligands with higher binding affinities than reference medications (ethambutol, isoniazid). To evaluate therapeutic potential, we subjected top hits to target fishing, toxicity prediction and pharmacokinetic profiling. Our top two hit compounds were neodiospyrin and arbutin respectively. According to physiologically-based pharmacokinetic modelling, neodiospyrin was the best candidate due to its remarkable binding energy (−13.28 kcal/mol), ligand efficiency (0.474), and intracellular lung accumulation. Also, Arbutin showed good safety but restricted tissue penetration. Through Prediction of Activity Spectra of substances (PASS) analysis, both compounds demonstrated complementary biological activities like modulation of apoptosis and anti-inflammatory effects. Target fishing indicated possible human off-target interactions (GPCRs for arbutin, kinases for neodiospyrin) but this requires further experimental validation. Our findings presented and demonstrated the potential of ClpP1P2 inhibition for tuberculosis treatment, with neodiospyrin identified as a key candidate for further improvement against drug-resistant strains.

Keywords:

ClpP1P2 Protease Drug-Resistant Tuberculosis Molecular Docking Neodiospyrin Pharmacokinetic Modeling

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(2), (2025)

Pages

125-144

Published

02-09-2025

How to Cite

Alli, O. O., Bankole, O. A., Balogun, A. A., & Abioye, M. T. (2025). In Silico Identification of Natural Compounds Targeting the Essential ClpP1P2 Protease in Mycobacterium tuberculosis. Journal of Medical Science, Biology, and Chemistry, 2(2), 125-144. https://doi.org/10.69739/jmsbc.v2i2.918

References

Abreu, R., Giri, P., & Quinn, F. (2020). Host-pathogen interaction as a novel target for host-directed therapies in tuberculosis. Frontiers in immunology, 11, 1553. https://doi.org/10.3389/fimmu.2020.01553

Adeniyi, B. A., Fong, H. H. S., Pezzuto, J. M., Luyengi, L., & Odelola, H. A. (2000). Antibacterial activity of diospyrin, isodiospyrin and bisisodiospyrin from the root of Diospyros piscatoria (Gurke)(Ebenaceae). Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 14(2), 112-117. https://doi.org/10.1002/(SICI)1099-1573(200003)14:2%3C112::AID-PTR488%3E3.0.CO;2-T

Ahmad, F., Rani, A., Alam, A., Zarin, S., Pandey, S., Singh, H., ... & Ehtesham, N. Z. (2022). Macrophage: a cell with many faces and functions in tuberculosis. Frontiers in immunology, 13, 747799. https://doi.org/10.3389/fcimb.2020.618414

Åkerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nature reviews Molecular cell biology, 11(8), 545-555. https://doi.org/10.1038/nrm2938

Ann, I. C. R. P. (2002). Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP, 32(3), 5. https://doi.org/10.1016/0146-6453(79)90123-4

Aungst, B. J. (2017). Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. Journal of pharmaceutical sciences, 106(4), 921-929. https://doi.org/10.1016/j.xphs.2016.12.002

Banks, W. A. (2009). Characteristics of compounds that cross the blood-brain barrier. BMC neurology, 9(Suppl 1), S3. https://doi.org/10.1186/1471-2377-9-S1-S3

Baptista, R., Bhowmick, S., Shen, J., & Mur, L. A. (2021). Molecular docking suggests the targets of anti-mycobacterial natural products. Molecules, 26(2), 475. https://doi.org/10.3390/molecules26020475

Baptista, R., Bhowmick, S., Shen, J., & Mur, L. A. (2021). Molecular docking suggests the targets of anti-mycobacterial natural products. Molecules, 26(2), 475. https://doi.org/10.3390/molecules26020475

Barry 3rd, C. E., Boshoff, H. I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., ... & Young, D. (2009). The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology, 7(12), 845-855. https://doi.org/10.1038/nrmicro2236

Bhalla, M., Mittal, R., Kumar, M., & Kushwah, A. S. (2022). Pharmacological Aspects of a Bioactive Compound Arbutin: A Comprehensive Review. Biointerface Research in Applied Chemistry, 13, 119. https://doi.org/10.33263/BRIAC132.119

Chandra, P., Grigsby, S. J., & Philips, J. A. (2022). Immune evasion and provocation by Mycobacterium tuberculosis. Nature Reviews Microbiology, 20(12), 750-766. https://doi.org/10.1038/s41579-022-00763-4

Chen, M., Borlak, J., & Tong, W. (2013). High lipophilicity and high daily dose of oral medications are associated with significant risk for drug‐induced liver injury. Hepatology, 58(1), 388-396.

Coleman, M., Martinez, L., Theron, G., Wood, R., & Marais, B. (2022). Mycobacterium tuberculosis transmission in high-incidence settings—new paradigms and insights. Pathogens, 11(11), 1228. https://doi.org/10.3390/pathogens11111228

D’Ambrosio, L., Centis, R., Sotgiu, G., Pontali, E., Spanevello, A., & Migliori, G. B. (2015). New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Research, 1(1). https://doi.org/10.1183/23120541.00010-2015

Eastmond, D. A., Hartwig, A., Anderson, D., Anwar, W. A., Cimino, M. C., Dobrev, I., ... & Vickers, C. (2009). Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme. Mutagenesis, 24(4), 341-349. https://doi.org/10.1093/mutage/gep014

Ekins, S., Spektor, A. C., Clark, A. M., Dole, K., & Bunin, B. A. (2017). Collaborative drug discovery for More Medicines for Tuberculosis (MM4TB). Drug discovery today, 22(3), 555-565. https://doi.org/10.1016/j.drudis.2016.10.009

Eweas, A. F., Maghrabi, I. A., & Namarneh, A. I. (2014). Advances in molecular modeling and docking as a tool for modern drug discovery. Der Pharma Chemica, 6(6), 211-228. http://derpharmachemica.com/archive.html

Famulla, K., Sass, P., Malik, I., Akopian, T., Kandror, O., Alber, M., ... & Brötz‐Oesterhelt, H. (2016). Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease. Molecular microbiology, 101(2), 194-209. https://doi.org/10.1111/mmi.13362

Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444-457. https://doi.org/10.1007/s10593-014-1496-1

Fischer, A., Smiesko, M., Sellner, M., & Lill, M. A. (2021). Decision making in structure-based drug discovery: visual inspection of docking results. Journal of Medicinal Chemistry, 64(5), 2489-2500. https://doi.org/10.1021/acs.jmedchem.0c02227

Freitas de Freitas, T., Roth, C. D., Abbadi, B. L., Hopf, F. S. M., Perelló, M. A., de Matos Czeczot, A., ... & Timmers, L. F. S. M. (2023). Identification of potential inhibitors of Mycobacterium tuberculosis shikimate kinase: molecular docking, in silico toxicity and in vitro experiments. Journal of Computer-Aided Molecular Design, 37(3), 117-128. https://doi.org/10.1007/s10822-022-00495-w

Ge, P., Lei, Z., Yu, Y., Lu, Z., Qiang, L., Chai, Q., ... & Wang, J. (2022). M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy, 18(3), 576-594. https://doi.org/10.1080/15548627.2021.1938912

Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic acids research, 42(W1), W32-W38. https://doi.org/10.1093/nar/gku293

Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C., & Reynolds, C. H. (2014). The role of ligand efficiency metrics in drug discovery. Nature reviews Drug discovery, 13(2), 105-121. https://doi.org/10.1038/nrd4163

Houben, R. M., & Dodd, P. J. (2016). The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS medicine, 13(10), e1002152. https://doi.org/10.1371/journal.pmed.1002152

Khan, N., Syed, D. N., Ahmad, N., & Mukhtar, H. (2013). Fisetin: a dietary antioxidant for health promotion. Antioxidants & redox signaling, 19(2), 151-162. https://doi.org/10.1089/ars.2012.4901

Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery, 3(11), 935-949. https://doi.org/10.1038/nrd1549

Kliewer, S. A., Goodwin, B., & Willson, T. M. (2002). The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocrine reviews, 23(5), 687-702.

Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. In Homology modeling: Methods and protocols (pp. 231-257). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-588-6_10

Kumar, A., Farhana, A., Guidry, L., Saini, V., Hondalus, M., & Steyn, A. J. (2011). Redox homeostasis in mycobacteria: the key to tuberculosis control?. Expert reviews in molecular medicine, 13, e39. https://doi.org/10.1017/S1462399411002079

Kumar, J. K., Prasad, A. D., & Chaturvedi, V. (2014). Phytochemical screening of five medicinal legumes and their evaluation for in vitro anti-tubercular activity. AYU (An International Quarterly Journal of Research in Ayurveda), 35(1), 98-102. https://doi.org/10.4103/0974-8520.141952

Leibold, J. E. (1966). The ocular toxicity of ethambutol and its relation to dose. Annals of the New York Academy of Sciences, 135(2), 904-909. https://doi.org/10.1111/j.1749-6632.1966.tb45532.x

Lein, P., Locke, P., & Goldberg, A. (2007). Meeting report: alternatives for developmental neurotoxicity testing. Environmental health perspectives, 115(5), 764-768. https://doi.org/10.1289/ehp.9841

Leodolter, J., Warweg, J., & Weber-Ban, E. (2015). The Mycobacterium tuberculosis ClpP1P2 protease interacts asymmetrically with its ATPase partners ClpX and ClpC1. PloS one, 10(5), e0125345. https://doi.org/10.1371/journal.pone.0125345

Li, D. H. S., Chung, Y. S., Gloyd, M., Joseph, E., Ghirlando, R., Wright, G. D., ... & Ortega, J. (2010). Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Chemistry & biology, 17(9), 959-969. https://doi.org/10.1016/j.chembiol.2010.07.008

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3), 3-25. https://doi.org/10.1016/S0169-409X(96)00423-1

Maeda, K. A., & Fukuda, M. (1991). In vitro effectiveness of several whitening cosmetic components in human melanocytes. Journal of the Society of Cosmetic Chemists, 42(6), 361-368. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5508354

Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design, 7(2), 146-157. https://doi.org/10.2174/157340911795677602

Mohanty, M., & Mohanty, P. S. (2023). Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Monatshefte für Chemie-Chemical Monthly, 154(7), 683-707. https://doi.org/10.1007/s00706-023-03076-1

Ollinger, J., O’Malley, T., Kesicki, E. A., Odingo, J., & Parish, T. (2012). Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. Journal of bacteriology, 194(3), 663-668. https://doi.org/10.1128/jb.06142-11

Pieters, J. (2008). Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell host & microbe, 3(6), 399-407. https://doi.org/10.1016/j.chom.2008.05.001

Prentki, M., Peyot, M. L., Masiello, P., & Madiraju, S. M. (2020). Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes, 69(3), 279-290. https://doi.org/10.2337/dbi19-0014

Putra, O. N., & Adiwinoto, R. P. (2023). Linezolid-associated neurologic toxicity in patients with drug-resistant tuberculosis in a bedaquiline-based regimen: A scoping review. Journal of Preventive, Diagnostic and Treatment Strategies in Medicine, 2(4), 194-201. https://doi.org/10.4103/jpdtsm.jpdtsm_117_23

Putra, O. N., Faizah, A. K., & DN, N. W. (2023). Six Months of Bedaquiline-Pretomanid-Linezolid (BPaL) Regimen in Patients with Drug-Resistant Tuberculosis: A Narrative Review. Journal of Endocrinology, Tropical Medicine, and Infectious Disease (JETROMI), 5(2), 83-95. https://doi.org/10.32734/jetromi.v5i2.12373

Qiu, K. H., Wang, Y. J., Cheng, K. L., Jiang, L. Q., Li, X., & Zhang, J. L. (2025). Preparation, characterization and analysis of anthocyanin arbutin co-amorphous complexes and evaluation of the inhibition of tyrosinase. International Journal of Biological Macromolecules, 143600. https://doi.org/10.1016/j.ijbiomac.2025.143600

Rahman, F. (2024). Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Frontiers in Immunology, 15, 1437901. https://doi.org/10.3389/fimmu.2024.1437901

Raju, R. M., Unnikrishnan, M., Rubin, D. H., Krishnamoorthy, V., Kandror, O., Akopian, T. N., ... & Rubin, E. J. (2012). Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS pathogens, 8(2), e1002511. https://doi.org/10.1371/journal.ppat.1002511

Reynolds, C. H., Tounge, B. A., & Bembenek, S. D. (2008). Ligand binding efficiency: trends, physical basis, and implications. Journal of medicinal chemistry, 51(8), 2432-2438. https://doi.org/10.1021/jm701255b

Rodgers, T., & Rowland, M. (2007). Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharmaceutical research, 24(5), 918-933. https://doi.org/10.1007/s11095-006-9210-3

Ronacher, K., Joosten, S. A., van Crevel, R., Dockrell, H. M., Walzl, G., & Ottenhoff, T. H. (2015). Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus. Immunological reviews, 264(1), 121-137. https://doi.org/10.1111/imr.12257

Saukkonen, J. J., Cohn, D. L., Jasmer, R. M., Schenker, S., Jereb, J. A., Nolan, C. M., ... & Sterling, T. R. (2006). An official ATS statement: hepatotoxicity of antituberculosis therapy. American journal of respiratory and critical care medicine, 174(8), 935-952. https://doi.org/10.1164/rccm.200510-1666ST

Schmitz, K. R., Carney, D. W., Sello, J. K., & Sauer, R. T. (2014). Crystal structure of Mycobacterium tuberculosis ClpP1P2 suggests a model for peptidase activation by AAA+ partner binding and substrate delivery. Proceedings of the National Academy of Sciences, 111(43), E4587-E4595. https://doi.org/10.1073/pnas.1417120111

Shahbaaz, M., Qari, S. H., Abdellattif, M. H., & Hussien, M. A. (2022). Structural analyses and classification of novel isoniazid resistance coupled mutational landscapes in Mycobacterium tuberculosis: a combined molecular docking and MD simulation study. Journal of Biomolecular Structure and Dynamics, 40(11), 4791-4800. https://doi.org/10.1080/07391102.2020.1861986

Shu, P., Wang, Y., & Zhang, L. (2024). The effect of α-arbutin on UVB-induced damage and its underlying mechanism. Molecules, 29(9), 1921. https://doi.org/10.3390/molecules29091921

Sujjavorakul, K., Katip, W., Kerr, S. J., Wacharachaisurapol, N., & Puthanakit, T. (2023). Predicting the area under the plasma concentration-time curve (AUC) for first dose vancomycin using first-order pharmacokinetic equations. Antibiotics, 12(4), 630. https://doi.org/10.3390/antibiotics12040630

Suryanti, S., & Ahmed, I. A. (2025). Correlation Between Demographic Factors (Age, Gender, and Living Area) and Tuberculosis Notification Rates in Private Healthcare: a Cross-sectional Study. International Journal of Health Literacy and Science, 3(1), 33-39. https://doi.org/10.60074/ihelis.v3i1.68

Tasneen, R., Mortensen, D. S., Converse, P. J., Urbanowski, M. E., Upton, A., Fotouhi, N., ... & Hawryluk, N. (2021). Dual mTORC1/mTORC2 inhibition as a host-directed therapeutic target in pathologically distinct mouse models of tuberculosis. Antimicrobial agents and chemotherapy, 65(7), 10-1128. https://doi.org/10.1128/aac.00253-21

Tian, N., Chu, H., Li, Q., Sun, H., Zhang, J., Chu, N., & Sun, Z. (2025). Host-directed therapy for tuberculosis. European Journal of Medical Research, 30(1), 267. https://doi.org/10.1186/s40001-025-02443-4

Van der Kooy, F., Meyer, J. J. M., & Lall, N. (2006). Antimycobacterial activity and possible mode of action of newly isolated neodiospyrin and other naphthoquinones from Euclea natalensis. South African Journal of Botany, 72(3), 349-352. https://doi.org/10.1016/j.sajb.2005.09.009

Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry, 45(12), 2615-2623. https://doi.org/10.1021/jm020017n

Vilchèze, C. (2020). Mycobacterial cell wall: a source of successful targets for old and new drugs. Applied Sciences, 10(7), 2278. https://doi.org/10.3390/app10072278

World Health Organization. (2024). Global tuberculosis report 2024. World Health Organization. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024

Wu, S. Y., Dornan, J., Kontopidis, G., Taylor, P., & Walkinshaw, M. D. (2001). The first direct determination of a ligand binding constant in protein crystals. Angewandte Chemie, 113(3), 602-606. https://doi.org/10.1002/1521-3773(20010202)40:3%3C582::AID-ANIE582%3E3.0.CO;2-0

Yuan, T., Werman, J. M., & Sampson, N. S. (2021). The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC chemical biology, 2(2), 423-440. https://doi.org/10.1039/D0CB00226G

Zhang, H., Zhang, J., & Streisand, J. B. (2002). Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clinical pharmacokinetics, 41(9), 661-680. https://doi.org/10.2165/00003088-200241090-00003

Zumla, A., Nahid, P., & Cole, S. T. (2013). Advances in the development of new tuberculosis drugs and treatment regimens. Nature reviews Drug discovery, 12(5), 388-404. https://doi.org/10.1038/nrd4001

Downloads

Views

33

Downloads

9