Article section
Isolation and Identification of Salt-tolerant (NaCl) Nitrosomonas Bacteria from Tanned Wastewater Sources
Abstract
Ammonium-rich and saline wastewater from the tanning industry poses a significant challenge for conventional biological treatment, as high salinity inhibits the activity of nitrifying bacteria. While halotolerant Nitrosomonas strains have been reported in hypersaline environments worldwide, their occurrence and characteristics in Vietnam remain largely unexplored. In this study, salt-tolerant Nitrosomonas strains were isolated from tanning wastewater at Hiep Phuoc Industrial Park, Ho Chi Minh City. Colonies were obtained using Winogradsky medium, and ammonium-oxidizing capacity was confirmed by the Griess-Ilosvay assay. Among the isolates, strain TD2 exhibited superior halotolerance, achieving 53.2% ammonium removal after 72 hours in enrichment medium supplemented with 10 g NaCl L-1, with a maximum cell density of 4.5 × 105 CFU mL-1. Molecular identification based on 16S rRNA gene sequencing revealed 99.39% similarity of TD2 to Nitrosomonas europaea, and phylogenetic analysis confirmed its clustering with salt-tolerant Nitrosomonas clades. This study provides the first report of halotolerant Nitrosomonas isolation from tanning wastewater in Vietnam, highlighting TD2 as a promising candidate for bioaugmentation in partial nitritation-anammox processes for nitrogen removal in saline ammonium-rich effluents.
Keywords:
16S rRNA Ammonium Oxidation Nitrosomonas Salinity Tolerance Tanning Wastewater
Article information
Journal
Journal of Medical Science, Biology, and Chemistry
Volume (Issue)
2(2), (2025)
Pages
200-205
Published
Copyright
Copyright (c) 2025 Kien Tran Trung, Dung Nguyen Hoang, Loan Le Quynh, Ngoc Tran Thi My, Nhung Vu Thi Tuyet, Dao Duong Thi Hong, Giap Do Dang, Dan Phan Van, Quan Luu Kim Minh, Linh Nguyen Thi My, Vinh Tran Quang (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
APHA. (2005). Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., Hooper, A., Klotz, M., Norton, J., Sayavedra-Soto, L., Arciero, D., Hommes, N., Whittaker, M., and Arp, D. (2003). Complete genome sequence of the ammonia-oxidizing bacterium Nitrosomonas europaea. Journal of Bacteriology, 185(9), 2759-2773. https://doi.org/10.1128/JB.185.9.2759-2773.2003
Cui, Y. W., Zhang, H. Y., Ding, J. R., & Peng, Y. Z. (2016). The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater. Scientific reports, 6(1), 24825. https://doi.org/10.1038/srep24825
European Commission. (2013). Best Available Techniques (BAT) Reference Document for the Tanning of Hides and Skins. Luxembourg: Publications Office of the European Union.
Jördening, H. J., & Winter, J. (2005). Environmental biotechnology: Concepts and applications. Weinheim: Wiley-VCH.
Koops, H. P., Bottcher, B., Moller, U. C., Pommerening-Roser, A., & Stehr, G. (1991). Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov., and Nitrosomonas halophila sp. nov. Microbiology, 137(7), 1689-1699. https://doi.org/10.1099/00221287-137-7-1689
Kowalchuk, G. A., & Stephen, J. R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Reviews in Microbiology, 55(1), 485-529. https://doi.org/10.1146/annurev.micro.55.1.485
Lewis, R. F., & Pramer, D. (1958). Isolation of Nitrosomonas in pure culture. Journal of Bacteriology, 76(5), 524-528.
Qin, W., Wei, S. P., Zheng, Y., Choi, E., Li, X., Johnston, J., ... & Winkler, M. K. H. (2024). Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences. Nature microbiology, 9(2), 524-536. https://doi.org/10.1038/s41564-023-01593-7
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor Laboratory Press.
Stein, L. Y., & Arp, D. J. (1998). Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to high concentrations of ammonia. Applied and Environmental Microbiology, 64(9), 4098-4102.
Sun, X., Zhao, J., Zhou. X., Bei. Q., Xia, W., Zhao, B., Zhang, J., Jia, Z. (2022). Salt tolerance-based niche differentiation of soil ammonia oxidizers. The ISME Journal, 16(2), 412-422, https://doi.org/10.1038/s41396-021-01079-6.
Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
Winogradsky, S. (1890). Research on nitrification organisms [Recherches sur les organismes de la nitrification]. Annales de l’Institut Pasteur, 4, 213-231.
Zhao, M., Tang, X., Sun, D., Hou, L., Liu, M., Zhao, Q., ... & Han, P. (2021). Salinity gradients shape the nitrifier community composition in Nanliu River Estuary sediments and the ecophysiology of comammox Nitrospira inopinata. Science of the Total Environment, 795, 148768. https://doi.org/10.1016/j.scitotenv.2021.148768
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline
Join in Editorial Team