Research Article

Assessment of Virulence Gene Expression in Entamoeba Strains from Basrah, Southern Iraq

Authors

  • Duaa Mardan Khalid Department of Biology, Science College, Basrah University, Iraq

    pgs.duaa.mardan@uobasrah.edu.iq

  • Athraa A. A. Al-Hilfi Department of Biology, Science College, Basrah University, Iraq
  • Najwa M. J. A. Abu-Mejdad Department of Biology, Science College, Basrah University, Iraq

Abstract

Entamoeba histolytica is the primary protozoan parasite causing amoebiasis, a disease characterized by diarrhea and dysentery. Entamoeba histolytica trophozoites develop a virulent phenotype that leads to intestinal tissue invasion and the onset of amoebiasis symptoms. Quantitative real-time PCR (qRT-PCR) was performed to quantify the expression levels of selected virulence genes cysteine protease (CP), amoebapore B (AP), and Gal/GalNAc lectin (GAL) in Entamoeba strains. Our findings showed that assessing the expression of three key virulence genes cysteine protease (CP), amoebapore (AP), and Gal/GalNAc lectin (GAL) in Entamoeba strains. The results revealed low CP expression across all strains, suggesting reduced invasive ability. High AP expression was observed in DM24, DM33 for E. moshkovskii strains, indicating strong cytolytic potential, while E. histolytica DM5 showed lower AP levels. GAL expression was elevated in E. histolytica DM1 and DM5 and E. moshkovskii DM33, pointing to effective adhesion, but was significantly lower in E. moshkovskii DM24, indicating impaired virulence. Overall, the study highlights strain-specific differences in virulence gene expression among Entamoeba strains. The study focused on evaluating the expression of key virulence genes in Entamoeba strains from Basrah, highlighting strain-specific differences that influence their pathogenicity. By analyzing genes involved in tissue invasion, cytolysis, and adhesion, the research provides insights into the varying disease-causing potential of different

Keywords:

Amoeba Pores (AP) Amoebiasis Cystine Protease (CP) Entamoeba Gal/GalNAc Lectin Real Time PCR

Article information

Journal

Journal of Medical Science, Biology, and Chemistry

Volume (Issue)

2(2), (2025)

Pages

152-158

Published

13-09-2025

How to Cite

Khalid, D. M., Al-Hilfi, A. A. A., & Abu-Mejdad, N. M. J. A. (2025). Assessment of Virulence Gene Expression in Entamoeba Strains from Basrah, Southern Iraq. Journal of Medical Science, Biology, and Chemistry, 2(2), 152-158. https://doi.org/10.69739/jmsbc.v2i2.991

References

Al-Abodi, H. R. J., Al-Mayali, H. M. H., & Ali, M. J. (2015). Molecular study of the most important virulence factor of Entamoeba histolytica in Diwaniyah province. International Journal of Advanced Research, 3(8), 231-236.

Al-Hilfi, A. A. (2020). Histological and diagnostic study of amoebiasis in Basrah governorate (pp. 1-178). PhD Thesis, College of Education, University of Basra.

Aledani, A. H. E., Khudhair, N. A., & Alrafas, H. R. (2020). Effect of different methods of anesthesia on physiobiochemical parameters in laboratory male rats. Basrah Journal of Veterinary Research, 19(1), 206-214.

Andrä, J., Herbst, R., & Leippe, M. (2003). Amoebapores, archaic effector peptides of protozoan origin, are discharged into phagosomes and kill bacteria by permeabilizing their membranes. Developmental & Comparative Immunology, 27(4), 291-304.

Bancroft, J. D., & Gamble, M. (2008). Theory and Practice of Histological Techniques (6th ed.).

Bansal, D., Ave, P., Kerneis, S., Frileux, P., Boché, O., Baglin, A. C., Dubost, G., Leguern, A. S., Prevost, M. C., Bracha, R., Mirelman, D., & Guillén, N. (2009). E. histolytica pathogenesis: low levels of Gal/GalNAc lectin and amoebapore A expression do not prevent tissue invasion. PLoS Pathogens, 5(5), e1000434.

Bracha, R., & Mirelman, D. (1983). Adherence and ingestion of Escherichia coli serotype 055 by trophozoites of Entamoeba histolytica. Infection and immunity, 40(3), 882-887.

Burgess, S. L., Gilchrist, C. A., Lynn, T. C., & Petri, W. A. (2017).Parasitic protozoa and interactions with the host intestinal microbiota. Infection and immunity, 85(8), e00101-17.

Diamond, L. S., Harlow, D. R., & Cunnick, C. C. (1978). A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Transactions of the Royal Society of Tropical Medicine and Hygiene, 72(4), 431–432.

Dolabella, S. S., Serrano-Luna, J., Navarro-García, F., Cerritos, R., Ximénez, C., Galván-Moroyoqui, J. M., Silva, E. F., Tsutsumi, V., & Shibayama, M. (2012). Amoebic liver abscess production by Entamoeba dispar. Journal of Hematology, 11(1), 107.

Frederick, J. R., & Petri, W. A. Jr. (2005). Roles for the galactose/N-acetyl galactosamine-binding lectin of Entamoebain parasite virulence and differentiation. Glycobiology, 15, 53-59.

González-Rivas, E., Nieves-Ramírez, M., Magaña, U., Morán, P., Rojas-Velázquez, L., Hernández, E., ... & Ximénez, C. (2020). Differential pathogenic gene expression of E. histolytica in patients with different clinical forms of amoebiasis. Microorganisms, 8(10), 1556.

Haque, R., Huston, C. D., Hughes, M., Houpt, E., & Petri Jr, W. A. (2003). Amebiasis. New England journal of medicine, 348(16), 1565-1573.

Leippe, M. (1997). Amoebapores. Parasitology Today, 13(5), 178–183.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.

Lohia, A. (2003). The cell cycle of Entamoeba histolytica. Molecular and cellular biochemistry, 253(1), 217-222.

Mortimer, L., & Chadee, K. (2010). The immunopathogenesis of Entamoeba histolytica. Experimental parasitology, 126(3), 366-380.

Nagaraja, S., & Ankri, S. (2018). Utilization of different omic approaches to unravel stress response mechanisms in the parasite Entamoeba histolytica. Frontiers in Cellular and Infection Microbiology, 8, Article 19

Ohnishi, K., Kato, Y., Imamura, A., Fukayama, M., Tsunoda, T., Sakaue, Y., ... & Sagara, H. (2004). Present characteristics of symptomatic Entamoeba histolytica infection in the big cities of Japan. Epidemiology & Infection, 132(1), 57-60.

Petri, W. A. Jr., Haque, R., & Mann, B. J. (2002). The bittersweet interface of parasite and host: lectin carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annual Review of Microbiology, 56, 39–64.

Que, X., & Reed, S. L. (2000). Cysteine proteinases and the pathogenesis of amebiasis. Clinical microbiology reviews, 13(2), 196-206.

Ravdin, J. I., Nash, T. E., & Petri, W. A. Jr. (2003). Entamoeba histolytica and amebiasis. In D. L. Kasper et al. (Eds.), Harrison’s Principles of Internal Medicine (16th ed., pp. 983–985).

Royer, T. L., & Petri Jr., W. A. (2014). Waterborne parasites Entamoeba. In Encyclopedia of Food Microbiology (2nd ed., pp. 782-786). Academic Press.

Royer, T. L., & Petri Jr., W. A. (2014). Waterborne Parasites | Entamoeba. In Encyclopedia of Food Microbiology (Second Edition, pp. 782-786). Academic Press.

Ryan, K. J. (2017). Pathogenesis and Diagnosis of Parasitic Infection. In: Ryan KJ, (Ed.). Sherris Medical Microbiology (7th ed.). McGraw-Hill Education

Saha, A., Gaurav, A. K., Bhattacharya, S., & Bhattacharya, A. (2015). Molecular basis of pathogenesis in amoebiasis. Current Clinical Microbiology Reports, 2(4), 143-154.

Vicente, J. B., Ehrenkaufer, G. M., Saraiva, L. M., Teixeira, M., & Singh, U. (2009). Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: Implications for amebic pathogenesis. Cellular Microbiology, 11(1), 51–69.

WHO (PAN American Health Organization). (1997). UNESCO. Expert Consultation on Amoebiasis. WHO Wkly. Epidem. Rec., 72, 97–100.

Ximénez, C., González, E., Nieves, M., Magaña, U., Morán, P., & Gudiño-Zayas, M. (2017). Differential expression of pathogenic genes of Entamoeba histolytica vs E. dispar. PLOS ONE, 12(8), e0181962.

Downloads

Views

21

Downloads

12