Article section
Advancing Sustainable U.S. Aquaculture: Microalgae as a Fishmeal Alternative for Rainbow Trout
Abstract
As the need for environmentally friendly aquaculture operations grows, more people are looking for other sources of protein. Microalgae are becoming a possible alternative to traditional fishmeal in rainbow trout diets. This review looks at how microalgae might be used instead of fishmeal, focussing on their nutritional benefits, growth performance, and environmental benefits. Microalgae including Chlorella, Spirulina, and Nannochloropsis are good sources of protein (30–60% dry weight), essential amino acids, and long-chain omega-3 fatty acids. These nutrients help improve feed conversion ratios and keep omega-3 levels high in trout meat. Life-cycle evaluations show that feeds made from microalgae can cut down on greenhouse gas emissions and phosphorus loading compared to regular fishmeal. These benefits notwithstanding, issues include elevated manufacturing costs (estimated at $50–400/kg dry weight), possible nutritional imbalances, and regulatory impediments continue to pose substantial barriers to widespread use. Ongoing research into optimising production techniques, wastewater integration, and genetic engineering of microalgae offers promise for addressing these restrictions. Adding microalgae to U.S. aquaculture might make the sector more sustainable and profitable, as well as lessen its impact on the environment and reliance on wild-caught fish. To fully realise the promise of microalgae as a key part of sustainable aquaculture, we need to keep investing in research, create supportive legislative frameworks, and encourage collaboration between industry and academia.
Keywords:
Alternative Protein Sources Aquaculture Sustainability Fishmeal Replacement Microalgae Rainbow Trout Sustainable Aquaculture
Article information
Journal
Journal of Agriculture, Aquaculture, and Animal Science
Volume (Issue)
2(2), (2025)
Pages
112-120
Published
Copyright
Copyright (c) 2025 Taofeek Saka Jimoh, Toheeb Olaniyi Falakin, Elijah Kordieh Mensah (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Ahmad, A., & Ashraf, S. S. (2025). Efficient cultivation and scale-up of marine microalgae Fistulifera peliculosa and Nannochloropsis oculata for sustainable aquaculture applications. Chemical Engineering Journal Advances, 22, 100720. https://doi.org/10.1016/j.ceja.2025.100720
Ahmad, A., W. Hassan, S., & Banat, F. (n.d.). An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered, 13(4), 9521–9547. https://doi.org/10.1080/21655979.2022.2061148
Ahmad Kamal, A. H., Mohd Hamidi, N. F., Zakaria, M. F., Ahmad, A., Harun, M. R., Chandra Segaran, T., & Jusoh, M. (2024). Genetically engineered microalgae for enhanced bioactive compounds. Discover Applied Sciences, 6(9), 482. https://doi.org/10.1007/s42452-024-06116-5
Ansari, F. A., Guldhe, A., Gupta, S. K., Rawat, I., & Bux, F. (2021). Improving the feasibility of aquaculture feed by using microalgae. Environmental Science and Pollution Research International, 28(32), 43234–43257. https://doi.org/10.1007/s11356-021-14989-x
Aragão, C., Gonçalves, A. T., Costas, B., Azeredo, R., Xavier, M. J., & Engrola, S. (2022). Alternative Proteins for Fish Diets: Implications beyond Growth. Animals , 12(9), 1211. https://doi.org/10.3390/ani12091211
Auzins, A., Leimane, I., Reissaar, R., Brobakk, J., Sakelaite, I., Grivins, M., & Zihare, L. (2024). Assessing the Socio-Economic Benefits and Costs of Insect Meal as a Fishmeal Substitute in Livestock and Aquaculture. Animals, 14(10), 1461. https://doi.org/10.3390/ani14101461
Ayon, N. J. (2023). High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites, 13(5), 625. https://doi.org/10.3390/metabo13050625
Balasubramaniam, V., Rathi, D.-N. G., Mustar, S., & Lee, J. C. (2025). Microalgae as an Eco-Friendly and Functional Ingredient for Sustainable Aquafeed. Aquaculture Journal, 5(3), 14. https://doi.org/10.3390/aquacj5030014
Chaves, A. A. M., Ribeiro, D. M., Martins, C. F., Fernandes, T., Maia, M. R. G., Fonseca, A. J. M., Cabrita, A. R. J., Alves, S. P., Pinho, M., Bessa, R. J. B., de Almeida, A. M., & Freire, J. P. B. (2024). Nutritional Value of Nannochloropsis oceanica for Weaner Piglets. Animals , 14(24), 3575. https://doi.org/10.3390/ani14243575
Fishmeal and fish oil – European Fishmeal. (n.d.). Retrieved September 18, 2025, from https://effop.org/fishmeal-and-fish-oil/fishmeal-and-fish-oil/
Jui, T. J., Tasnim, A., Islam, S. M. R., Manjur, O. H. B., Hossain, Md. S., Tasnim, N., Karmakar, D., Hasan, Md. R., & Karim, Md. R. (2024). Optimal growth conditions to enhance Chlorella vulgaris biomass production in indoor phyto tank and quality assessment of feed and culture stock. Heliyon, 10(11), e31900. https://doi.org/10.1016/j.heliyon.2024.e31900
Liu, Y., Ren, X., Fan, C., Wu, W., Zhang, W., & Wang, Y. (2022). Health Benefits, Food Applications, and Sustainability of Microalgae-Derived N-3 PUFA. Foods, 11(13), 1883. https://doi.org/10.3390/foods11131883
Lu, Q. (2025). A State-of-the-Art Review of Microalgae-Based Food Processing Wastewater Treatment: Progress, Problems, and Prospects. Water, 17(4), 536. https://doi.org/10.3390/w17040536
Macusi, E. D., Cayacay, M. A., Borazon, E. Q., Sales, A. C., Habib, A., Fadli, N., & Santos, M. D. (2023). Protein Fishmeal Replacement in Aquaculture: A Systematic Review and Implications on Growth and Adoption Viability. Sustainability, 15(16), 12500. https://doi.org/10.3390/su151612500
Majluf, P., Matthews, K., Pauly, D., Skerritt, D. J., & Palomares, M. L. D. (n.d.). A review of the global use of fishmeal and fish oil and the Fish In:Fish Out metric. Science Advances, 10(42), eadn5650. https://doi.org/10.1126/sciadv.adn5650
Martínez-Ruiz, F. E., Andrade-Bustamante, G., Holguín-Peña, R. J., Renganathan, P., Gaysina, L. A., Sukhanova, N. V., & Puente, E. O. R. (2025). Microalgae as Functional Food Ingredients: Nutritional Benefits, Challenges, and Regulatory Considerations for Safe Consumption. Biomass, 5(2), 25. https://doi.org/10.3390/biomass5020025
Nagarajan, D., Chen, C.-W., Ponnusamy, V. K., Dong, C.-D., Lee, D.-J., & Chang, J.-S. (2024). Sustainable aquaculture and seafood production using microalgal technology—A circular bioeconomy perspective. Chemosphere, 366, 143502. https://doi.org/10.1016/j.chemosphere.2024.143502
Ogbuewu, I. P., & Mbajiorgu, C. A. (2025). Unlocking the feed supplement potentials of blue-green alga (spirulina) in broiler nutrition: A comprehensive review. Tropical Animal Health and Production, 57(7), 364. https://doi.org/10.1007/s11250-025-04587-1
Oslan, S. N. H., Tan, J. S., Oslan, S. N., Matanjun, P., Mokhtar, R. A. M., Shapawi, R., & Huda, N. (2021). Haematococcus pluvialis as a Potential Source of Astaxanthin with Diverse Applications in Industrial Sectors: Current Research and Future Directions. Molecules, 26(21), 6470. https://doi.org/10.3390/molecules26216470
Penloglou, G., Pavlou, A., & Kiparissides, C. (2024). Recent Advancements in Photo-Bioreactors for Microalgae Cultivation: A Brief Overview. Processes, 12(6), 1104. https://doi.org/10.3390/pr12061104
Podgórska-Kryszczuk, I. (2024). Spirulina—An Invaluable Source of Macro- and Micronutrients with Broad Biological Activity and Application Potential. Molecules, 29(22), 5387. https://doi.org/10.3390/molecules29225387
Saadaoui, I., Rasheed, R., Aguilar, A., Cherif, M., Al Jabri, H., Sayadi, S., & Manning, S. R. (2021). Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. Journal of Animal Science and Biotechnology, 12(1), 76. https://doi.org/10.1186/s40104-021-00593-z
Sarker, N. K., & Kaparaju, P. (2024). Microalgal Bioeconomy: A Green Economy Approach Towards Achieving Sustainable Development Goals. Sustainability, 16(24), 11218. https://doi.org/10.3390/su162411218
Sarker, P. K. (2023). Microorganisms in Fish Feeds, Technological Innovations, and Key Strategies for Sustainable Aquaculture. Microorganisms, 11(2), 439. https://doi.org/10.3390/microorganisms11020439
Sarker, P. K., Figueroa, E., Kapuscinski, A. R., McKuin, B., Schoffstall, B. V., Fitzgerald, D., Greenwood, C., O’Shelski, K., Pasion, E. N., Gwynne, D., Orcajo, D. G., Andrade, S., & Nocera, P. (2024). Towards cleaner environment: Recycling microalgal co-product to reduce emissions and impacts while eliminating fishmeal in rainbow trout feed for sustainable aquaculture. Environmental Science and Pollution Research International, 31(33), 46073–46086. https://doi.org/10.1007/s11356-024-34136-6
Sarker, P. K., Schoffstall, B. V., Kapuscinski, A. R., McKuin, B., Fitzgerald, D., Greenwood, C., O’Shelski, K., Pasion, E. N., Gwynne, D., Gonzalez Orcajo, D., Andrade, S., Nocera, P., & San Pablo, A. M. (2025a). Towards Sustainable Aquafeeds: Microalgal (Nannochloropsis sp. QH25) Co-Product Biomass Can Fully Replace Fishmeal in the Feeds for Rainbow Trout (Oncorhynchus mykiss). Foods, 14(5), 781. https://doi.org/10.3390/foods14050781
Sarker, P. K., Schoffstall, B. V., Kapuscinski, A. R., McKuin, B., Fitzgerald, D., Greenwood, C., O’Shelski, K., Pasion, E. N., Gwynne, D., Gonzalez Orcajo, D., Andrade, S., Nocera, P., & San Pablo, A. M. (2025b). Towards Sustainable Aquafeeds: Microalgal (Nannochloropsis sp. QH25) Co-Product Biomass Can Fully Replace Fishmeal in the Feeds for Rainbow Trout (Oncorhynchus mykiss). Foods, 14(5), 781. https://doi.org/10.3390/foods14050781
Sarker, P. K., Schoffstall, B. V., Kapuscinski, A. R., McKuin, B., Fitzgerald, D., Greenwood, C., O’Shelski, K., Pasion, E. N., Gwynne, D., Gonzalez Orcajo, D., Andrade, S., Nocera, P., & San Pablo, A. M. (2025c). Towards Sustainable Aquafeeds: Microalgal (Nannochloropsis sp. QH25) Co-Product Biomass Can Fully Replace Fishmeal in the Feeds for Rainbow Trout (Oncorhynchus mykiss). Foods, 14(5), 781. https://doi.org/10.3390/foods14050781
Sheikhzadeh, N., Soltani, M., Heidarieh, M., & Ghorbani, M. (2024). Role of Dietary Microalgae on Fish Health and Fillet Quality: Recent Insights and Future Prospects. Fishes, 9(1), 26. https://doi.org/10.3390/fishes9010026
Tan, J. S., Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S.-H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626
Utilization of microalgae in aquaculture feeds. (2023, May 9). https://aquahoy.com/utilization-of-microalgae-in-aquaculture-feeds/
Widyaningrum, D., & Prianto, A. D. (2021). Chlorella as a Source of Functional Food Ingredients: Short review. IOP Conference Series: Earth and Environmental Science, 794(1), 012148. https://doi.org/10.1088/1755-1315/794/1/012148
Wu, J. Y., Tso, R., Teo, H. S., & Haldar, S. (2023). The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Frontiers in Nutrition, 10, 1277343. https://doi.org/10.3389/fnut.2023.1277343
Xi, L., Lu, Q., Liu, Y., Su, J., Chen, W., Gong, Y., Han, D., Yang, Y., Zhang, Z., Jin, J., Liu, H., Zhu, X., & Xie, S. (2022). Effects of fish meal replacement with Chlorella meal on growth performance, pigmentation, and liver health of largemouth bass (Micropterus salmoides). Animal Nutrition, 10, 26–40. https://doi.org/10.1016/j.aninu.2022.03.003
Yahaya, E., Yeo, W. S., Nandong, J., & Ngu, J. C. Y. (2025). CO2 fed microalgae cultivation in photobioreactor: Review on challenges and possible solutions. Environmental Technology Reviews, 14(1), 540–564. https://doi.org/10.1080/21622515.2025.2508945
Zahran, E., Elbahnaswy, S., Ahmed, F., Ibrahim, I., Khaled, A. A., & Eldessouki, E. A. (2023). Nutritional and immunological evaluation of Nannochloropsis oculata as a potential Nile tilapia-aquafeed supplement. BMC Veterinary Research, 19(1), 65. https://doi.org/10.1186/s12917-023-03618-z
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline