Research Article

Toxic Effect of Frequent Low and High Doses of Acetaminophen on Liver Function in Mice

Authors

  • Mohammed H. M. Merah Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Wasit, Wasit, Iraq

    mhamid@uowasit.edu.iq

Abstract

Acetaminophen is pharmacologically an active chemical entity, which is used safely and most widely as an over-the-counter analgesic drug, has been on the increase for the past few years-a trend that is predicted to continue. The study aims to examine experimental assessment the toxic effect of frequent low and high doses of acetaminophen on liver function through serological measurement of hepatic enzymes and antioxidants in mice. Forty adult male albino mice were equally assigned to NC (distilled water), and three acetaminophen groups; HAD (1000 mg/kg/day), RAD (500 mg/kg/day), and LAD (250 mg/kg/day). All mice were injected daily for 28 days; and finally, they chloroform- euthanized and directly blood sampled to obtaining the sera that utilized for measurement of hepatic enzymes (ALP, ALT, AST, and GGT), antioxidants [catalase (CAT), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD)] and lipid peroxidation [malondialdehyde (MDA)] throughout the quantitative enzyme-linked immunosorbent assay (ELISA) kits. In comparison to values of NC, though the serum levels of ALP, ALT, AST, and GGT were significantly increased in HAD, there were significant decreases in values of ALT and GGT in mice of LAD but not RAD; whereas, values of ALP and AST were differed insignificantly in mice of RAD and LAD. Among antioxidants, the findings of CAT, GSH-Px, and SOD were decreased in HAD but not RAD; however, significant elevation in values of SOD but not CAT and GSH-Px were shown in mice of LAD. For MDA, higher values were seen in mice of HAD but not in RAD and Lad. This study demonstrates that the prolonged administration of acetaminophen induces dose-dependent hepatotoxicity in mice, characterized biochemically by significant elevations in serum ALT, AST, ALP, and GGT, consistent with impaired serum antioxidants and lipid peroxidation markers. These findings underscore the hepatotoxic risk of acetaminophen overdose and prolonged use, emphasizing the necessity of strict adherence to therapeutic dosages, vigilant clinical monitoring, and early intervention strategies to mitigate liver injury.

Keywords:

Antioxidant Activity Antipyretic Agent Hepatic Enzymes N-acetyl-p-aminophenol Non-Opioid Analgesic Paracetamol

Article information

Journal

Journal of Agriculture, Aquaculture, and Animal Science

Volume (Issue)

2(2), (2025)

Pages

121-128

Published

20-10-2025

How to Cite

Merah, M. H. M. (2025). Toxic Effect of Frequent Low and High Doses of Acetaminophen on Liver Function in Mice. Journal of Agriculture, Aquaculture, and Animal Science, 2(2), 121-128. https://doi.org/10.69739/jaaas.v2i2.1059

References

Abourbih, D. A., Gosselin, S., Villeneuve, E., & Kazim, S. (2016). Are recommended doses of acetaminophen effective for children aged 2 to 3 years? A pharmacokinetic modeling answer. Pediatric Emergency Care, 32(1), 6-8.

Aitken, P., Stanescu, I., Playne, R., Zhang, J., Frampton, C. M., & Atkinson, H. C. (2019). An integrated safety analysis of combined acetaminophen and ibuprofen in adults. Journal of pain research, 621-634.

Al-Bayati, H. A. M., Shamkhi, G. J., AL-Aidy, S. R., & Gharban, H. A. J. (2023). Serological Detection, Isolation and Molecular Confirmation of Parainfluenza Virus-3 in Camels, Iraq. Bionatura, 8(1), 1-10.

Alanazi, M. Q. (2017). Drugs may be induced methemoglobinemia. Journal of Hematology & Thromboembolic Diseases, 5(3), 1-5.

Amaechi, O., Human, M. M., and Featherstone, K. (2021). Pharmacologic therapy for acute pain. American family physician, 104(1), 63-72.

Anoopkumar-Dukie, S. (1999). Serotonin-melatonin interactions in acetaminophen and N, N-dimethylformamide toxicity (Doctoral dissertation, Rhodes University).

Ben-Shachar, R., Chen, Y., Luo, S., Hartman, C., Reed, M., & Nijhout, H. F. (2012). The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model. Theoretical biology and medical modelling, 9(1), 55.

Bonkovsky, H. L., Kane, R. E., Jones, D. P., Galinsky, R. E., & Banner, B. (1994). Acute hepatic and renal toxicity from low doses of acetaminophen in the absence of alcohol abuse or malnutrition: evidence for increased susceptibility to drug toxicity due to cardiopulmonary and renal insufficiency. Hepatology, 19(5), 1141-1148.

Brune, K., Renner, B., & Tiegs, G. J. E. J. (2015). Acetaminophen/paracetamol: a history of errors, failures and false decisions. European Journal of Pain, 19(7), 953-965.

Bunchorntavakul, C., & Reddy, K. R. (2018). Acetaminophen (APAP or N-acetyl-p-aminophenol) and acute liver failure. Clinics in liver disease, 22(2), 325-346.

Caragea, G., Avram, O., Pauna, A., Costea, A. C., & Tudosie, M. (2022). Acetaminophen, a therapeutic or an extremely toxic remedy–a review. Journal of Mind and Medical Sciences, 9(1), 102-110.

Ciejka, M., Nguyen, K., Bluth, M. H., & Dubey, E. (2016). Drug toxicities of common analgesic medications in the emergency department. Clinics in Laboratory Medicine, 36(4), 761-776.

Dadkhah, A., Allameh, A. A., Fatemi, F., Rasmi, Y., & Ashrafihelan, J. (2007). Considering the pathologic lesions of liver and changes of plasma alanine transaminase and aspartate transaminase in acetaminophen–induced toxicity in rat. Pharmaceutical Sciences, 2, 47-54.

da Silva Melo, D. A., Saciura, V. C., Poloni, J. A. T., Oliveira, C. S. A., Alves Filho, J. C. F., Padilha, R. Z., & de Oliveira, J. R. (2006). Evaluation of renal enzymuria and cellular excretion as an marker of acute nephrotoxicity due to an overdose of paracetamol in Wistar rats. Clinica chimica acta, 373(1-2), 88-91.

Davis, D. C., Potter, W. Z., Jollow, D. J., & Mitchell, J. R. (1974). Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sciences, 14(11), 2099-2109.

Du, K., Farhood, A., & Jaeschke, H. (2017). Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Archives of toxicology, 91(2), 761-773.

Esh, C. J., Chrismas, B. C., Mauger, A. R., & Taylor, L. (2021). Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition?. Pharmacology Research and Perspectives, 9(4), e00835.

Fitzgerald, D. A. (2007). Aspirin and Reye syndrome. Pediatric Drugs, 9(3), 205-206.

Freo, U., Ruocco, C., Valerio, A., Scagnol, I., & Nisoli, E. (2021). Paracetamol: a review of guideline recommendations. Journal of clinical medicine, 10(15), 3420.

Gregus, Z. O. L. T. A. N., Madhu, C. H. E. R. U. K. U. R. Y., & Klaassen, C. D. (1988). Species variation in toxication and detoxication of acetaminophen in vivo: a comparative study of biliary and urinary excretion of acetaminophen metabolites. The Journal of pharmacology and experimental therapeutics, 244(1), 91-99.

Grgic, J. (2022). What is the effect of paracetamol (acetaminophen) ingestion on exercise performance? Current findings and future research directions. Sports Medicine, 52(3), 431-439.

Heard, K., Green, J. L., Anderson, V., Bucher-Bartelson, B., & Dart, R. C. (2014). A randomized, placebo-controlled trial to determine the course of aminotransferase elevation during prolonged acetaminophen administration. BMC Pharmacology and Toxicology, 15(1), 39.

Hinson, J. A., Roberts, D. W., & James, L. P. (2009). Mechanisms of acetaminophen-induced liver necrosis. Adverse drug reactions, 369-405.

Hussen, T. J., Al-Shaeli, S. J. J., Al-Mahna, B. H. R., & Gharban, H. A. J. (2024). Biochemical and histological effects of long-term administration of estrogen on female mice. Advances in Animal and Veterinary Sciences, 12(8), 1563-1572.

Ioannides, S. J., Siebers, R., Perrin, K., Weatherall, M., Crane, J., Travers, J., & Beasley, R. (2015). The effect of 1 g of acetaminophen twice daily for 12 weeks on alanine transaminase levels—A randomized placebo-controlled trial. Clinical biochemistry, 48(10-11), 713-715.

James, L. P., Mayeux, P. R., & Hinson, J. A. (2003). Acetaminophen-induced hepatotoxicity. Drug metabolism and disposition, 31(12), 1499-1506.

Jarsiah, P., Nosrati, A., Alizadeh, A., & Hashemi-Soteh, S. M. B. (2017). Hepatotoxicity and ALT/AST enzymes activities change in therapeutic and toxic doses consumption of acetaminophen in rats. International Biological and Biomedical Journal, 3(3), 119-124.

Jasim, M. H., & Mustafa, Y. F. (2024). Synthesis of Acetaminophen‐Based Coumarins as Selective COX‐2 Inhibitors: An in vitro‐in silico Study. Chemistry and Biodiversity, 21(10), e202401309.

Jemnitz, K., Veres, Z., Monostory, K., Kóbori, L., & Vereczkey, L. (2008). Interspecies differences in acetaminophen sensitivity of human, rat, and mouse primary hepatocytes. Toxicology in Vitro, 22(4), 961-967.

Lee, P. J., Shen, M., Wang, S., Spiegler, P., Caraccio, T., DeMuro, J. P., & Malone, B. (2015). Possible hepatotoxicity associated with intravenous acetaminophen in a 36-year-old female patient. Pharmacy and Therapeutics, 40(2), 123.

Malungpaishrope, R. (2018). Comparative study of efficacy of tramadol/acetaminophen combination tablet and ibuprofen in acute pain control after mandibular third molar surgery. Dissertation submitted to the Jawaharlal Nehru technological university, Hyderabad, India.

McClain, C. J., Price, S., Barve, S., Devalarja, R., & Shedlofsky, S. (1999). Acetaminophen hepatotoxicity: an update. Current gastroenterology reports, 1(1), 42-49.

Mitic-Zlatkovic, M., & Stefanovic, V. (1999). Acute effects of acetaminophen on renal function and urinary excretion of some proteins and enzymes in patients with kidney disease. Renal failure, 21(5), 525-532.

Moore, R. A., Derry, S., Wiffen, P. J., Straube, S., & Aldington, D. J. (2015). Overview review: Comparative efficacy of oral ibuprofen and paracetamol (acetaminophen) across acute and chronic pain conditions. European Journal of Pain, 19(9), 1213-1223.

Murakami, T. (2017). Absorption sites of orally administered drugs in the small intestine. Expert opinion on drug discovery, 12(12), 1219-1232.

Neirinckx, E., Vervaet, C., De Boever, S., Remon, J. P., Gommeren, K., Daminet, S., & Croubels, S. (2010). Species comparison of oral bioavailability, first-pass metabolism and pharmacokinetics of acetaminophen. Research in veterinary science, 89(1), 113-119.

Nuttall, S. L., Khan, J. N., Thorpe, G. H., Langford, N., & Kendall, M. J. (2003). The impact of therapeutic doses of paracetamol on serum total antioxidant capacity. Journal of clinical pharmacy and therapeutics, 28(4), 289-294.

Ogemdi, I. K. (2019). A Review on the Properties and Uses of Paracetamol. International Journal of Pharmacy and Chemistry, 5(3), 31-35.

Przybyła, G. W., Szychowski, K. A., & Gmiński, J. (2021). Paracetamol–An old drug with new mechanisms of action. Clinical and Experimental Pharmacology and Physiology, 48(1), 3-19.

Ramachandran, A., & Jaeschke, H. (2018). Acetaminophen toxicity: novel insights into mechanisms and future perspectives. Gene expression, 18(1), 19.

Ramachandran, A., & Jaeschke, H. (2021). Oxidant stress and acetaminophen hepatotoxicity: mechanism-based drug development. Antioxidants and redox signaling, 35(9), 718-733.

Ray, S. D., Mumaw, V. R., Raje, R. R., & Fariss, M. W. (1996). Protection of acetaminophen-induced hepatocellular apoptosis and necrosis by cholesteryl hemisuccinate pretreatment. The Journal of pharmacology and experimental therapeutics, 279(3), 1470-1483.

Sakaue, T., Matsumoto, S., Tsuboi, S., Ogata, K., & Ohmori, S. (1996). Protective effect of S-(1, 2-dicarboxyethyl) glutathione, an intrinsic tripeptide in liver, heart and lens, and its esters on acetaminophen-induced hepatotoxicity in rats. Biological and Pharmaceutical Bulletin, 19(9), 1216-1219.

Schrör, K. (2007). Aspirin and Reye syndrome: a review of the evidence. Pediatric Drugs, 9(3), 195-204.

Shon, Y. H., & Nam, K. S. (2004). Protective effect of Moutan Cortex extract on acetaminophen-induced hepatotoxicity in mice. Journal of ethnopharmacology, 90(2-3), 415-419.

Singh, S. P., & Vyas, G. K. (2022). Paracetamol (Acetaminophen): An Intimate Drug with Unexplained Adverse Effects on Body.

Song, Z., McClain, C. J., & Chen, T. (2004). S-Adenosylmethionine protects against acetaminophen-induced hepatotoxicity in mice. Pharmacology, 71(4), 199-208.

Tejo, J. (2021). Curcumin, antioxidant activity, and paracetamol toxicity. Toxicology, 469-477.

Vannacci, A., Lombardi, N., Simonetti, M., Fornasari, D., Fanelli, A., Cricelli, I., & Lapi, F. (2017). Regular use of acetaminophen or acetaminophen–codeine combinations and prescription of rescue therapy with non-steroidal anti-inflammatory drugs: a population-based study in primary care. Current Medical Research and Opinion, 33(6), 1141-1148.

Wahab, B. A. A., Merah, M. H., Latif, A. D., and Gharban, H. A. (2024). Alternative therapeutic approach of ovine subclinical mastitis using the ethanolic roots extract of Capparis spinosa. Open Veterinary Journal, 14(3), 814.

Wang, X., Wu, Q., Liu, A., Anadón, A., Rodríguez, J. L., Martínez-Larrañaga, M. R., & Martínez, M. A. (2017). Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug metabolism reviews, 49(4), 395-437.

Yang, J. (2023). Effects of a Therapeutic Dose and a High-Dose of Acetaminophen on Blood-Brain Barrier Tight Junction Proteins and Efflux Transporters (Doctoral dissertation, The University of Arizona).

Zakiyah, W., Wibowo, S. P. S., Elyyana, N., Darmawan, S. A. N., Lestari, S. A., Sa’diyyah, N., & Mulki, M. A. (2022). Literature Review: Study of molecular mechanism level of NSAID class of drugs as COX-2 inhibitors. Jurnal EduHealth, 13(02), 572-580.

Downloads

Views

0

Downloads

0