Article section
Phytoplankton Species Identification in Sukol River Bongabong, Oriental Mindoro
Abstract
Phytoplankton balances the flow of food as the primary top resource for many aquatic organisms. Sukol River is one of the major water resources in the Municipality of Bongabong in Oriental Mindoro that supplies various human activities such as the source of agricultural irrigation, energy production, fishing, etc. This study focused on the phytoplankton diversity abundance at selected sites of Sukol River, specifically in the river mouth namely Brgy. Poblacion, (Site 1) Brgy. Sagana, (Site 2) and Brgy Ipil (Site 3). A total of 3 taxa belonging to Chlorophyta (5), Bacillariophyta (10), and Cyanophyta (1) were identified. The highest taxa occurred in Site 1 with a diversity index value of 1.96, followed by Site 2 (1.71) and Site 3 (1.69), hence relative value still indicates not accounted for high indication of the diversity and not considered as diverse in terms of species found in the area. Likewise in terms of relative abundance, the highest taxa occurred in Site 2 with a diversity index value of 0.82, followed by Site 1 (0.80) and Site 3 (0.77). On the contrary, the highest average cell density was Site 1 (99.2 x 106), Site 3 (69.6 x 106), and Site 2 (65.8 x 106), implying that each site has high uniformity in terms of species and cell density. Remarkably, Navicula sp. is present only in Site 1 and Gyrosigma sp. in Site 3. Results also showed that phytoplankton was greatly affected by flow rate as the movement of water ranges from 31.31 m/s (Site 2). 26.85 m/s (Site 1) and 25.75 m/s (Site 3).
Keywords:
Abundance Bongabong River Distribution Phytoplankton Species Diversity
Article information
Journal
Journal of Agriculture, Aquaculture, and Animal Science
Volume (Issue)
2(1), (2025)
Pages
45-54
Published
Copyright
Copyright (c) 2025 Angelito Jerome Lachinal, Mantes, Angelo M., Royo, Mary Ann R. (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Briola, M., Guevara, M., Menzies, D., Oshima, H., & Sanderson, K. (2010). The Effects of pH on the Abundance of Phytoplankton for Mariculture. Ketchikan High School, 2610.
Brunger, L. T. S., Hubert, W. A., & Rahel, F. J. (2005). Relationships of elevation, channel slope, and stream width to occurrences of native fishes at the Great Plains-Rocky Mountains interface. Journal of Freshwater Ecology, 20(4), 695–705. https://doi.org/ 10.1080/02705060.2005.9664793
Butterwick, C., Heaney, S. I., & Talling, J. F. (2005). Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology, 50(2), 291-300. https://doi.org/10.1111/j.1365-2427.2004.01317.x.
Domingues et al, 2011. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Research article, Springer Link :Aquatic Sciences 73, 331-343 (2011) Aquatic Sciences. 73. 331-343. 10.1007/s00027-011-0180-0.
Fondriest Environmental Inc. (FEI). (2014). Conductivity, Salinity and Total Dissolved Solid. https://www.fondriest.com/environmental-measurements/parameters/water-quality/conductivity-salinity-TDS
Gilliam, J. F., Fraser, D. F., & Alkins-Koo, M. (1993). Structure of a tropical stream fish community: a role for biotic interactions. Ecology, 74(6), 1856-1870. https://doi.org/10.2307/1939943
Harvey, B. C., & Stewart, A. J. (1991). Fish size and habitat depth relationships in headwater streams. Oecologia, 87, 336-342. https://doi.org/10.1007/BF00634588
Henson, S. A., Cael, B. B., Allen, S. R., & Dutkiewicz, S. (2021). Future phytoplankton diversity in a changing climate. Nature communications, 12(1), 5372. https://doi.org/10.1038/s41467-021-25699-w
Hinga, K. R. (2002). Effects of pH on coastal marine phytoplankton. Marine ecology progress series, 238, 281-300. https://doi.org/10.3354/meps238281.
Hubbell, S. P. (2011). The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press.
Hulyal, S. B., & Kaliwal, B. B. (2009). Dynamics of phytoplankton in relation to physico-chemical factors of Almatti reservoir of Bijapur District, Karnataka State. Environmental monitoring and assessment, 153, 45-59. https://doi.org/10.1007/s10661-008-0335-1
Jakhar, P. (2013). Role of phytoplankton and zooplankton as health indicators of aquatic ecosystem: A review. International Journal of Innovation Research Study, 2(12), 489-500.
Kemker, C. (2013). Dissolved Oxygen. Fundamentals of Environmental Asurements. Fondriest Environmental Inc. Web. http://www.fondriest.com/environmentalMeasurements/parameters/water-quality/dissolved-oxygen
Knorr, R. (2022, October 23). What Do Phytoplankton Eat?. Sciencing.com. Retrieved from https://sciencing.com/phytoplankton-eat-5065524.html
Kumar, R., Kumari, R., Prasad, C., Tiwari, V., Singh, N., Mohapatra, S., ... & Deep, A. (2020). Phytoplankton diversity in relation to physicochemical attributes and water quality of Mandakini River, Garhwal Himalaya. Environmental Monitoring and Assessment, 192, 1-23. https://doi.org/10.1007/s10661-020-08768-3
Langlois, T. J., Harvey, E. S., & Meeuwig, J. J. (2012). Strong direct and inconsistent indirect effects of fishing found using stereo-video: Testing indicators from fisheries closures. Ecological Indicators, 23, 524-534. https://doi.org/10.1016/j.ecolind.2012.04.030.
Li, X. L., Marella, T. K., Tao, L., Li, R., Tiwari, A., & Li, G. (2017). Optimization of growth conditions and fatty acid analysis for three freshwater diatom isolates. Phycological Research, 65(3), 177-187. https://doi.org/10.1111/pre.12174.
Maigari, S., Nayaya, A. J., & Gaya, E. A. (2018). Impact of Physico-Chemical Parameters on Fish Diversity in Gubi Reservoir, Bauchi State, Nigeria. International Journal of Innovative Research and Development, 7(11), 128-133. https://doi.org/10.24940/ijird/2018/v7/i11/NOV18041
Manigandan Vajravelu, M. V., Yosuva Martin, Y. M., Saravanakumar Ayyappan, S. A., & Machendiranathan Mayakrishnan, M. M. (2018). Seasonal influence of physico-chemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, South East Coast of India. Oceanologia, 60(2), 114-127. https://www.cabidigitallibrary.org/doi/full/10.5555/20193388367
Mengesha, T. A. (2015). Fish species diversity in major river basins of Ethiopia: A review. World Journal of Fish and Marine Sciences, 7(5), 365-374. https://doi.org/10.5829/idosi.wjfms.2015.7.5.95195
Miller, S. A., Harley, J. P., Aloi, J., & Erickson, G. (2016). Zoology (10th ed.). New York: McGraw-Hill.
Ortiz-Burgos, S. (2016). Shannon-Weaver Diversity Index. In Kennish, M. J. (Ed.) Encyclopedia of Estuaries. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8801-4_233
Otero, J., Álvarez-Salgado, X. A., & Bode, A. (2020). Phytoplankton diversity effect on ecosystem functioning in a coastal upwelling system. Frontiers in Marine Science, 7, 592255. https://doi.org/10.3389/fmars.2020.592255
Parichy, D. M., & Postlethwait, J. H. (2020). The biotic and abiotic environment of zebrafish. In Behavioral and neural genetics of zebrafish (pp. 3-16). Academic Press.https://doi.org/10.1016/B978-0-12-817528-6.00001-2.
Quitain, R. A. (2021). Describing The Greenhouse Gas Reduction Capacity Of Mangroves By Carbon Stock Assessment Using Allometric Data In Sukol River, Bongabong, Oriental Mindoro, Philippines. Ioer International Multidisciplinary Research Journal, 3, 139-147.
Saadatkhah, A., Sobhanian, H., Zoufan, P., Amini, F., & Soltani, N. (2020). Interaction of nitrogen and silicate fluctuations with salt stress on growth, and lipid production in Navicula sp. Iranian Journal of Fisheries Sciences, 19(6), 3310-3326. https://doi.org/10.22092/ijfs.2020.350889.0
Sharma, A., Sharma, R. C., & Anthwal, A. (2007). Monitoring phytoplankton diversity in the hill stream Chandrabhaga in Garhwal Himalayas. Life Science Journal, 4(1), 80-84.
Smith, D. W., & Piedrahita, R. H. (1988). The relation between phytoplankton and dissolved oxygen in fish ponds. Aquaculture, 68(3), 249-265. https://doi.org/10.1016/0044-8486(88)90357-2.
Smith, V. H. (1990). Effects of nutrients and non-algal turbidity on blue-green algal biomass in four North Carolina reservoirs. Lake and reservoir management, 6(2), 125-131. https://doi.org/10.1080/07438149009354702.
Somerfield, P. J., Clarke, K. R., & Warwick, R. M. (2008). Simpson index. In Encyclopedia of ecology (pp. 3252-3255). Elsevier. https://doi.org/10.1016/B978-008045405-4.00133-6.
Underwood, G. J. C. (2001). Microphytobenthos. In John H. Steele (Ed.), Encyclopedia of Ocean Sciences. Academic Press.
Weiher, E., & Keddy, P. A. (1999). Relative abundance and evenness patterns along diversity and biomass gradients. Oikos, 87(2), 355-361. https://doi.org/10.2307/3546751
Wikramanayake, E. D., & Moyle, P. B. 1989. Ecological Structure of Fish Assemblages in Wet-zones Streams of Sri Lanka. Journal of Zoology London, 218(3), 503-526.